C++(初阶)(十九)——红黑树

红黑树

  • 红黑树
    • 概念
    • 规则
    • 实现
      • 结点
      • 插入
      • 变色
        • 变色参考代码:
      • 查找
        • 查找参考代码
      • 遍历
    • 红黑树检查
    • 完整代码

概念

红⿊树是⼀棵⼆叉搜索树。它的每个结点增加⼀个存储位来表示结点的颜⾊,可以是红色或者黑色(并不会出现第三种颜色)。

通过对结点颜色特别的规则进行约束,红黑树确保没有任何⼀条路径会比其他路径长出2倍,即保证最长路径(一黑一红)<= 最短路径*2(全黑),因此红黑树是接近平衡的。

规则

1,每个结点不是红色就是黑色。

2,根结点是黑色的。

3,如果⼀个结点是红⾊的,则它的两个孩⼦结点必须是黑色的,也就是说任意⼀条路径不会有连续的红色结点。

4,对于任意⼀个结点,从该结点到其所有空结点(NULL)的简单路径上,均包含相同数量的黑色结点。

5,最长路径(一黑一红)<= 最短路径*2(全黑)。

说明:《算法导论》等书籍上补充了⼀条每个叶⼦结点(NIL)都是黑色的规则。他这⾥所指的叶⼦结点 不是传统的意义上的叶⼦结点,⽽是我们说的空结点,有些书籍上也把NIL叫做外部结点。NIL是为了 ⽅便准确的标识出所有路径,《算法导论》在后续讲解实现的细节中也忽略了NIL结点,所以我们知道 ⼀下这个概念即可

实现

结点

// 枚举值表⽰颜⾊
enum Colour
{RED,BLACK
};// 这⾥我们默认按key_value结构实现
template<class K, class V>
struct RBTreeNode
{pair<K, V> _kv;RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;//这⾥更新控制平衡也要加⼊parent指针RBTreeNode<K, V>* _parent;Colour _col;//构造RBTreeNode(const pair<K, V>& kv):_kv(kv), _left(nullptr), _right(nullptr), _parent(nullptr), _col(BLACK){}
};

插入

首先实现最简单的插入操作。

1,首先判断是否是空树,因为空树也是红黑树。如果是空树,创建新节点,颜色是黑色(根节点必须是黑色),返回即可。

2,查找我们数据应该插入的位置,查找规则和二叉搜索树一样。比当前结点大,再去和右孩子的结点比较;比当前结点小,再去和左孩子的结点比较;即大就向右走,小就向左走,直到找到空,执行插入操作。

3,不是空树,创建新增结点,默认颜色是红色。为什么不给黑色,仔细分析红黑树的规则发现:如果新增结点是黑色的话,那么就可能会破坏其他简单路径上黑色结点数量,造成简单路径黑色结点的数量不相等。所以默认是红色结点,这样更方便。

那是否可以将全部结点都设置为黑色呢?按照红黑树的规则来看,逻辑上没有问题,但是这样的红黑树就失去了原本意义,全部都是黑色结点和二叉搜索树没有区别,而且还浪费了存储颜色的额外空间。

4,最简单的情况是,新节点的父亲结点是黑色,则插入成功后就结束。

但是如果父亲结点是红色,那么插入新节点后就需要进行变色处理,原因是红黑树不会存在连续的红色结点,变色处理稍微麻烦,放到后边位置详细说明。

参考代码:

template<class K, class V>
class RBTree
{typedef RBTreeNode<K, V> Node;
public://插入bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);return true;}//记录cur的父结点Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}//新增结点,初始给红色cur = new Node(kv);cur->_col = RED;if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;return true;}private:Node* _root = nullptr;
};

变色

前面分析过,如果新节点的父亲结点存在且为红色,那么需要对祖先结点进行变色。

但是变色依旧有多种情况,需要分别讨论。

为了方便使用缩写展示:g代表grandfather,p代表parent,u代表uncle,c代表cur即新结点。

1,

  • 父亲结点存在且为红色
  • 此时的父亲结点是爷爷结点的左孩子
  • 叔叔结点存在并且为红色

在这里插入图片描述

此时经过分析得到,我们需要对父亲结点进行变色处理,以下是参考过程:

  • 将父亲和叔叔结点颜色变黑,爷爷结点颜色变红

  • 注意:为了防止此处将根结点也变为红色,所以在最后一处_root->_col = RED

  • 如果此时符合红黑树的规则,那么即可结束,反之向上更新结点,直到结束。

//更新结点位置,向上更新
cur = grandfather;
parent = cur->_parent;

2,

  • 父亲结点存在且为红色
  • 此时的父亲结点是爷爷结点的左孩子
  • 叔叔结点不存在或者存在且为黑色

此时需要进行变色+旋转处理。

但是旋转时又有所差异:如果cur是parent的左孩子(如下图),需要以grandfather为旋转点进行右单旋;

如果cur是parent的右孩子(如下图),需要先以parent为旋转点左单旋,再以grandfather为旋转点进行右单旋的左右双旋,最后要记得将旋转后的cur改为黑色,grandfather改为红色。

3,

  • 父亲结点存在且为红色

  • 此时的父亲结点是爷爷结点的右孩子

  • 叔叔结点存在且为红色

与情况1类似不再赘述。

4,

  • 父亲结点存在且为红色

  • 此时的父亲结点是爷爷结点的右孩子

  • 叔叔结点不存在或者存在且为黑色

与情况2类似不再赘述。

变色参考代码:
		//变色处理while (parent && parent->_col == RED){Node* grandfather = parent->_parent;//  g//p   uif (parent == grandfather->_left){Node* uncle = grandfather->_right;//叔叔结点存在,并且为红色if (uncle && uncle->_col == RED){//将父亲和叔叔结点颜色变黑,爷爷结点颜色变红//为了防止此处将根结点也变为红色,所以在最后一处_root->_col = REDparent->_col = uncle->_col = BLACK;grandfather->_col = RED;//更新结点位置,向上更新cur = grandfather;parent = cur->_parent;}//叔叔结点不存在,或者存在并且为黑色//变色+旋转else{//    g//  p   u//cif (cur == parent->_left){RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}//cur == parent->_rightelse{//    g//  p   u//    c//双旋RotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}//    g//  u   p//parent == grandfather->_rightelse{Node* uncle = grandfather->_left;//叔叔结点存在,并且为红色if (uncle && uncle->_col == RED){//将父亲和叔叔结点颜色变黑,爷爷结点颜色变红//为了防止此处将根结点也变为红色,所以在最后一处_root->_col = REDparent->_col = uncle->_col = BLACK;grandfather->_col = RED;//更新结点位置,向上更新cur = grandfather;parent = cur->_parent;}//叔叔结点不存在,或者存在并且为黑色//变色+旋转else{//    g//  u   p//		   cif (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}//cur == parent->_leftelse{//    g//  p   u//    c//双旋RotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;

查找

查找很简单,与二叉搜索树的查找规则一样。

即要查找的cur结点的值大于根结点就向右走,比当前结点小就向左走,直到查找到或者走到空为止。

查找参考代码
//查找
Node* Find(const K& key)
{Node* cur = _root;while (cur){if (cur->_kv.first < key){cur = cur->_right;}else if (cur->_kv.first > key){cur = cur->_left;}else{return cur;}}return nullptr;
}

遍历

因为红黑树是二叉搜索树,所以使用中序遍历即可。

//中序遍历
void _InOrder(Node* root)
{if (root == nullptr){return;}_InOrder(root->_left);cout << root->_kv.first << " ";_InOrder(root->_right);
}

红黑树检查

对红黑树检查时,可以从红黑树的规则入手。

1,每个结点不是红色就是黑色。

2,根结点是黑色的。

3,如果⼀个结点是红⾊的,则它的两个孩⼦结点必须是⿊⾊的,也就是说任意⼀条路径不会有连续的红色结点。

4,对于任意⼀个结点,从该结点到其所有NULL结点的简单路径上,均包含相同数量的⿊⾊结点。

对于规则1,我们在实现时,使用的就是红色和黑色的枚举,不可能出现其他颜色。

对于规则2,也很好判断,加一句判断语句即可。

对于规则3,前序遍历检查,遇到红⾊结点查孩⼦不太⽅便,因为孩⼦有两个,且不⼀定存在,反过来检查⽗亲的颜⾊就⽅便多了。

对于规则4,前序遍历,遍历过程中⽤形参记录跟到当前结点的blackNum(⿊⾊结点数量),前序遍历遇到⿊⾊结点就++blackNum,⾛到空就计算出了⼀条路径的⿊⾊结点数量。再任意⼀条路径⿊⾊结点 数量作为参考值,依次⽐较即可。

bool Check(Node* root, int blackNum, const int refNum)
{if (root == nullptr){//前序遍历⾛到空时,意味着⼀条路径⾛完了//cout << blackNum << endl;if (refNum != blackNum){cout << "存在⿊⾊结点的数量不相等的路径" << endl;return false;}return true;}//因为孩子结点可能有两个,也可能不存在,所以检查父亲结点更方便if (root->_col == RED && root->_parent->_col == RED){cout << root->_kv.first << "存在连续的红色结点" << endl;return false;}if (root->_col == BLACK){++blackNum;}return Check(root->_left, blackNum, refNum)&& Check(root->_right, blackNum, refNum);
}bool IsBalance()
{//首先,如果是空树也是红黑树if (_root == nullptr){return true;}//再者,如果根结点是红色,不是红黑树if (_root->_col == RED){return false;}//剩余情况,需要依照参考值判断//参考值int refNum = 0;Node* cur = _root;while (cur){if (cur->_col == BLACK){++refNum;}cur = cur->_left;}return Check(_root, 0, refNum);
}

完整代码

https://gitee.com/any10/c_plus_plus/blob/master/2025c%2B%2B/RBTree_5_5/RBTree.h

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/bicheng/82030.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mistral AI 开源最新 Small 模型——Devstral-Small-2505

Devstral 是一款专为软件工程任务设计的代理型大语言模型&#xff08;LLM&#xff09;&#xff0c;由 Mistral AI 和 All Hands AI 合作开发 &#x1f64c;。Devstral 擅长使用工具探索代码库、编辑多个文件以及驱动软件工程代理。该模型在 SWE-bench 上表现出色&#xff0c;使…

CDGA|一线二线企业数据治理项目目前发展状况

一线城市与二线城市企业在数据治理项目的发展状况上存在一定差异&#xff0c;主要体现在目标、资源投入、策略实施以及文化培育等方面。 一线城市企业数据治理项目发展状况 ‌数据治理目标全面系统‌&#xff1a; ‌数据质量与安全‌&#xff1a;一线城市的大型企业通常拥有海量…

Lyra学习笔记1地图角色加载流程

目录 1 地图加载流程1.1 默认Experience的加载1.2 加载角色1.3 加载场景中的几个传送点 2 几个内建类的笔记2.1 UDataAsset2.2 UAssetManager 纯个人笔记&#xff0c;有错误欢迎指正&#xff0c;学习阶段基本看到不会的就写一写&#xff0c;最后有时间会梳理整体结构 先看完了官…

SurfaceFlinger及Android应用RenderThread角度观察Jank丢帧卡顿

SurfaceFlinger及Android应用RenderThread角度观察Jank丢帧卡顿 CPU、GPU、Display 三个部分&#xff1a;CPU 负责计算帧数据&#xff0c;把计算好的数据交给 GPU&#xff0c;GPU 会对图形数据进行渲染&#xff0c;渲染好后放到 buffer &#xff08;图像缓冲区&#xff09;存起…

《牛客》数组中出现次数超过一半的数字

牛客的刷题之路不停歇 ⌓‿⌓ 不积跬步无以至千里&#xff0c;不积小流无以成江海 The harder you work,the luckier you will be 题目及示例 题目链接 描述 给一个长度为 n 的数组&#xff0c;数组中有一个数字出现的次数超过数组长度的一半&#xff0c;请找出这个数字。 例…

七彩喜康养护理——科技赋能下的全周期健康守护

在当今社会&#xff0c;随着人们健康意识的不断提高&#xff0c;护理行业逐渐走向专业化、精细化&#xff0c;而七彩喜智养护理作为一种新兴的护理方式&#xff0c;逐渐受到了广泛的关注和应用。 它不仅仅是针对单一病症的治疗护理&#xff0c;而是一种全面的、全方位的健康管…

【爬虫】12306自动化购票

上文&#xff1a; 【爬虫】12306查票-CSDN博客 下面是简单的自动化进行抢票&#xff0c;只写到预定票&#xff0c;没有写完登陆&#xff0c; 跳出登陆后与上述代码同理修改即可。 感觉xpath最简单&#xff0c;复制粘贴&#xff1a; 还有很多写法&#xff1a; 官网地址&#…

Java设计模式之组合模式:从入门到精通(保姆级教程)

文章目录 1. 组合模式概述1.1 专业定义1.2 通俗解释1.3 模式结构2. 组合模式详细解析2.1 模式优缺点2.2 适用场景3. 组合模式实现详解3.1 基础实现3.2 代码解析4. 组合模式进阶应用4.1 透明式 vs 安全式组合模式4.2 组合模式与递归4.3 组合模式与迭代器5. 组合模式在实际开发中…

游戏如何应对反编译工具dnspy

Unity Mono 是 Unity 引擎默认的脚本运行时环境&#xff0c;由跨平台的开源 .NET 框架实现&#xff0c;它允许开发者使用 C# 等编程语言编写游戏逻辑&#xff0c;凭借简单易用的开发环境和高效的脚本编译速度&#xff0c;得到了众多游戏的青睐。 在 Mono 模式下&#xff0c;游…

腾讯云证书过期提醒的应对措施,Caddy 自动管理的 Let‘s Encrypt 证书.

用腾讯的免费证书&#xff0c;90天需要换一次。 Caddy 自动管理的 Lets Encrypt 证书. 在网站上按F12然后找到security选项&#xff0c;然后选择View certifcate 就可以看到证书的有效期。 完全无需操作 你的网站实际使用的是 Caddy 自动管理的 Lets Encrypt 证书&#xff0c;…

[Java实战]Spring Boot整合Elasticsearch(二十六)

[Java实战]Spring Boot整合Elasticsearch&#xff08;二十六&#xff09; 摘要&#xff1a;本文通过完整的实战演示&#xff0c;详细讲解如何在Spring Boot项目中整合Elasticsearch&#xff0c;实现数据的存储、检索和复杂查询功能。包含版本适配方案、Spring Data Elasticsea…

【关联git本地仓库,上传项目到github】

目录 1.下载git2.绑定用户3.git本地与远程仓库交互4.github项目创建5.上传本地项目到github6.完结撒花❀❀❀&#xff01;&#xff01;&#xff01; 1.下载git git下载地址&#xff1a;https://git-scm.com/downloads 下载安装后创建快捷地址&#xff1a;&#xff08;此处比较…

[Vue]路由基础使用和路径传参

实际项目中不可能就一个页面&#xff0c;会有很多个页面。在Vue里面&#xff0c;页面与页面之间的跳转和传参会使用我们的路由: vue-router 基础使用 要使用我们需要先给我们的项目添加依赖:vue-router。使用命令下载: npm install vue-router 使用路由会涉及到下面几个对象:…

软考-软件工程开发模型

软考-软件工程开发模型 参考视频&#xff1a; 软件工程概述&开发模型 &#xff0c;配合视频理解更清晰&#xff5e; 软件的生命周期为&#xff1a;需求分析、软件设计、软件开发、运行维护直至被淘汰 几个阶段。 软件工程支持 4 个活动&#xff0c;简称 PDCA&#xff0c…

【写在创作纪念日】基于SpringBoot和PostGIS的各省东西南北四至极点区县可视化

目录 前言 一、空间检索简介 1、空间表结构 2、四至空间检索 二、前后端实现 1、后端实现 2、前端集成 三、成果展示 1、东部省份 2、西部省份 3、南部省份 4、北部省份 5、中部省份 四、总结 前言 在当今数字化时代&#xff0c;地理信息数据的分析与可视化对于众…

智能守护校园“舌尖安全“:AI视频分析赋能名厨亮灶新时代

引言&#xff1a; 在校园食品安全备受关注的今天&#xff0c;一套融合视频监控管理平台与AI视频分析盒子的智能解决方案正在全国多地学校食堂悄然落地&#xff0c;为传统的"名厨亮灶"工程注入科技新动能。这套系统不仅实现了后厨操作的"透明化"&#xff0…

【软件设计师】计算机网络考点整理

以下是软件设计师考试中 ​​计算机网络​​ 的核心考点总结&#xff0c;帮助您高效备考&#xff1a; ​​一、网络体系结构与协议​​ ​​OSI七层模型 & TCP/IP四层模型​​ 各层功能&#xff08;物理层-数据链路层-网络层-传输层-会话层-表示层-应用层&#xff09;对应协…

Starrocks的CBO基石--统计信息的来源 StatisticAutoCollector

背景 本文来从底层代码的实现来分析一下Starrocks怎么获取统计信息&#xff0c;这些统计信息在后续基于CBO的代价计算的时候有着重要的作用 本文基于Starrrocks 3.3.5 结论 Starrocks的统计信息的收集是通过周期性的运行一系列的SQL&#xff08;以分区为维度&#xff0c;如果…

深度学习模型部署(四)——RKNN

一、RKNN部署及工具包安装 参考1&#xff1a;https://blog.csdn.net/qq_40280673/article/details/136211086#/ 参考2&#xff1a;瑞芯微官方教程 RKNN部署针对瑞芯微芯片优化&#xff0c;支持NPU硬件加速&#xff0c;需要安装rknn-toolkit&#xff0c;用于将pytorch模型转换为…

重构研发效能:项目管理引领软件工厂迈向智能化

1.项目管理智能化&#xff0c;激活软件工厂新引擎 在高速发展的软件开发时代&#xff0c;企业如何高效管理多个项目、协调团队合作、优化资源配置&#xff0c;已成为推动技术进步的关键。尤其是在多任务、多项目并行的复杂环境下&#xff0c;智能项目组合管理工具正成为软件工…