DenseNet 模型代码详解
下面是 DenseNet 模型代码的逐部分详细解析:
1. 导入模块
import re
from collections import OrderedDict
from functools import partial
from typing import Any, Optionalimport torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from torch import Tensorfrom ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once
from ._api import register_model, Weights, WeightsEnum
from ._meta import _IMAGENET_CATEGORIES
from ._utils import _ovewrite_named_param, handle_legacy_interface
- re: 正则表达式模块,用于处理权重名称的转换
- OrderedDict: 有序字典,用于按顺序构建网络层
- partial: 创建部分函数,用于预设图像转换参数
- torch.nn: PyTorch 的神经网络模块
- torch.utils.checkpoint: 内存优化技术,减少训练时的内存占用
- ImageClassification: 图像分类的预处理转换
- register_model: 注册模型的装饰器
- Weights/WeightsEnum: 预训练权重相关类
- _IMAGENET_CATEGORIES: ImageNet 数据集类别标签
- 模型工具函数: 覆盖参数、处理旧版接口等
2. DenseNet 基础层 (_DenseLayer)
class _DenseLayer(nn.Module):def __init__(self, num_input_features: int, growth_rate: int, bn_size: int, drop_rate: float, memory_efficient: bool = False) -> None:super().__init__()# 第一个卷积块 (1x1 卷积)self.norm1 = nn.BatchNorm2d(num_input_features)self.relu1 = nn.ReLU(inplace=True)self.conv1 = nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)# 第二个卷积块 (3x3 卷积)self.norm2 = nn.BatchNorm2d(bn_size * growth_rate)self.relu2 = nn.ReLU(inplace=True)self.conv2 = nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)self.drop_rate = float(drop_rate)self.memory_efficient = memory_efficient
- Bottleneck 结构: 由两个卷积层组成,减少计算量
- 1x1 卷积: 降维,输出通道数为
bn_size * growth_rate
- 3x3 卷积: 主卷积层,输出通道数为
growth_rate
- memory_efficient: 是否使用梯度检查点节省内存
前向传播逻辑
def bn_function(self, inputs: list[Tensor]) -> Tensor:# 拼接所有输入特征concated_features = torch.cat(inputs, 1)# 通过第一个卷积块bottleneck_output = self.conv1(self.relu1(self.norm1(concated_features)))return bottleneck_outputdef forward(self, input: Tensor) -> Tensor:if isinstance(input, Tensor):prev_features = [input]else:prev_features = input# 内存高效模式处理if self.memory_efficient and self.any_requires_grad(prev_features):bottleneck_output = self.call_checkpoint_bottleneck(prev_features)else:bottleneck_output = self.bn_function(prev_features)# 通过第二个卷积块new_features = self.conv2(self.relu2(self.norm2(bottleneck_output)))# 应用Dropoutif self.drop_rate > 0:new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)return new_features
- 特征拼接: 将前面所有层的输出拼接在一起
- 梯度检查点: 在内存高效模式下,使用检查点减少内存占用
- Dropout: 随机丢弃部分神经元,防止过拟合
3. Dense 块 (_DenseBlock)
class _DenseBlock(nn.ModuleDict):def __init__(self,num_layers: int,num_input_features: int,bn_size: int,growth_rate: int,drop_rate: float,memory_efficient: bool = False,) -> None:super().__init__()# 创建多个密集层for i in range(num_layers):layer = _DenseLayer(num_input_features + i * growth_rate,growth_rate=growth_rate,bn_size=bn_size,drop_rate=drop_rate,memory_efficient=memory_efficient,)self.add_module("denselayer%d" % (i + 1), layer)
- 模块字典: 存储多个密集层
- 输入特征计算: 每增加一层,输入特征增加
growth_rate
个通道
前向传播
def forward(self, init_features: Tensor) -> Tensor:features = [init_features]# 逐层处理并收集输出for name, layer in self.items():new_features = layer(features)features.append(new_features)# 拼接所有层的输出return torch.cat(features, 1)
- 特征累积: 每一层的输出都添加到特征列表中
- 特征拼接: 将所有层的输出沿通道维度拼接
4. 过渡层 (_Transition)
class _Transition(nn.Sequential):def __init__(self, num_input_features: int, num_output_features: int) -> None:super().__init__()# 压缩特征维度self.norm = nn.BatchNorm2d(num_input_features)self.relu = nn.ReLU(inplace=True)self.conv = nn.Conv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)# 空间下采样self.pool = nn.AvgPool2d(kernel_size=2, stride=2)
- 特征压缩: 1x1 卷积减少通道数(通常减半)
- 空间降维: 平均池化减小特征图尺寸
5. DenseNet 主模型
class DenseNet(nn.Module):def __init__(self,growth_rate: int = 32,block_config: tuple[int, int, int, int] = (6, 12, 24, 16),num_init_features: int = 64,bn_size: int = 4,drop_rate: float = 0,num_classes: int = 1000,memory_efficient: bool = False,) -> None:super().__init__()_log_api_usage_once(self) # 记录API使用情况# 初始卷积层self.features = nn.Sequential(OrderedDict([("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),("norm0", nn.BatchNorm2d(num_init_features)),("relu0", nn.ReLU(inplace=True)),("pool0", nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),]))# 构建多个Dense块和过渡层num_features = num_init_featuresfor i, num_layers in enumerate(block_config):# 添加Dense块block = _DenseBlock(num_layers=num_layers,num_input_features=num_features,bn_size=bn_size,growth_rate=growth_rate,drop_rate=drop_rate,memory_efficient=memory_efficient,)self.features.add_module("denseblock%d" % (i + 1), block)num_features += num_layers * growth_rate# 添加过渡层(最后一个块除外)if i != len(block_config) - 1:trans = _Transition(num_features, num_features // 2)self.features.add_module("transition%d" % (i + 1), trans)num_features = num_features // 2# 最终批归一化self.features.add_module("norm5", nn.BatchNorm2d(num_features))# 分类器self.classifier = nn.Linear(num_features, num_classes)# 参数初始化for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight)elif isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):nn.init.constant_(m.bias, 0)
- 初始卷积层: 快速下采样输入图像
- 块配置: 控制每个Dense块中的层数
- 通道管理: 通过过渡层压缩通道数
- Kaiming初始化: 卷积层的权重初始化
- 批归一化初始化: 权重设为1,偏置设为0
前向传播
def forward(self, x: Tensor) -> Tensor:features = self.features(x)out = F.relu(features, inplace=True)out = F.adaptive_avg_pool2d(out, (1, 1)) # 全局平均池化out = torch.flatten(out, 1) # 展平特征out = self.classifier(out) # 分类return out
- 特征提取: 通过多个Dense块和过渡层
- 全局平均池化: 将特征图转换为特征向量
- 全连接层: 输出分类结果
6. 权重加载函数
def _load_state_dict(model: nn.Module, weights: WeightsEnum, progress: bool) -> None:# 匹配旧版权重名称模式pattern = re.compile(r"^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$")state_dict = weights.get_state_dict(progress=progress, check_hash=True)# 转换权重名称for key in list(state_dict.keys()):res = pattern.match(key)if res:new_key = res.group(1) + res.group(2)state_dict[new_key] = state_dict[key]del state_dict[key]# 加载权重model.load_state_dict(state_dict)
- 权重名称转换: 适配旧版权重命名方式
- 哈希校验: 确保下载的权重文件完整无误
7. 模型工厂函数
def _densenet(growth_rate: int,block_config: tuple[int, int, int, int],num_init_features: int,weights: Optional[WeightsEnum],progress: bool,**kwargs: Any,
) -> DenseNet:# 根据权重调整输出类别数if weights is not None:_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))# 创建模型model = DenseNet(growth_rate, block_config, num_init_features, **kwargs)# 加载预训练权重if weights is not None:_load_state_dict(model=model, weights=weights, progress=progress)return model
- 参数覆盖: 根据预训练权重调整输出类别数
- 灵活配置: 支持不同DenseNet变体
8. 预训练权重定义
_COMMON_META = {"min_size": (29, 29), # 最小输入尺寸"categories": _IMAGENET_CATEGORIES, # ImageNet类别"recipe": "https://github.com/pytorch/vision/pull/116", # 训练方法
}class DenseNet121_Weights(WeightsEnum):IMAGENET1K_V1 = Weights(url="https://download.pytorch.org/models/densenet121-a639ec97.pth",transforms=partial(ImageClassification, crop_size=224), # 图像预处理meta={**_COMMON_META,"num_params": 7978856, # 参数量"_metrics": { # 性能指标"ImageNet-1K": {"acc@1": 74.434, # top-1准确率"acc@5": 91.972, # top-5准确率}},"_ops": 2.834, # 计算量 (GFLOPs)"_file_size": 30.845, # 文件大小 (MB)},)DEFAULT = IMAGENET1K_V1 # 默认权重
- 权重元数据: 包含模型性能和资源信息
- 预处理定义: 指定图像分类任务的预处理流程
- 性能指标: 提供在ImageNet上的评估结果
9. 模型变体实现
@register_model() # 注册模型
@handle_legacy_interface(weights=("pretrained", DenseNet121_Weights.IMAGENET1K_V1))
def densenet121(*, weights: Optional[DenseNet121_Weights] = None, progress: bool = True, **kwargs: Any) -> DenseNet:weights = DenseNet121_Weights.verify(weights) # 验证权重return _densenet(32, (6, 12, 24, 16), 64, weights, progress, **kwargs)
- DenseNet121: 增长率32,块配置[6,12,24,16],初始特征64
- DenseNet169: 增长率32,块配置[6,12,32,32],初始特征64
- DenseNet201: 增长率32,块配置[6,12,48,32],初始特征64
- DenseNet161: 增长率48,块配置[6,12,36,24],初始特征96
DenseNet 关键特点
- 密集连接: 每一层都接收前面所有层的特征图作为输入
- 特征重用: 通过拼接实现多层次特征融合
- 瓶颈设计: 1×1卷积减少计算量
- 过渡层: 压缩特征维度和空间尺寸
- 高效内存: 可选的内存优化模式
DenseNet通过密集连接促进了特征重用,减少了梯度消失问题,提高了参数效率,在各种视觉任务中表现出色。