STM32-第五节-TIM定时器-1(定时器中断)

一、定时器原理:

1.介绍:

对指定输入时钟进行计数,并在计数值达到设定值时触发中断。

分类:基本定时器,通用定时器,高级定时器

频率:72MHZ

2.框图: 

(1)基本定时器:

a.由于结构简单,触发控制器将内部时钟与预分频器直接相连。

b.预分频器, 将内部时钟的频率进行分频,预分频器=n,则为n+1分频。

c.计数器,顾名思义,计数。

d.自动重装寄存器:当计数值等于自动重装值,产生中断信号,并清空计数器。

(bcd统称为时基单元)

e.主模式触发DAC:即触发控制器右侧DAC
问题:使用DAC,需要每隔一段时间更新输出的电压,,如果用定时器来解决,不停中断会干扰主程序,于是开启主模式,将U(更新事件)直接接在TRGO,即不通过CPU,由定时器直接决定DAC。

f.计数模式:
向上计数:逐渐计数到自动重装值,然后归0。
向下计数:由自动重装值逐渐变小至0,然后回到自动重装值。
中间计数:由0逐渐变为自动重装值,然后由自动重装值再逐渐归0。

(2)通用定时器:

中间时基单元保持不变。

上半模块:时钟源可以选择外部时钟ETR,从ETRF引脚进入/从T RGI(触发输入)进入。

                  ITR信号来自其他定时器,可实现定时器级联。 

下半模块:输入捕获电路,输出比较电路,以后再讲。

3.功能结构图:

中断输出控制:由于定时器很多地方可以触发中断,这里可以允许想要的中断,而禁止其他中断。

运行控制:计数器需要使能一下,才会工作。

4.预分频器:

设分频值为PSC,则计数频率为 CK_CNT = CK_PSC/ (PSC+1)

注:预分频器有缓存器,当计数中途改变了分频值,分频器会继续当前分频,直到计数完成,才会更改实际分频值。

5.计数器:

设自动重装值为ARR,则计数器溢出频率为 CK_CNT_OV = CK_CNT / (ARR+1)

所以计数器溢出频率为 CK_CNT_OV = CK_PSC / (PSC+1)(ARR+1)

ARR也可以有缓存器,由自己设置,作用与上分频器相同。‘’

二、定时器中断:

1.接线图:

同OLED,什么都不用,因为集成在stm32内部。

2.代码:(重要)

看着上面的功能结构图,一一对应各模块功能。

#include "stm32f10x.h"                  // Device header/*** 函    数:定时中断初始化* 参    数:无* 返 回 值:无*/
void Timer_Init(void)
{/*开启时钟*/RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);			//开启TIM2的时钟/*配置时钟源*/TIM_InternalClockConfig(TIM2);		//选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟/*时基单元初始化*/TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				//定义结构体变量TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;		//时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;	//计数器模式,选择向上计数TIM_TimeBaseInitStructure.TIM_Period = 10000 - 1;				//计数周期,即ARR的值TIM_TimeBaseInitStructure.TIM_Prescaler = 7200 - 1;				//预分频器,即PSC的值TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;			//重复计数器,高级定时器才会用到TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);				//将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元	/*中断输出配置*/TIM_ClearFlag(TIM2, TIM_FLAG_Update);						//清除定时器更新标志位//TIM_TimeBaseInit函数末尾,手动产生了更新事件,即刚上电自动进入一次中断//若不清除此标志位,则开启中断后,会立刻进入一次中断//如果不介意此问题,则不清除此标志位也可TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);					//开启TIM2的更新中断/*NVIC中断分组*/NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);				//配置NVIC为分组2//即抢占优先级范围:0~3,响应优先级范围:0~3//此分组配置在整个工程中仅需调用一次//若有多个中断,可以把此代码放在main函数内,while循环之前//若调用多次配置分组的代码,则后执行的配置会覆盖先执行的配置/*NVIC配置*/NVIC_InitTypeDef NVIC_InitStructure;						//定义结构体变量NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;				//选择配置NVIC的TIM2线NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;				//指定NVIC线路使能NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;	//指定NVIC线路的抢占优先级为2NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;			//指定NVIC线路的响应优先级为1NVIC_Init(&NVIC_InitStructure);								//将结构体变量交给NVIC_Init,配置NVIC外设/*TIM使能*/TIM_Cmd(TIM2, ENABLE);			//使能TIM2,定时器开始运行//一个额外函数//TIM_GetCounter(TIM2);   //返回当前计数器的值
}/* 定时器中断函数,可以复制到使用它的地方
void TIM2_IRQHandler(void)
{if (TIM_GetITStatus(TIM2, TIM_IT_Update) == SET)//判断更新中断的标志位,需手动清0{		TIM_ClearITPendingBit(TIM2, TIM_IT_Update);//要执行的操作// // …………}
}
*/

三、外部时钟:

将上面代码的时钟源配置部分,替换为以下代码。

	/*外部时钟配置*/TIM_ETRClockMode2Config(TIM2, TIM_ExtTRGPSC_OFF, TIM_ExtTRGPolarity_NonInverted, 0x0F);//选择外部时钟模式2,时钟从TIM_ETR引脚输入//注意TIM2的ETR引脚固定为PA0,无法随意更改//第二个参数表示不分频//第三个参数表示上升沿有效//最后一个滤波器参数加到最大0x0F,可滤除时钟信号抖动

而外部时钟的引入固定为PA0引脚,故再增加以下代码,初始化PA0

	/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);						//将PA0引脚初始化为上拉输入

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/bicheng/88999.shtml
繁体地址,请注明出处:http://hk.pswp.cn/bicheng/88999.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【图像处理基石】什么是色盲仿真技术?

色盲仿真概述 色盲仿真是一种将正常色彩图像转换为色盲患者感知效果的技术。人类常见的色盲类型包括: 红色盲(Protanopia):无法感知红色绿色盲(Deuteranopia):无法感知绿色蓝黄色盲(…

九、官方人格提示词汇总(中-3)

“参谋代写计划”功能输出欣赏,规则: 本部分统一使用 Gemini 2.5 Pro API。该 API 下的输出质量基本达到我的要求,已具备实用价值。严格等级均为“权衡有度(L3)”,创造力等级均为“趋势捕手(L3…

华为MateBook D 16 SE版 2024款 12代酷睿版i5集显(MCLF-XX,MCLF-16)原厂OEM预装Win11系统

适用型号:MCLF-XX,MCLF-16链接:https://pan.baidu.com/s/1OkvUqZMdCSF98YtQfWAYXw?pwdq2gh 提取码:q2gh 华为开箱状态出厂Windows11系统自带所有驱动、出厂主题壁纸、系统属性联机支持标志、系统属性专属LOGO标志、Office办公软件、华为电脑…

Python自动化:每日销售数据可视化

这是手动执行sql分组查出的Linda奶茶店每日的销售数据,那么能否图形化展示方便对比近一个月每日的销售趋势呢。如果是做在网站里,前端可以集成echart或highchart生成柱状图或线状图。如果需要每天定时推送这些数据到邮箱或其他消息通知渠道,第一步肯定是需要先生成图片到服务…

scrapy项目开发流程

1.创建项目:scrapy startproject mySpider2.生成一个爬虫:scrapy genspider itcast itcast.cn3.提取数据:根据网站结构在spider中实现数据采集相关内容4.保存数据使用pipeline进行数据后续处理和保存1.创建项目items.py-->自己预计需要爬取…

堆排序以及其插入删除

堆排序首先介绍一下堆排序属于选择排序的一种类型。其次就是他有点依赖于顺序存储树判断其孩子以及父节点的概念,接下来复习一下。堆分为大根堆和小根堆① 若满⾜:L(i)≥L(2i)且L(i)≥L(2i1) (1 ≤ i ≤n/2 )—— ⼤根堆&#xff…

Spring Boot项目结构解析:构建高效、清晰的代码框架

在当今的软件开发领域,Spring Boot因其简洁性和强大的功能而备受青睐。它不仅简化了Spring框架的配置,还提供了一套高效的项目开发模式。本文将深入探讨Spring Boot项目结构中的关键组件,包括PO、Query、VO、Config等,旨在帮助开发…

多客户端 - 服务器结构-实操

实现2个客户端之间互相聊天 要求: 1、服务器使用 select 模型实现接受多个客户端连接,以及转发消息 2、客户端要求:使用 poll 模型解决 技能够 read 读取服务器发来的消息,又能够scanf读取键盘输入的信息 3、客户端服务器不允许开…

iOS高级开发工程师面试——Objective-C 语言特性

iOS高级开发工程师面试——Objective-C 语言特性 一、多态二、继承三、代理(Delegate)1. 代理为什么用 weak 修饰呢?block和代理的区别?四、通知(NSNotificationCenter)五、KVC (Key-value Coding)六、属性七、`@property` [ˈprɒpəti]的本质是什么?ivar 、 setter …

MMpretrain 中的 LinearClsHead 结构与优化

LinearClsHead 结构与优化 一、LinearClsHead 核心结构 在 MMPretrain 中,LinearClsHead 是一个简洁高效的分类头,其核心结构如下: class LinearClsHead(BaseModule):def __init__(self,num_classes, # 类别数量in_channels, # 输入…

Spring 学习笔记

1.Spring AOP 怎么实现的AOP 即面向切面编程,是通过代理实现的,主要分为静态代理和动态代理,静态代理就是在程序运行前就已经指定并声明了代理类和增强逻辑,运行时就已经被编译为字节码文件了,而动态代理则是在运行过程…

【CVPR2024】计算机视觉|InceptionNeXt:速度与精度齐飞的CNN架构

论文地址:http://arxiv.org/pdf/2303.16900v3 代码地址:https://github.com/sail-sg/inceptionnext 关注UP CV缝合怪,分享最计算机视觉新即插即用模块,并提供配套的论文资料与代码。 https://space.bilibili.com/473764881 摘要…

7.15 窗口函数 | 二分 | 位运算 | 字符串dp

lc3316. 字符串dpdp多开一行一列后,注意原字符串下标映射dp[n][m] ( n 是source长度, m 是pattern长度)两重循环填表for i 1-nfor j 0-m三种状态转移1.不选 dp i jdp i-1 j2.不选if tag, dp[i][j]3.if(s ip j) 选,dp i…

Spring原理揭秘--初识AOP

我们知道软件开发一直在追求高效,易维护,易扩展的特性方式。在面向过程编程到面向对象编程的历程中,程序的开发有了非常大的进步。但是oop的方式缺依然存在着一些缺点。oop的方式可以将业务进行很好的分解和封装使其模块化,但是却…

Provider模式:软件架构中的“供应商“设计哲学

文章目录Provider模式:软件架构中的“供应商“设计哲学什么是Provider模式?经典应用场景1. 配置管理Provider2. 数据访问Provider4. 消息队列ProviderProvider模式的优势1. 解耦合实际项目中的应用Provider模式的最佳实践1. 命名约定2. 接口设计原则3. 错…

LTspic下载,帮助及演示电路

1.下载 LTspice是一款强大高效的免费SPICE仿真器软件、原理图采集和波形观测器,为改善模拟电路的仿真提供增强功能和模型。其原理图捕获图形界面使您能够探测原理图并生成仿真结果,这些结果可以通过内置波形查看器进一步观察分析。 链接: …

位置编码/绝对位置编码/相对位置编码/Rope原理+公式详细推导及代码实现

文章目录1. 位置编码概述1.1 为什么需要位置编码?2. 绝对位置编码 (Absolute Position Encoding)2.1 原理2.2 数学公式2.3 代码实现2.4 代码与公式的对应关系2.5 特性与优势2.6 可学习的绝对位置编码3. 相对位置编码 (Relative Position Encoding)3.1 原理3.2 数学公…

网络安全初级第一次作业

一,docker搭建和挂载vpm 1.安装 Docker apt-get install docker.io docker-compose 2.创建文件 mkdir /etc/docker.service.d vim /etc/docker.service.d/http-proxy.conf 3.改写文件配置 [Service] Environment"HTTP_PROXYhttp://192.168.10.103:7890…

交换类排序的C语言实现

交换类排序包括冒泡排序和快速排序两种。冒泡排序基本介绍冒泡排序是通过重复比较相邻元素并交换位置实现排序。其核心思想是每一轮遍历将未排序序列中的最大(或最小)元素"浮动"到正确位置,类似气泡上升。基本过程是从序列起始位置…

嵌入式 Linux开发环境构建之Source Insight 的安装和使用

目录 一、Source Insight 的安装 二、Source Insight 使用 一、Source Insight 的安装 这个软件是代码编辑和查看软件,打开开发板光盘软件,然后右键选择以管理员身份运行这个安装包。在弹出来的安装向导里面点击 next ,如下图所示。这里选择…