03-基于深度学习的钢铁缺陷检测-yolo11-彩色版界面

目录

  • 项目介绍
  • 🎯 功能展示
  • 🌟 一、环境安装
    • 🎆 环境配置说明
    • 📘 安装指南说明
    • 🎥 环境安装教学视频
  • 🌟 二、系统环境(框架/依赖库)说明
    • 🧱 系统环境与依赖配置说明
    • 📈 模型训练参数说明
      • 🎯 基本训练参数
      • 🔁 实时数据增强策略
  • 🌟 三、YOLO相关介绍
    • 🎀 yolov5相关介绍
    • 🎑 yolov8相关介绍
    • 🎐yolo11相关介绍
  • 🌟 四、模型训练步骤
  • 🌟 五、模型评估步骤
  • 🌟 获取方式说明


项目介绍

本项目基于 PyQt5 构建了简洁易用的图形用户界面,支持用户选择本地图片或视频进行目标检测。系统界面美观,交互流畅,具备良好的用户体验。

项目附带完整的 Python 源码和详细的使用说明,适合学生进行学习或有一定 Python 基础的开发者,参考与二次开发。您可以在文末获取完整的代码资源文件


✨ 项目亮点

  • 🔧 完整系统级项目: 包括pyqt5界面、后端检测逻辑、模型加载等模块

  • 🧠 支持深度学习模型扩展: 源代码,支持个人添加改进、模型修改等

  • 🚀 可用于毕(bi)设(she)/课(ke)设(she)/个人项目展示: 结构清晰,逻辑完整,便于演示


📦 模型信息

默认检测模型:

目前项目有以下不同的模型组合(已完成 200 epoch 训练,支持开箱即用):

  • 组合 1: YOLOv5 、 YOLOv5 + SE 注意力机制
  • 组合 2: YOLO11 、 YOLO11 + SE 注意力机制
  • 组合 3: YOLOv8 、 YOLOv8 + SE 注意力机制

(注:每个代码仅提供上述三组中的一组模型组合,是有以上不同的组合选择。要是需要其他的模型的话,只能是现封装训练了。)


🧾 数据集信息

使用数据集一部分个人标注,一部分来源网络,已统一标注格式并完成预处理,可直接用于训练与测试。

在这里插入图片描述

🎯 功能展示

本系统具备多个核心功能,支持图像、视频、摄像头等多种输入源的目标检测需求:

  • 🎴功能1:支持单张图片识别
    加载本地图片进行目标识别,支持多种图片格式(如 .jpg.png 等)。

  • 📁功能2:支持遍历文件夹识别
    可批量读取指定文件夹中的所有图像,并依次完成目标检测任务。

  • 🎫功能3:支持识别视频文件
    支持导入本地视频文件,逐帧分析,实时显示检测效果。

  • 📷功能4:支持摄像头识别
    直接调用笔记本/外接USB摄像头进行实时目标检测。(此功能识别不准,仅仅是为了有这个功能。)

  • 📤功能5:支持结果文件导出(.xls 格式)
    自动保存检测结果为表格文件,包含类别、位置、置信度等信息,方便后续统计与分析。

  • 🔄功能6:支持切换检测目标进行查看
    可自定义选择或切换需要检测的目标种类,仅显示感兴趣的目标。

🎥 更多功能细节、代码演示效果获取请参考下方视频演示。

03-基于深度学习的钢铁缺陷检测-yolo11-彩色版界面


🌟 一、环境安装

🎆 环境配置说明

本项目已准备好 完整的环境安装资源包,包含:

  • Python、PyCharm
  • CUDA、PyTorch
  • 其他依赖库(版本已适配)

所有依赖版本均已过验证,确保彼此兼容,可直接参考配套文档或视频教程一步步安装,无需手动调试


📘 安装指南说明

本项目附带的环境配置文档及配套视频,文档是我在辅导上千名同学安装环境过程中,持续整理总结而成的经验合集,内容覆盖:

  • GPU 与 CPU 两种版本的详细安装流程
  • 安装过程中常见问题汇总
  • 每个问题对应的解决方案
  • 实测可行的安装顺序建议与注意事项

🧩 无论你是新手还是有经验的开发者,相信这份文档都能为你省下大量踩坑时间!

🎥 环境安装教学视频

03-基于深度学习的钢铁缺陷检测-yolo11-彩色版界面


🌟 二、系统环境(框架/依赖库)说明

🧱 系统环境与依赖配置说明

本项目采用 Python 3.8.10 作为开发语言,整个后台逻辑均由 Python 编写,主要依赖环境如下:

🎡 图形界面框架:

  • PyQt5 5.15.9:用于搭建系统图形用户界面,实现窗口交互与组件布局。

🧠 深度学习框架:

  • torch 1.9.0+cu111:PyTorch 深度学习框架,支持 CUDA 11.1 加速,用于模型构建与推理。
  • torchvision 0.10.0+cu111:用于图像处理、数据增强及模型组件辅助。

⚡ CUDA 与 cuDNN(GPU 加速支持):

  • CUDA 11.1.1(版本号:cuda_11.1.1_456.81):用于 GPU 加速深度学习运算。
  • cuDNN 8.0.5.39(适用于 CUDA 11.1):NVIDIA 深度神经网络库,用于加速模型训练与推理过程。

🧪 图像处理与科学计算:

  • opencv-python 4.7.0.72:实现图像读取、显示、处理等功能。
  • numpy 1.24.4:用于高效数组计算及矩阵操作。
  • PIL (pillow) 9.5.0:图像文件读写与基本图像处理库。
  • matplotlib 3.7.1(可选):用于结果图形化展示与可视化调试。

📈 模型训练参数说明

本项目中提供了两个训练好的模型,均基于如下参数完成训练。具体训练时的设置需根据您自己的硬件配置灵活调整:

🎯 基本训练参数

  • batch size:16
  • epoch:200
  • imgsz(输入尺寸):640
  • 优化器:SGD
  • 学习率:初始学习率 0.01,最终学习率 0.0001
  • 学习率衰减策略:余弦退火(Cosine Annealing)
  • 激活函数:SiLU
  • 损失函数:CIOU(Complete IOU)

🔁 实时数据增强策略

训练过程中使用了多种 在线增强 方法,包括:

  • HSV 色域变换
  • 上下翻转、左右翻转
  • 图像旋转
  • Mosaic 图像拼接增强

⚠️ 特别说明
以上所有增强操作均为 实时数据增强,只在训练过程中动态生成,用作模型输入,不会将增强后的图像保存到本地

这种策略具有以下优势:

  • 节省磁盘空间
  • 提高训练样本的多样性
  • 增强模型的泛化能力

若需要可视化增强效果,可自行编写脚本或借助工具(如 Photoshop、美图秀秀等)生成示例图像进行展示。


🌟 三、YOLO相关介绍

🎀 yolov5相关介绍

YOLOV5有YOLOv5n,YOLOv5s,YOLOv5m,YOLOV5l、YOLO5x五个版本。这个模型的结构基本一样,不同的是deth_multiole模型深度和width_multiole模型宽度这两个参数。就和我们买衣服的尺码大小排序一样,YOLOV5n网络是YOLOV5系列中深度最小,特征图的宽度最小的网络。其他的三种都是在此基础上不断加深,不断加宽。不过最常用的一般都是yolov5s模型。
在这里插入图片描述

  本系统采用了基于深度学习的目标检测算法YOLOv5,该算法是YOLO系列算法的较新版本,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题。此外,YOLOv5还引入了一种称为SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。

  在YOLOv5中,首先将输入图像通过骨干网络进行特征提取,得到一系列特征图。然后,通过对这些特征图进行处理,将其转化为一组检测框和相应的类别概率分数,即每个检测框所属的物体类别以及该物体的置信度。YOLOv5中的特征提取网络使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。

在这里插入图片描述

  在YOLOv5中,每个检测框由其左上角坐标(x,y)、宽度(w)、高度(h)和置信度(confidence)组成。同时,每个检测框还会预测C个类别的概率得分,即分类得分(ci),每个类别的得分之和等于1。因此,每个检测框最终被表示为一个(C+5)维的向量。在训练阶段,YOLOv5使用交叉熵损失函数来优化模型。损失函数由定位损失、置信度损失和分类损失三部分组成,其中定位损失和置信度损失采用了Focal Loss和IoU Loss等优化方法,能够有效地缓解正负样本不平衡和目标尺寸变化等问题。

  YOLOv5网络结构是由Input、Backbone、Neck、Prediction组成。Yolov5的Input部分是网络的输入端,采用Mosaic数据增强方式,对输入数据随机裁剪,然后进行拼接。Backbone是Yolov5提取特征的网络部分,特征提取能力直接影响整个网络性能。YOLOv5的Backbone相比于之前Yolov4提出了新的Focus结构。Focus结构是将图片进行切片操作,将W(宽)、H(高)信息转移到了通道空间中,使得在没有丢失任何信息的情况下,进行了2倍下采样操作。

🎑 yolov8相关介绍

YOLOv8 是一个 SOTA 模型,它建立在以前 YOLO 版本的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。

不过 ultralytics 并没有直接将开源库命名为 YOLOv8,而是直接使用 ultralytics 这个词,原因是 ultralytics 将这个库定位为算法框架,而非某一个特定算法,一个主要特点是可扩展性。其希望这个库不仅仅能够用于 YOLO 系列模型,而是能够支持非 YOLO 模型以及分类分割姿态估计等各类任务。
总而言之,ultralytics 开源库的两个主要优点是:

  • 融合众多当前 SOTA 技术于一体

  • 未来将支持其他 YOLO 系列以及 YOLO 之外的更多算法

在这里插入图片描述

网络结构如下:
在这里插入图片描述

🎐yolo11相关介绍

YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。
在这里插入图片描述

Key Features 主要特点:

  • 增强的特征提取:YOLO11采用改进的主干和颈部架构,增强了特征提取能力,以实现更精确的目标检测和复杂任务性能。
  • 针对效率和速度进行优化:YOLO11 引入了精致的架构设计和优化的训练管道,提供更快的处理速度并保持准确性和性能之间的最佳平衡。
  • 使用更少的参数获得更高的精度:随着模型设计的进步,YOLO11m 在 COCO 数据集上实现了更高的平均精度(mAP),同时使用的参数比 YOLOv8m 少 22%,从而在不影响精度的情况下提高计算效率。
  • 跨环境适应性:YOLO11可以无缝部署在各种环境中,包括边缘设备、云平台以及支持NVIDIA GPU的系统,确保最大的灵活性。
  • 支持的任务范围广泛:无论是对象检测、实例分割、图像分类、姿态估计还是定向对象检测 (OBB),YOLO11 旨在应对各种计算机视觉挑战。
    在这里插入图片描述

🌟 四、模型训练步骤

以下操作步骤,每年我都会更新,所以下方操作步骤可跳过,可以去我文档里查看最新的操作步骤。

  1. 使用pycharm打开代码,找到train.py打开,示例截图如下:
    在这里插入图片描述

  2. 修改 model_yaml 的值,根据自己的实际情况修改,想要训练 yolov5s模型 就 修改为 model_yaml = yaml_yolov5s, 训练 添加SE注意力机制的模型就修改为 model_yaml = yaml_yolov5_SE

  3. 修改data_path 数据集路径,我这里默认指定的是traindata.yaml 文件,如果训练我提供的数据,可以不用改

  4. 修改 model.train()中的参数,按照自己的需求和电脑硬件的情况更改

    # 文档中对参数有详细的说明
    model.train(data=data_path,             # 数据集imgsz=640,                  # 训练图片大小epochs=200,                 # 训练的轮次batch=2,                    # 训练batchworkers=0,                  # 加载数据线程数device='0',                 # 使用显卡optimizer='SGD',            # 优化器project='runs/train',       # 模型保存路径name=name,                  # 模型保存命名)
    
  5. 修改traindata.yaml文件, 打开 traindata.yaml 文件,如下所示:
    在这里插入图片描述
    在这里,只需修改 path 的值,其他的都不用改动(仔细看上面的黄色字体),我提供的数据集默认都是到 yolo 文件夹,设置到 yolo 这一级即可,修改完后,返回 train.py 中,执行train.py

  6. 打开 train.py ,右键执行。
    在这里插入图片描述

  7. 出现如下类似的界面代表开始训练了
    在这里插入图片描述

  8. 训练完后的模型保存在runs/train文件夹下
    在这里插入图片描述


🌟 五、模型评估步骤

以下操作步骤,每年我都会更新,,所以下方操作步骤可跳过,可以去我文档里查看最新的操作步骤。

  1. 打开val.py文件,如下图所示:
    在这里插入图片描述

  2. 修改 model_pt 的值,是自己想要评估的模型路径

  3. 修改 data_path ,根据自己的实际情况修改,具体如何修改,查看上方模型训练中的修改步骤

  4. 修改 model.val()中的参数,按照自己的需求和电脑硬件的情况更改

    model.val(data=data_path,           # 数据集路径imgsz=300,                # 图片大小,要和训练时一样batch=4,                  # batchworkers=0,                # 加载数据线程数conf=0.001,               # 设置检测的最小置信度阈值。置信度低于此阈值的检测将被丢弃。iou=0.6,                  # 设置非最大抑制 (NMS) 的交叉重叠 (IoU) 阈值。有助于减少重复检测。device='0',               # 使用显卡project='runs/val',       # 保存路径name='exp',               # 保存命名)
    
  5. 修改完后,即可执行程序,出现如下截图,代表成功(下图是示例,具体输出结果以自己的实际项目为准。)
    在这里插入图片描述

  6. 评估后的文件全部保存在在 runs/val/exp... 文件夹下
    在这里插入图片描述


🌟 获取方式说明

这是一套完整的资源,经过往届学长学姐验证过,是OK的项目,我这里就不做过多的介绍了,说的太多了,大家容易看不到。如果想要获取源码进行学习,可观看一下前面 功能展示 章节的视频演示。如有疑问,也可通过下方的名片或者留言进行交流,一起学习、进步。

💡 温馨提示:资源仅用于学习交流,请勿用于商业用途,感谢理解与支持!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/bicheng/92186.shtml
繁体地址,请注明出处:http://hk.pswp.cn/bicheng/92186.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

24. 前端-js框架-Vue

文章目录前言一、Vue介绍1. 学习导图2. 特点3. 安装1. 方式一:独立版本2. 方式二:CDN方法3. 方式三:NPM方法(推荐使用)4. 搭建Vue的开发环境(大纲)5. 工程结构6. 安装依赖资源7. 运行项目8. Vue…

Spring 的依赖注入DI是什么?

口语化答案好的,面试官,依赖注入(Dependency Injection,简称DI)是Spring框架实现控制反转(IoC)的主要手段。DI的核心思想是将对象的依赖关系从对象内部抽离出来,通过外部注入的方式提…

汇川PLC通过ModbusTCP转Profinet网关连接西门子PLC配置案例

本案例是汇川的PLC通过开疆智能研发的ModbusTCP转Profient网关读写西门子1200PLC中的数据。汇川PLC作为ModbusTCP的客户端网关作为服务器,在Profinet一侧网关作为从站接收1200PLC的数据并转成ModbusTCP协议被汇川PLC读取。配置过程:汇川PLC配置Modbus TC…

【计组】数据的表示与运算

机器数与真值机器数真值编码原码特点表示范围求真值方法反码特点补码特点表示范围求真值方法移码特点表示范围求真值方法相互转换原码<->补码补码<->移码原码<->反码反码<->补码移位左移右移逻辑右移算术右移符号扩展零扩展整数小数符号扩展运算器部件…

视频水印技术中的变换域嵌入方法对比分析

1. 引言 随着数字视频技术的快速发展和网络传输的普及,视频内容的版权保护问题日益突出。视频水印技术作为一种有效的版权保护手段,通过在视频中嵌入不可见或半可见的标识信息,实现对视频内容的所有权认证、完整性验证和盗版追踪。在视频水印技术的发展历程中,变换域水印因…

电动汽车电池管理系统设计与实现

电动汽车电池管理系统设计与实现 1. 引言 电动汽车电池管理系统(BMS)是确保电池组安全、高效运行的关键组件。本文将详细介绍一个完整的BMS系统的MATLAB实现,包括状态估计(SOC/SOH)、参数监测、电池平衡和保护功能。系统设计为模块化结构,便于扩展和参数调整。 2. 系统架构…

JVM(Java Virtual Machine,Java 虚拟机)超详细总结

一、JVM的基础概念1、概述JVM是 Java 程序的运行基础环境&#xff0c;是 Java 语言实现 “一次编写&#xff0c;到处运行” &#xff08;"write once , run anywhere. "&#xff09;特性的关键组件&#xff0c;具体从以下几个方面来理解&#xff1a;概念层面JVM 是一…

Balabolka软件调用微软离线自然语音合成进行文字转语音下载安装教程

首先&#xff0c;需要准备安装包 Balabolka NaturalVoiceSAPIAdapterMicrosoftWindows.Voice.zh-CN.Xiaoxiao.1_1.0.9.0_x64__cw5n1h2txyewy.Msix MicrosoftWindows.Voice.zh-CN.Yunxi.1_1.0.4.0_x64__cw5n1h2txyewy.Msix借助上面这个工具&#xff1a;NaturalVoiceSAPIAdapter&…

Java修仙之路,十万字吐血整理全网最完整Java学习笔记(高级篇)

导航&#xff1a; 【Java笔记踩坑汇总】Java基础JavaWebSSMSpringBootSpringCloud瑞吉外卖/谷粒商城/学成在线设计模式面试题汇总性能调优/架构设计源码解析 推荐视频&#xff1a; 黑马程序员全套Java教程_哔哩哔哩 尚硅谷Java入门视频教程_哔哩哔哩 推荐书籍&#xff1a; 《Ja…

接口测试用例和接口测试模板

一、简介 3天精通Postman接口测试&#xff0c;全套项目实战教程&#xff01;&#xff01;接口测试区别于传统意义上的系统测试&#xff0c;下面介绍接口测试用例和接口测试报告。 二、接口测试用例模板 功能测试用例最重要的两个因素是测试步骤和预期结果&#xff0c;接口测试…

linux查看kafka的消费组里是否有积压

flink消费数据时&#xff0c;有时候需要在页面展示的数据&#xff0c;不能实时展示。那就需要查看下&#xff0c;kafka的消费组里是否有数据积压了。flink的任务flink的消费情况kafka中的信息总结可以看出来&#xff0c;kafka的消费组里的数据&#xff0c;已经实时的消费完了。…

【Unity笔记】Unity 音游模板与免费资源:高效构建节奏游戏开发全指南

Unity 音游模板与免费资源&#xff1a;高效构建节奏游戏开发全指南 文章摘要&#xff1a; 本文为Unity开发者提供一套针对下落式与轨道式音乐游戏的实用模板工程与免费资源指南&#xff0c;内容涵盖项目目录结构、核心功能模块、视觉特效与音效素材、开源脚本框架及辅助打谱工具…

【RabbitMQ】高级特性—持久性、重试机制详解

持久性 我们在前面说了消息端处理消息时&#xff0c;消息如何不丢失&#xff0c;但是如何保证当 RabbitMQ 服务器停掉之后&#xff0c;生产者发送的消息不丢失呢&#xff1f; 默认情况下&#xff0c;RabbitMQ 退出或者由于某种原因崩溃时&#xff0c;会忽视队列和消息&#xff…

零基础人工智能学习规划之路

一、引言&#xff1a;为什么选择人工智能&#xff1f;人工智能&#xff08;AI&#xff09;是当前科技领域最炙手可热的方向之一&#xff0c;涵盖机器学习、深度学习、计算机视觉、自然语言处理等多个分支。无论是就业市场的高需求&#xff0c;还是技术改变生活的潜力&#xff0…

【科研绘图系列】R语言绘制误差棒图

文章目录 介绍 加载R包 数据下载 导入数据 数据预处理 画图 系统信息 参考 介绍 【科研绘图系列】R语言绘制误差棒图 加载R包 library(tidyverse) library(ggplot2) library(ggsignif) library(RColorBrewer) library(waterfalls) library(reshape2

期权定价全解析:从Black-Scholes到量子革命的金融基石

在金融市场中,期权定价如同航海中的罗盘,为风险定价提供方向。本文将深入剖析期权定价的核心逻辑、应用场景及量子计算带来的颠覆性变革,并附实战代码示例。 一、期权定价的本质:风险的时间价值 1. 核心公式解析 C = e^{-rT}\mathbb{E}^\mathbb{Q}[\max(S_T-K,0)] C:期权…

实现div内容的垂直居中

Flexbox 弹性盒子&#xff08;推荐&#xff09; div {display: flex;align-items: center; /* 垂直居中 */justify-content: center;/* 水平居中 */height: 300px; /* 需要指定高度 */ }✅ 现代浏览器首选方案&#xff0c;支持响应式布局 Grid 网格布局 div {displ…

Juc高级篇:可见性,有序性,cas,不可变,设计模式

目录 一.Java内存模型 1.可见性 1.1设计模式 (1.1.1)两阶段终止 (1.1.2)Balking模式 2.有序性 3.volatile原理 3.1保证可见性与有序性 3.2单例模式DCL 3.3 happens-before规则 4.线程安全单例 4.1饿汉式 二.无锁并发 1.原子整数 2.原子引用 2.1 AtomicReference…

JDK源码

java.util.concurrent 以下是atomic包下的 AtomicInteger Unsafe类&#xff1a;提供的方法可以直接访问内存、线程。 属性&#xff1a;Unsafe、int value 通过Unsafe方法中的CAS循环&#xff0c;保证int类型值的原子操作 int var5; do {var5 this.getIntVolatile(var1, var2);…

Linux网络编程【基于UDP网络通信的字典翻译服务】

1. 基本框架&#xff1a;前面我们已近完成了&#xff0c;基于UDP协议的网络通信&#xff0c;但是我们服务器接收到来自客户端的信息即字符串时只是进行了简单的发送会客户端和在日志中回显打印&#xff0c;并没有实际的业务服务。那么接下来&#xff0c;我们就设计一个字典翻译…