需求:
1)从2个UDP端口接收数据,并在同样的端口回显。echo
2)多个处理线程,多个发送线程;
3)使用条件变量唤醒;
#include <stack>
#include <mutex>
#include <atomic>#include <iostream>
#include <thread>
#include <mutex>
#include <queue>
#include <vector>
#include <unistd.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/epoll.h>
#include <arpa/inet.h> // for inet_pton
#include <cstring> // for memset
#include <fcntl.h> // for non-block
#include <signal.h>
#include <condition_variable>// #include "concurrentqueue.h" // moodycamel concurrentqueue 头文件using namespace std;
/*
编译方式(Linux)
g++ -std=c++11 -pthread cssff.cpp -o udp_server -lstdc++
g++ -std=c++11 -Wall -O2 -pthread cssff.cpp -o udp_server -lstdc++你可以用 netcat 发送测试数据:
echo "hello port1" | nc -u 127.0.0.1 4000
echo "hello port2" | nc -u 127.0.0.1 5000
*//*
你几乎不会收到大于 1472~1500 的数据
推荐设为 1536 字节:正好是大多数操作系统分配 UDP buffer 的默认对齐粒度,还是 64 的倍数(好对齐
*/#define NUM_PROC_THREADS 1
#define NUM_SEND_THREADS 1#define BUF_SIZE_DEF 1536
constexpr int PORT1 = 4000;
constexpr int PORT2 = 5000;
constexpr int MAX_EVENTS = 10;
constexpr int BUF_SIZE = BUF_SIZE_DEF;// 一次批量处理至多32个,防止抖动和阻塞
const size_t MAX_BATCH = 32;// 退出标志
std::atomic<bool> g_running(true);// 数据包的简单封装
struct Packet {char data[BUF_SIZE];sockaddr_in addr_from;socklen_t addr_from_len;int port_from; // 记录是哪个端口接收的size_t data_len;sockaddr_in addr_to;socklen_t addr_to_len;int port_to;// 构造函数,默认初始化所有成员Packet() {reset();}// reset 函数,供复用时调用,清空所有数据和结构void reset() {memset(data, 0, sizeof(data));memset(&addr_from, 0, sizeof(addr_from));addr_from_len = 0;port_from = 0;data_len = 0;memset(&addr_to, 0, sizeof(addr_to));addr_to_len = 0;port_to = 0;}
};// 这个无锁内存池,需要使用外部类支持
// 手动下载源码(没有官方包管理器直接安装)
// git clone https://github.com/cameron314/concurrentqueue.git
//
// 编译指定头文件目录
// g++ -std=c++11 -pthread -I/path/to/concurrentqueue cssff.cpp -o udp_server
//
// #define LOCK_IN_POOL 1
// class PacketPool {
// moodycamel::ConcurrentQueue<Packet*> pool;
// const size_t MAX_POOL_SIZE;
// std::atomic<size_t> total_allocated;// public:
// PacketPool(size_t max_pool = 10000)
// : MAX_POOL_SIZE(max_pool), total_allocated(0) {}// ~PacketPool() {
// Packet* pkt;
// while (pool.try_dequeue(pkt)) {
// delete pkt;
// }
// }// Packet* acquire() {
// Packet* pkt = nullptr;
// if (pool.try_dequeue(pkt)) {
// return pkt;
// }
// total_allocated.fetch_add(1, std::memory_order_relaxed);
// return new Packet();
// }// void release(Packet* pkt) {
// if (!pkt) return;// size_t cached = pool.size_approx(); // 估算当前缓存大小
// if (cached < MAX_POOL_SIZE) {
// pool.enqueue(pkt);
// } else {
// delete pkt;
// total_allocated.fetch_sub(1, std::memory_order_relaxed);
// }
// }// size_t allocatedCount() const {
// return total_allocated.load(std::memory_order_relaxed);
// }// // 估算缓存数(不是严格准确)
// size_t cachedCount() const {
// return pool.size_approx();
// }
// };class PacketPool {std::vector<Packet*> pool;mutable std::mutex mtx;const size_t MAX_POOL_SIZE = 10000;public:~PacketPool() {for (auto pkt : pool) delete pkt;}Packet* acquire() {std::lock_guard<std::mutex> lock(mtx);if (!pool.empty()) {Packet* pkt = pool.back();pool.pop_back();pkt->reset();return pkt;}return new Packet();}void release(Packet* pkt) {if (pkt == nullptr) return;std::lock_guard<std::mutex> lock(mtx);if (pool.size() < MAX_POOL_SIZE) {pool.push_back(pkt);} else {delete pkt;}}size_t cachedCount() const {std::lock_guard<std::mutex> lock(mtx);return pool.size();}
};/////////////////////////////////////////////////////////////////////
// TODO: std::condition_variable 优化等待,暂时可能性能问题不大// 线程安全队列
std::queue<Packet*> recv_queue_1;
std::queue<Packet*> send_queue_1;
// 枷锁使用,或者配合那个条件变量使用
std::mutex recv_mutex_1;
std::mutex send_mutex_1;
// 使用条件变量来同步
std::condition_variable recv_cv_1;
std::condition_variable send_cv_1;
/*
notify_one 基本规则:
每调用一次 notify_one(),只会唤醒 一个正在等待在该 condition_variable 上的线程。
如果没有线程在等待,这次调用 不会保存或累积信号,即后来的线程 wait() 依然会阻塞,直到下一次 notify_one() 或 notify_all()。
⚠️ 注意:条件变量不是信号量,不会记住之前的“通知次数”。
⚠️ 所以:谓词一定要加上队列不为空,否则,如果干活时候错过了唤醒会造成一直等待信号的问题。
其中wait原理伪代码:
function wait(unique_lock& lock, predicate pred):while not pred(): // 先检查谓词// 1. 把 mutex 解锁,让其他线程可以修改共享状态lock.unlock()// 2. 阻塞等待条件变量通知wait_for_notify()// 3. 被唤醒后,重新加锁lock.lock()end while// 当 predicate() 返回 true 时,函数返回return*/// 全局的内存池子
PacketPool pool;const int MAX_READ_PER_FD = 10;// 1)这个线程负责从这2个端口接收数据,放到对应的队列中;
void recv_thread(int sock1, int sock2) {int epfd = epoll_create1(0);if (epfd == -1) {perror("epoll_create1");return;}epoll_event ev1 = {0}, ev2 = {0};ev1.events = EPOLLIN;ev1.data.fd = sock1;epoll_ctl(epfd, EPOLL_CTL_ADD, sock1, &ev1);ev2.events = EPOLLIN;ev2.data.fd = sock2;epoll_ctl(epfd, EPOLL_CTL_ADD, sock2, &ev2);epoll_event events[MAX_EVENTS];while (true) {if (false == g_running){std::cout << "recv thread end here by signal " << std::endl;return;}int nfds = epoll_wait(epfd, events, MAX_EVENTS, 1000);if (nfds == -1) {if (errno == EINTR) continue; // 被信号中断,可忽略std::cout << "recv thread end, epoll_wait err " << std::endl;perror("epoll_wait");break; }for (int i = 0; i < nfds; ++i) {int sockfd = events[i].data.fd;// 尝试读多次,直到没数据,提高效率; 但是也要防止一个fd上数据太多,造成其他的句柄饿死int read_count = 0;while (read_count < MAX_READ_PER_FD) {read_count ++;Packet* packet = pool.acquire();socklen_t addr_len = sizeof(packet->addr_from);ssize_t len = recvfrom(sockfd, packet->data, BUF_SIZE, 0,(sockaddr*)&packet->addr_from, &addr_len);if (len > 0) {packet->data_len = len;packet->addr_from_len = addr_len;packet->port_from = (sockfd == sock1) ? PORT1 : PORT2;// 转换IP地址为字符串char ip_str[INET_ADDRSTRLEN]; // 存储IPv4地址的缓冲区const char* ip_addr;// 判断地址族(IPv4)if (packet->addr_from.sin_family == AF_INET) {// 转换IPv4地址struct sockaddr_in* ipv4_addr = (struct sockaddr_in*)&packet->addr_from;ip_addr = inet_ntop(AF_INET, &(ipv4_addr->sin_addr), ip_str, INET_ADDRSTRLEN);}// 如需支持IPv6可添加以下代码// else if (packet->addr_from.sa_family == AF_INET6) {// struct sockaddr_in6* ipv6_addr = (struct sockaddr_in6*)&packet->addr_from;// ip_addr = inet_ntop(AF_INET6, &(ipv6_addr->sin6_addr), ip_str, INET6_ADDRSTRLEN);// }else {ip_addr = "未知地址族";}// 放到同一个队列中{std::lock_guard<std::mutex> lock(recv_mutex_1);recv_queue_1.push(packet);}recv_cv_1.notify_one();std::cout << "read data from port " << packet->port_from << " IP="<< ip_addr << std::endl;} // end if len > 0else {pool.release(packet);if (errno == EAGAIN || errno == EWOULDBLOCK) {// 缓冲区读空了,退出循环break;} else {std::cerr << "read data error: " << strerror(errno) << std::endl;break;}} // end of else }// end 针对一个socket的循环读取while } // end foreach(events)}// end of while(true)return;
}// 处理PORT1端口数据,echo 模拟
// 将要发送的数据放到队列中
void process_port1(Packet * pkt){pkt->addr_to = pkt->addr_from;pkt->addr_to_len = pkt->addr_from_len;{std::lock_guard<std::mutex> send_lock(send_mutex_1);send_queue_1.push(pkt);}send_cv_1.notify_one();
}// 处理PORT1端口数据echo 模拟
void process_port2(Packet * pkt){pkt->addr_to = pkt->addr_from;pkt->addr_to_len = pkt->addr_from_len;{std::lock_guard<std::mutex> send_lock(send_mutex_1);send_queue_1.push(pkt);}send_cv_1.notify_one();
}// 处理收到数据的线程,这里只是简单的拷贝到发送队列中,做一个echo的逻辑
void process_thread() {while (true) {if (false == g_running){std::cout << "process thread end here by signal " << std::endl;return;}// 提高锁的效率,一次性处理多个包,std::vector<Packet*> pkts1;// 使用条件变量等待{std::unique_lock<std::mutex> lock(recv_mutex_1);recv_cv_1.wait(lock, [] { return !recv_queue_1.empty() || !g_running; });// 唤醒后检查一下是否退出if (!g_running.load() && recv_queue_1.empty()) return;size_t cnt = 0;while (!recv_queue_1.empty() && cnt < MAX_BATCH) { pkts1.push_back(recv_queue_1.front());recv_queue_1.pop();cnt++; }}// 处理这最多32个数据包,for (auto pkt : pkts1) {if (pkt->port_from == PORT1){process_port1(pkt);}else{process_port2(pkt);}}}// end of while
}// 处理需要发送的数据
void send_thread(int sock1, int sock2) {while (true) {if (!g_running.load()) {std::cout << "send thread end here by signal " << std::endl;return;}std::vector<Packet*> pkts;// 批量取出发送队列的数据{std::unique_lock<std::mutex> lock(send_mutex_1);// 这里的谓词很重要,谓词中一定要包含队列不为空send_cv_1.wait(lock, []{return !send_queue_1.empty() || !g_running.load();});// 唤醒后检查退出条件if (!g_running.load() && send_queue_1.empty())return;size_t cnt = 0;while (!send_queue_1.empty() && cnt < MAX_BATCH) {pkts.push_back(send_queue_1.front());send_queue_1.pop();cnt++;}}// 循环发送for (auto pkt : pkts) {if (pkt->port_from == PORT1) {sendto(sock1, pkt->data, pkt->data_len, 0, (sockaddr *)&pkt->addr_to, pkt->addr_to_len);} else {sendto(sock2, pkt->data, pkt->data_len, 0, (sockaddr *)&pkt->addr_to, pkt->addr_to_len);}pool.release(pkt);}} // end of while
}// 设置为非阻塞模式端口
int set_nonblocking(int sockfd) {int flags = fcntl(sockfd, F_GETFL, 0);if (flags == -1) return -1;return fcntl(sockfd, F_SETFL, flags | O_NONBLOCK);
}// 打开2个端口进行监听
int create_udp_socket(int port) {int sock = socket(AF_INET, SOCK_DGRAM, 0);if (sock < 0) {perror("socket create error");exit(1);}sockaddr_in addr{};addr.sin_family = AF_INET;addr.sin_addr.s_addr = INADDR_ANY;addr.sin_port = htons(port);if (bind(sock, (sockaddr *)&addr, sizeof(addr)) < 0) {std::cout << "binding on UDP port " << port << " error " << std::endl;perror("bind error");exit(1);}return sock;
}// 让线程检测这个标志退出
void signal_handler(int signum) {if (signum == SIGINT) {std::cout << "\nSIGINT received. Exiting here!" << std::endl;g_running.store(false);send_cv_1.notify_all();recv_cv_1.notify_all();}
}sockaddr_in buildSockaddr(const std::string& ip, uint16_t port) {sockaddr_in addr;memset(&addr, 0, sizeof(addr)); // 清零结构体addr.sin_family = AF_INET; // IPv4 协议addr.sin_port = htons(port); // 端口转网络字节序inet_pton(AF_INET, ip.c_str(), &addr.sin_addr); // 将IP字符串转为二进制return addr;
}
/// @brief 入口函数
/// @return 0
int main() {// 注册 Ctrl+C 信号signal(SIGINT, signal_handler);int sock1 = create_udp_socket(PORT1);int sock2 = create_udp_socket(PORT2);// 在 create_udp_socket 后调用:set_nonblocking(sock1);set_nonblocking(sock2);std::cout << "Listening on UDP ports " << PORT1 << " and " << PORT2 << std::endl;std::thread t_recv(recv_thread, sock1, sock2);std::vector<std::thread> proc_threads, send_threads;for (int i = 0; i < NUM_PROC_THREADS; ++i)proc_threads.emplace_back(process_thread);for (int i = 0; i < NUM_SEND_THREADS; ++i)send_threads.emplace_back(send_thread, sock1, sock2);// 主线程等信号while (g_running) {std::this_thread::sleep_for(std::chrono::milliseconds(100));}// 等待线程退出if (t_recv.joinable())t_recv.join();// 等待处理线程退出for (auto& t : proc_threads) {if (t.joinable())t.join();}// 等待发送线程退出for (auto& t : send_threads) {if (t.joinable())t.join();}// 关闭资源close(sock1);close(sock2);std::cout << "ssff app Clean shutdown complete." << std::endl;return 0;
}
编译以后,
可以使用nc测试一下;
echo "hello port1" | nc -u 127.0.0.1 4000
echo "hello port2" | nc -u 127.0.0.1 5000
或者写一个python程序发送代码,可以跨主机试试:
import socket
import time
import argparse
import sys
import threadingdef udp_handler(local_ip, local_port, target_ip, target_port, count, interval, data):"""单个套接字处理发送和接收:- 绑定本地4000端口- 向目标4000端口发送数据- 在同一个端口接收回显数据"""# 创建UDP套接字并绑定本地4001端口(发送和接收共用)sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)try:# 绑定本地端口(关键:发送和接收都用这个端口)sock.bind((local_ip, local_port))print(f"✅ 已绑定本地端口 {local_ip}:{local_port},开始发送和接收数据...")# 启动接收线程(用同一个套接字)def receive_loop():while True:try:# 接收数据(阻塞等待)data_recv, addr = sock.recvfrom(1024)# 显示接收内容try:message = data_recv.decode('utf-8')print(f"\n📥 收到来自 {addr} 的数据: {message}")except UnicodeDecodeError:print(f"\n📥 收到来自 {addr} 的数据(无法解码): {data_recv.hex()}")except Exception as e:print(f"\n❌ 接收出错: {str(e)}")break# 启动接收线程receive_thread = threading.Thread(target=receive_loop, daemon=True)receive_thread.start()# 发送数据print(f"\n📤 开始向 {target_ip}:{target_port} 发送数据(共 {count} 个)...")for i in range(count):# 用已绑定的套接字发送(源端口固定为4001)sock.sendto(data.encode('utf-8'), (target_ip, target_port))# 显示发送进度sys.stdout.write(f"\r已发送 {i+1}/{count} 个数据包")sys.stdout.flush()# 最后一个包不等待if i < count - 1:time.sleep(interval)print("\n\n✅ 发送完成!继续等待接收数据(按Ctrl+C退出)...")# 保持程序运行,等待接收while True:time.sleep(1)except KeyboardInterrupt:print("\n\n⚠️ 用户中断程序")except Exception as e:print(f"\n❌ 程序出错: {str(e)}")finally:sock.close()print("\n🔌 套接字已关闭")if __name__ == "__main__":port = 5000parser = argparse.ArgumentParser(description='UDP双向通信工具(固定本地4000端口)')parser.add_argument('--local-ip', type=str, default='0.0.0.0',help='本地绑定IP,默认0.0.0.0(所有网卡)')parser.add_argument('--local-port', type=int, default=port,help='本地绑定端口,默认4000')parser.add_argument('--target-ip', type=str, default='192.168.228.129',help='目标IP地址,默认虚拟机IP')parser.add_argument('--target-port', type=int, default=port,help='目标端口,默认4001')parser.add_argument('--count', type=int, default=10,help='发送数据包数量,默认10个')parser.add_argument('--interval', type=float, default=1.0,help='发送间隔(秒),默认1秒')parser.add_argument('--data', type=str, default='Hello UDP',help='发送的数据内容,默认"Hello UDP"')args = parser.parse_args()# 启动UDP处理逻辑udp_handler(local_ip=args.local_ip,local_port=args.local_port,target_ip=args.target_ip,target_port=args.target_port,count=args.count,interval=args.interval,data=args.data)