STM32 SPI通信(软件)

一、SPI简介

  • SPI(Serial Peripheral Interface)是由Motorola公司开发的一种通用数据总线
  • 四根通信线:SCK(Serial Clock)、MOSI(Master Output Slave Input)、MISO(Master Input Slave Output)、SS(Slave Select)
  • 同步,全双工
  • 支持总线挂载多设备(一主多从)

SCK:提供时钟信号,数据位的输出和输入,都是在SCK的上升沿或下降沿进行的。 

MOSI:主机输出从机输入,主机配置为输出。从机配置为输入。  

MISO:主机输入从机输出

SS:从机选择线。有几个从机就有几条SS

二、硬件电路

  • 所有SPI设备的SCK、MOSI、MISO分别连在一起
  • 主机另外引出多条SS控制线,分别接到各从机的SS引脚
  • 输出引脚配置为推挽输出,输入引脚配置为浮空或上拉输入

解释:

  • 因为有三个从机,所以有三个SS线,一共就是6跟线。因为都是单端型号,所以所有的设备还需要共地。从机没有独立供电的话,主机还需要额外引出电源正极VCC,给从机供电。 
  • SS线是低电平有效,同一时间只能置一个SS为低电平,只能选中一个从机,同时未选中的从机的MISO引脚,为高阻态,否则三个输出同时进入主机的输入会产生冲突
  • 对于输出,选择推挽输出,使得上升沿、下降沿非常迅速

上图是SPI内部移位示意图

步骤:SPI高位先行,每来一个时钟,移位寄存器都会向左进行移位。

假设现在主机要将10101010发给从机,从机要将01010101发给主机。

首先向左移位

 移出去的数据会在输出数据寄存器

此时MOSI为高电平1,MISO为低电平0。这就是第一个时钟上升沿的结果 。那么在第一个时钟的下降沿,寄存器里的数据被分别采样输入到对应要去的最低位。

这就是第一个时钟结束后的现象。

三、SPI时序基本单元

  • 起始条件:SS从高电平切换到低电平
  • 终止条件:SS从低电平切换到高电平

住:这里一共有四种模式,由CPOL和CPHA变换1、0来选择。是为了适配更多的设备而设置的。传输流程看上面的硬件电路部分。

四、W25Q64简介

注:上面有横线的都是低电平有效

电路框图:

  • (1)和(2)描述的是存储器规划示意图,(2)被划分为若干个块“Block”,其中每一块再划分为若干个扇区(1)“Sector”。对于每个扇区又可以分为很多页  “Page” 。 
  • 在(2)里面,以64KB为一个基本单元,分了128块(因为一共8MB)。   
  • 在(1)里面,是对于块的更细的划分,以4KB为一份,分了16份。
  • 在写入数据时,还会有个更细的划分Page,256字节为一份。
  • (7)为SPI控制逻辑,接收指令和数据等
  • (8)状态寄存器,表示芯片是否处于忙状态、是否写使能、是否写保护
  • (9)写控制逻辑,配合WP引脚实现硬件写保护
  • (4)高电压生成器,配合Flash编程,Flash要实现掉电不丢失,就需要高电压来刺激。
  • (5)页地址锁存/计数器、(6)字节地址锁存/计数器,用来指定地址,读写操作
  • (3)256字节的RAM存储器,由于SPI写入频率非常高,所有写入数据先到RAM缓存区里,再写入Flash(2)里面。写入时会给状态寄存器(8)的BUSY位置1

五、Flash操作注意事项

写入操作时:

  • 写入操作前,必须先进行写使能
  • 每个数据位只能由1改写为0,不能由0改写为1
  • (由于上一条)写入数据前必须先擦除,擦除后,所有数据位变为1
  • 擦除必须按最小擦除单元进行(一个扇区)
  • 连续写入多字节时,最多写入一页的数据(256字节),超过页尾位置的数据,会回到页首覆盖写入
  • 写入操作结束后(写到RAM),芯片进入忙状态(当前在RAM转Flash,或者在擦除当中),不响应新的读写操作

读取操作时:

  • 直接调用读取时序,无需使能,无需额外操作,没有页的限制,读取操作结束后不会进入忙状态,但不能在忙状态时读取

六、代码部分

MySPI.c

#include "stm32f10x.h"                  // Device header/*引脚配置层*//*** 函    数:SPI写SS引脚电平* 参    数:BitValue 协议层传入的当前需要写入SS的电平,范围0~1* 返 回 值:无* 注意事项:此函数需要用户实现内容,当BitValue为0时,需要置SS为低电平,当BitValue为1时,需要置SS为高电平*/
void MySPI_W_SS(uint8_t BitValue)
{GPIO_WriteBit(GPIOA, GPIO_Pin_4, (BitAction)BitValue);		//根据BitValue,设置SS引脚的电平
}/*** 函    数:SPI写SCK引脚电平* 参    数:BitValue 协议层传入的当前需要写入SCK的电平,范围0~1* 返 回 值:无* 注意事项:此函数需要用户实现内容,当BitValue为0时,需要置SCK为低电平,当BitValue为1时,需要置SCK为高电平*/
void MySPI_W_SCK(uint8_t BitValue)
{GPIO_WriteBit(GPIOA, GPIO_Pin_5, (BitAction)BitValue);		//根据BitValue,设置SCK引脚的电平
}/*** 函    数:SPI写MOSI引脚电平* 参    数:BitValue 协议层传入的当前需要写入MOSI的电平,范围0~1* 返 回 值:无* 注意事项:此函数需要用户实现内容,当BitValue为0时,需要置MOSI为低电平,当BitValue为1时,需要置MOSI为高电平*/
void MySPI_W_MOSI(uint8_t BitValue)
{GPIO_WriteBit(GPIOA, GPIO_Pin_7, (BitAction)BitValue);		//根据BitValue,设置MOSI引脚的电平,BitValue要实现非0即1的特性
}/*** 函    数:I2C读MISO引脚电平* 参    数:无* 返 回 值:协议层需要得到的当前MISO的电平,范围0~1* 注意事项:此函数需要用户实现内容,当前MISO为低电平时,返回0,当前MISO为高电平时,返回1*/
uint8_t MySPI_R_MISO(void)
{return GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_6);			//读取MISO电平并返回
}/*** 函    数:SPI初始化* 参    数:无* 返 回 值:无* 注意事项:此函数需要用户实现内容,实现SS、SCK、MOSI和MISO引脚的初始化*/
void MySPI_Init(void)
{/*开启时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//开启GPIOA的时钟/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_7;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA4、PA5和PA7引脚初始化为推挽输出GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA6引脚初始化为上拉输入/*设置默认电平*/MySPI_W_SS(1);											//SS默认高电平MySPI_W_SCK(0);											//SCK默认低电平
}/*协议层*//*** 函    数:SPI起始* 参    数:无* 返 回 值:无*/
void MySPI_Start(void)
{MySPI_W_SS(0);				//拉低SS,开始时序
}/*** 函    数:SPI终止* 参    数:无* 返 回 值:无*/
void MySPI_Stop(void)
{MySPI_W_SS(1);				//拉高SS,终止时序
}/*** 函    数:SPI交换传输一个字节,使用SPI模式0* 参    数:ByteSend 要发送的一个字节* 返 回 值:接收的一个字节*/
uint8_t MySPI_SwapByte(uint8_t ByteSend)
{uint8_t i, ByteReceive = 0x00;					//定义接收的数据,并赋初值0x00,此处必须赋初值0x00,后面会用到for (i = 0; i < 8; i ++)						//循环8次,依次交换每一位数据{/*两个!可以对数据进行两次逻辑取反,作用是把非0值统一转换为1,即:!!(0) = 0,!!(非0) = 1*/MySPI_W_MOSI(!!(ByteSend & (0x80 >> i)));	//使用掩码的方式取出ByteSend的指定一位数据并写入到MOSI线MySPI_W_SCK(1);								//拉高SCK,上升沿移出数据if (MySPI_R_MISO()){ByteReceive |= (0x80 >> i);}	//读取MISO数据,并存储到Byte变量//当MISO为1时,置变量指定位为1,当MISO为0时,不做处理,指定位为默认的初值0MySPI_W_SCK(0);								//拉低SCK,下降沿移入数据}return ByteReceive;								//返回接收到的一个字节数据
}

W25Q64.c

#include "stm32f10x.h"                  // Device header
#include "MySPI.h"
#include "W25Q64_Ins.h"/*** 函    数:W25Q64初始化* 参    数:无* 返 回 值:无*/
void W25Q64_Init(void)
{MySPI_Init();					//先初始化底层的SPI
}/*** 函    数:W25Q64读取ID号* 参    数:MID 工厂ID,使用输出参数的形式返回* 参    数:DID 设备ID,使用输出参数的形式返回* 返 回 值:无*/
void W25Q64_ReadID(uint8_t *MID, uint16_t *DID)
{MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_JEDEC_ID);			//交换发送读取ID的指令*MID = MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//交换接收MID,通过输出参数返回*DID = MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//交换接收DID高8位*DID <<= 8;									//高8位移到高位*DID |= MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//或上交换接收DID的低8位,通过输出参数返回MySPI_Stop();								//SPI终止
}/*** 函    数:W25Q64写使能* 参    数:无* 返 回 值:无*/
void W25Q64_WriteEnable(void)
{MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_WRITE_ENABLE);		//交换发送写使能的指令MySPI_Stop();								//SPI终止
}/*** 函    数:W25Q64等待忙* 参    数:无* 返 回 值:无*/
void W25Q64_WaitBusy(void)
{uint32_t Timeout;MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_READ_STATUS_REGISTER_1);				//交换发送读状态寄存器1的指令Timeout = 100000;							//给定超时计数时间while ((MySPI_SwapByte(W25Q64_DUMMY_BYTE) & 0x01) == 0x01)	//循环等待忙标志位{Timeout --;								//等待时,计数值自减if (Timeout == 0)						//自减到0后,等待超时{/*超时的错误处理代码,可以添加到此处*/break;								//跳出等待,不等了}}MySPI_Stop();								//SPI终止
}/*** 函    数:W25Q64页编程* 参    数:Address 页编程的起始地址,范围:0x000000~0x7FFFFF* 参    数:DataArray	用于写入数据的数组* 参    数:Count 要写入数据的数量,范围:0~256* 返 回 值:无* 注意事项:写入的地址范围不能跨页*/
void W25Q64_PageProgram(uint32_t Address, uint8_t *DataArray, uint16_t Count)
{uint16_t i;W25Q64_WriteEnable();						//写使能MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_PAGE_PROGRAM);		//交换发送页编程的指令MySPI_SwapByte(Address >> 16);				//交换发送地址23~16位MySPI_SwapByte(Address >> 8);				//交换发送地址15~8位MySPI_SwapByte(Address);					//交换发送地址7~0位for (i = 0; i < Count; i ++)				//循环Count次{MySPI_SwapByte(DataArray[i]);			//依次在起始地址后写入数据}MySPI_Stop();								//SPI终止W25Q64_WaitBusy();							//等待忙
}/*** 函    数:W25Q64扇区擦除(4KB)* 参    数:Address 指定扇区的地址,范围:0x000000~0x7FFFFF* 返 回 值:无*/
void W25Q64_SectorErase(uint32_t Address)
{W25Q64_WriteEnable();						//写使能MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_SECTOR_ERASE_4KB);	//交换发送扇区擦除的指令MySPI_SwapByte(Address >> 16);				//交换发送地址23~16位MySPI_SwapByte(Address >> 8);				//交换发送地址15~8位MySPI_SwapByte(Address);					//交换发送地址7~0位MySPI_Stop();								//SPI终止W25Q64_WaitBusy();							//等待忙
}/*** 函    数:W25Q64读取数据* 参    数:Address 读取数据的起始地址,范围:0x000000~0x7FFFFF* 参    数:DataArray 用于接收读取数据的数组,通过输出参数返回* 参    数:Count 要读取数据的数量,范围:0~0x800000* 返 回 值:无*/
void W25Q64_ReadData(uint32_t Address, uint8_t *DataArray, uint32_t Count)
{uint32_t i;MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_READ_DATA);			//交换发送读取数据的指令MySPI_SwapByte(Address >> 16);				//交换发送地址23~16位MySPI_SwapByte(Address >> 8);				//交换发送地址15~8位MySPI_SwapByte(Address);					//交换发送地址7~0位for (i = 0; i < Count; i ++)				//循环Count次{DataArray[i] = MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//依次在起始地址后读取数据}MySPI_Stop();								//SPI终止
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/news/907104.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Kotlin Native与C/C++高效互操作:技术原理与性能优化指南

一、互操作基础与性能瓶颈分析 1.1 Kotlin Native调用原理 Kotlin Native通过LLVM编译器生成机器码,与C/C++的互操作基于以下核心机制: CInterop工具:解析C头文件生成Kotlin/Native绑定(.klib),自动生成类型映射和包装函数双向调用约定: Kotlin调用C:直接通过生成的绑…

云原生安全 SaaS :从基础到实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 1. 基础概念 什么是 SaaS&#xff1f; SaaS&#xff08;Software as a Service&#xff0c;软件即服务&#xff09;是一种基于云计算的软件交付模式。用…

git clone 提速

git上的项目时间久了 .git文件夹非常大&#xff0c;这时候更新一次项目需要花费很长的时间&#xff0c;解决方法也很简单&#xff0c;加一个depth参数&#xff0c;命令如下&#xff1a; git clone --depth 1 https://github.com/xxxxxx/xxxxxx指定了 depth 1 的时候&#xff0…

Redis 性能优化:核心技术、技巧与最佳实践

Redis 作为高性能的内存数据库,其性能优化是系统设计中的关键环节。本文结合 Redis 官方文档及实践经验,从内存管理、延迟优化、CPU 效率、网络配置等多个维度,系统性地阐述 Redis 性能优化的核心技术与最佳实践。 通过以下优化手段,Redis 可在高并发、低延迟场景中发挥极致…

PostgreSQL 14 pacemaker 高可用集群

核心架构原理 集群组成&#xff08;典型三节点结构&#xff09;&#xff1a; [Node1] PostgreSQL Pacemaker Corosync pcsd [Node2] PostgreSQL Pacemaker Corosync pcsd [Node3] PostgreSQL Pacemaker Corosync pcsd ↕ ↕ ↕ ← Corosync 多…

影刀Fun叉鸟-2048

文章目录 仅为自动化演示&#xff0c;实际2048判定逻辑需要更加严谨 参考代码 # 使用提醒: # 1. xbot包提供软件自动化、数据表格、Excel、日志、AI等功能 # 2. package包提供访问当前应用数据的功能&#xff0c;如获取元素、访问全局变量、获取资源文件等功能 # 3. 当此模块作…

Vue3.5 企业级管理系统实战(二十):角色菜单

本篇聚焦于角色菜单权限分配功能的实现&#xff0c;围绕“给角色赋予菜单权限”这一核心场景&#xff0c;从接口设计、组件封装到页面集成展开完整技术方案的阐述。主要内容包括&#xff1a; 1. 角色权限接口开发&#xff1a;定义获取角色权限、分配权限等接口&#xff0c;规范…

go实现钉钉三方登录

钉钉的的官方开发文档中只给出了java实现三方登录的&#xff0c;我们准备用go语言来实现 实现网页方式登录应用&#xff08;登录第三方网站&#xff09; - 钉钉开放平台 首先就是按照文档进行操作&#xff0c;备注好网站的信息 获得应用凭证&#xff0c;我们后面会用到 之后…

一、OpenCV的基本操作

目录 1、OpenCV的模块 2、OpenCV的基础操作 2.1图像的IO操作 2.2绘制几何图形 2.3获取并修改图像中的像素点 2.4 获取图像的属性 2.5图像通道的拆分与合并 2.6色彩空间的改变 3、OpenCV的算数操作 3.1图像的加法 3.2图像的混合 3.3总结 1、OpenCV的模块 2、OpenCV的基…

虚拟机配置桥接,远程工具直接访问

虚拟机网络配置 前言windows下安装linux虚拟机配置网络1、设置虚拟机网络模式&#xff1a;桥接模式2、配置网络参数1、查看本机电脑连接的网络情况2、打开虚拟机&#xff0c;编辑配置文件3、编辑虚拟网络 3、测试连通性 前言 好不容易装上了虚拟机&#xff0c;输入命令时又发现…

RabbitMQ 概述与安装

MQ 作用与介绍 MQ 是什么 MQ (message queue),从字面意思看是一个队列, FIFO 先进先出,只不过里面存放的内容是 消息 消息 可以比较简单,比如只包含 文本字符串,JSON 等;也可以很复杂,比如 内嵌对象 等 MQ 多用于分布式系统之间进行通信 系统之间的调用通常有两种方式: 1…

如何在Vue中实现延迟刷新列表:以Element UI的el-switch为例

如何在Vue中实现延迟刷新列表&#xff1a;以Element UI的el-switch为例 在开发过程中&#xff0c;我们经常需要根据用户操作或接口响应结果来更新页面数据。本文将以Element UI中的el-switch组件为例&#xff0c;介绍如何在状态切换后延迟1秒钟再调用刷新列表的方法&#xff0…

CSS2相关知识点

CSS2相关知识点 CSS的编写位置样式种类样式表的优先级 CSS选择器CSS基本选择器通配选择器元素选择器类选择器ID选择器 复合选择器HTML元素间的关系交集选择器并集选择器后代选择器子代选择器兄弟选择器属性选择器伪类选择器伪元素选择器 颜色的表示表示方式一&#xff1a;颜色名…

centos yum源,docker源

yum源repo文件&#xff1a; wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repodocker源repo文件&#xff1a; yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo安装docker和docker c…

深入探索AI模型工程:算法三大门派与监督学习的魅力

在当今人工智能蓬勃发展的时代&#xff0c;AI系统正逐渐渗透到我们生活的方方面面。从智能语音助手到自动驾驶汽车&#xff0c;从医疗影像诊断到金融风险预测&#xff0c;AI的应用场景无处不在。然而&#xff0c;构建一个高效、可靠的AI系统并非易事&#xff0c;它需要我们从宏…

[De1CTF 2019]SSRF Me

算是我第一次正儿八经的分析python代码了 from flask import Flask, request import socket import hashlib import urllib import sys import os import jsonreload(sys) sys.setdefaultencoding(latin1)app Flask(__name__) # 创建一个Flask应用实例 secret_key os.ura…

Halcon 图像预处理②

非线性图像分段变化&#xff1a; 先窗体打开图片 对数非线性变化&#xff1a; 结果图像的亮度/对比度显著增加 log_image(Image,LogImag1,e) 参数1&#xff1a;输入图像 参数2&#xff1a; 输出图像 参数3&#xff1a;底数 log_image(Image,LogImage2,0.1) 图像结果亮度和…

云原生安全之网络IP协议:从基础到实践指南

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 IP协议&#xff08;Internet Protocol&#xff09;是互联网通信的核心协议族之一&#xff0c;负责在设备间传递数据包。其核心特性包括&…

QML学习08Text

Text 1、颜色&#xff08;color&#xff09;2、获取宽度和高度&#xff08;contentWidth、contentHeight&#xff09;3、字体格式&#xff08;font&#xff09;4、文本样式&#xff08;textFormat&#xff09;5、超链接 1、颜色&#xff08;color&#xff09; //颜色Text {colo…

Python网络编程深度解析

目录 一、网络编程概述 二、TCP与UDP协议详解 1.TCP协议&#xff1a;可靠传输的基石 2.UDP协议&#xff1a;高效但不可靠的传输 3. TCP与UDP对比 三、Socket编程模型 1. Socket基础 2.TCP服务器实现详解 3. UDP服务器实现详解 四、进阶应用&#xff1a;简易聊天程序 …