完整改进RIME算法,基于修正多项式微分学习算子Rime-ice增长优化器,完整MATLAB代码获取

1 简介

为了有效地利用雾状冰生长的物理现象,最近开发了一种优化算法——雾状优化算法(RIME)。它模拟硬雾状和软雾状过程,构建硬雾状穿刺和软雾状搜索机制。在本研究中,引入了一种增强版本,称为修改的RIME(MRIME),集成了多项式微分学习算子(PDLO)。与传统的RIME方法相比,PDLO的加入给RIME算法引入了非线性,提高了其适应性、收敛速度和全局搜索能力。

2. MRIME算法

RIME算法从自然过程,特别是软冰晶和硬冰晶的生长中汲取灵感,设计了其优化策略。冰晶粒子的位置代表搜索空间中的解向量。它通过两个阶段模拟相关的环境条件:软冰晶搜索(SRS)和硬冰晶穿刺(HRP)。它需要几个关键步骤来执行优化,如下所示。
在这里插入图片描述

2.1 冰晶初始化阶段

种群由 N m N_m Nm个冰晶代理初始化,每个代理表示为 D D D维的冰晶粒子。在初始化过程中采用随机搜索来确定搜索空间中冰晶粒子的位置。因此,冰晶代理种群,表示为 R P O P R_{POP} RPOP,由单个冰晶粒子的位置表示为 R M i j R_{Mij} RMij,如公式(10)所示。

R P O P = [ R M i j ] N m × D = [ R M 1 , 1 R M 1 , 2 ⋯ R M 1 , D R M 2 , 1 R M 2 , 2 ⋯ R M 2 , D ⋮ ⋮ ⋱ ⋮ R M N m , 1 R M N m , 2 ⋯ R M N m , D ] R_{POP} = [R_{Mij}]_{N_m \times D} = \begin{bmatrix} R_{M1,1} & R_{M1,2} & \cdots & R_{M1,D} \\ R_{M2,1} & R_{M2,2} & \cdots & R_{M2,D} \\ \vdots & \vdots & \ddots & \vdots \\ R_{MN_m,1} & R_{MN_m,2} & \cdots & R_{MN_m,D} \end{bmatrix} RPOP=[RMij]Nm×D= RM1,1RM2,1RMNm,1RM1,2RM2,2RMNm,2RM1,DRM2,DRMNm,D

其中 R P O P R_{POP} RPOP是种群矩阵,由冰晶代理的向量组成( N m × 1 N_m \times 1 Nm×1),每个冰晶代理向量由几个设计参数( 1 × D 1 \times D 1×D)组成。

这些位置受到限制,具有上限( U p j Up_j Upj)和下限( L o j Lo_j Loj)边界,定义了每个维度的允许范围。采用许多基于种群的算法中观察到的传统方法,冰晶种群在初始阶段通过随机搜索过程进行初始化。初始化期间位置 R M i j R_{Mij} RMij的结果表达式如下:

R M i j = L o j + r d j ⋅ ( U p j − L o j ) , i = 1 : N m , j = 1 : D , R_{Mij} = Lo_j + r_{d_j} \cdot (Up_j - Lo_j), \quad i = 1 : N_m, j = 1 : D, RMij=Loj+rdj(UpjLoj),i=1:Nm,j=1:D,

其中 r d j r_{d_j} rdj是范围[0, 1]内随机选择的数字。

2.2 SRS阶段

算法模拟冰晶粒子在物体表面冻结的过程,模拟软冰晶的生长过程。冰晶代理在风和自身随机性的驱动下在搜索空间中移动,确保在早期迭代中广泛覆盖。冰晶代理的位置更新由以下公式确定,该公式包括最佳冰晶代理的位置、环境因素和随机性:

R m j = R m b e s t , j + r d 2 ⋅ β ⋅ cos ⁡ ( θ ) ⋅ ( A D ⋅ ( U p j − L o j ) + L o j ) , if  r d 2 < E , R_{mj} = R_{mbest,j} + r_{d_2} \cdot \beta \cdot \cos(\theta) \cdot (AD \cdot (Up_j - Lo_j) + Lo_j), \quad \text{if } r_{d_2} < E, Rmj=Rmbest,j+rd2βcos(θ)(AD(UpjLoj)+Loj),if rd2<E,

其中粘附度( A D AD AD)表征最佳冰晶代理与随机选择的冰晶代理之间的接近程度, A D AD AD限制在范围[0, 1]内。修改后的第 i i i个冰晶代理在SRS阶段后的维度 j j j的位置,表示为 R m j R_{mj} Rmj,基于最佳冰晶代理的位置 R m b e s t , j R_{mbest,j} Rmbest,j确定。方向控制由 r d 2 r_{d_2} rd2 cos ⁡ ( θ ) \cos(\theta) cos(θ)的插值控制,其中 r d 2 r_{d_2} rd2是范围[-1, 2]内的随机数。此外, r d 2 r_{d_2} rd2是范围[0, 1]内的随机数, θ \theta θ在公式(13)中定义。

θ = π ( t 10 ⋅ T m a x ) , \theta = \pi \left( \frac{t}{10 \cdot T_{max}} \right), θ=π(10Tmaxt),

在这种情况下,符号“ t t t”表示迭代计数索引,而“ T m a x T_{max} Tmax”表示总迭代次数。

环境因子,表示为“ β \beta β”,模拟外部条件并确保冰晶种群的收敛,如公式(14)所示。

β = 1 − 1 ω ⋅ ( 1 round ( ω ⋅ t T m a x ) ) , \beta = 1 - \frac{1}{\omega} \cdot \left( \frac{1}{\text{round} \left( \frac{\omega \cdot t}{T_{max}} \right)} \right), β=1ω1 round(Tmaxωt)1 ,

函数“round”用于四舍五入数值,参数“ ω \omega ω”用于调节步进函数的分割,默认值为5,如文献[29]所述。此外,变量“ r d 3 r_{d_3} rd3”是范围[0, 1]内的随机数,“ E E E”表示粘附系数,影响冰晶代理的凝聚概率。粘附系数随着整个搜索过程的迭代次数逐渐增加,如下所示:

E = ( t T m a x ) 1 / 2 , E = \left( \frac{t}{T_{max}} \right)^{1/2}, E=(Tmaxt)1/2,$

在强风条件下,算法模拟硬冰晶粒子的更简单和更规则的生长。HRP机制促进了代理之间的信息交换,以提高收敛性和跳出局部最优的能力,如下所示:

R m _ n e w , i j = { R m b e s t , j r d 4 < F i t μ ( R m i ) R m j Else , i = 1 : N m , j = 1 : D , R_{m\_new,ij} = \begin{cases} R_{mbest,j} & r_{d_4} < Fit^{\mu}(R_{m_i}) \\ R_{mj} & \text{Else} \end{cases}, \quad i = 1 : N_m, j = 1 : D, Rm_new,ij={Rmbest,jRmjrd4<Fitμ(Rmi)Else,i=1:Nm,j=1:D,

其中 R m _ n e w , i j R_{m\_new,ij} Rm_new,ij表示第 i i i个冰晶代理在维度 j j j中的新创建位置,而“ r d 4 r_{d_4} rd4”是范围[0, 1]内的随机数。如所示,冰晶代理的位置根据适应度值和归一化适应度值( F i t μ ( R m i ) Fit^{\mu}(R_{m_i}) Fitμ(Rmi))进行更新,促进了代理之间的交叉。

F i t μ ( R m i ) = F i t ( R m i ) ∑ i = 1 N m ( F i t ( R m i ) ) 2 , Fit^{\mu}(R_{m_i}) = \frac{Fit(R_{m_i})}{\sqrt{\sum_{i=1}^{N_m} (Fit(R_{m_i}))^2}}, Fitμ(Rmi)=i=1Nm(Fit(Rmi))2 Fit(Rmi),

其中 F i t μ ( R m i ) Fit^{\mu}(R_{m_i}) Fitμ(Rmi)是关于冰晶代理 i i i的当前位置的适应度函数值。

2.4 提出的PLDO整合

在本文中,PLDO被整合以增强RIME算法的搜索能力和多样性。PLDO通常用于优化中的差分进化(DE)算法[44]。该算子通过合并两个随机选择的个体的信息来增强种群多样性,以更新当前冰晶代理的位置。PLDO是DE的扩展,通过适应突变策略来放大搜索空间内的探索和开发。PLDO中的突变公式结合了多项式函数,将非线性特性注入突变操作中。为了执行整合的PLDO,从种群中抽取两个随机整数( i n d e x 1 index1 index1 i n d e x 2 index2 index2)。随后,新派生的冰晶代理 i i i的位置可以公式化为:

R m _ n e w = R m i + ϕ ⋅ ( R m i n d e x 1 − R m i n d e x 2 ) , i = 1 : N m , R_{m\_new} = R_{m_i} + \phi \cdot (R_{m_{index1}} - R_{m_{index2}}), \quad i = 1 : N_m, Rm_new=Rmi+ϕ(Rmindex1Rmindex2),i=1:Nm,

其中 ϕ \phi ϕ是范围[0, 1]内生成的随机数。因此,更新涉及两个随机选择的元素( R m i n d e x 1 R_{m_{index1}} Rmindex1 R m i n d e x 2 R_{m_{index2}} Rmindex2)之间的加权差异,而权重 ϕ \phi ϕ控制这种差异对更新的贡献。

2.5 正向贪婪选择(PGS)阶段

在生成HRP-SRS阶段(公式(12)和(16))或PLDO(公式(18))中的冰晶粒子的新位置后,PGS机制用于比较更新前后的适应度值。如果更新后的适应度更好,则用次优解替换最优解,从而增强全局解的质量。该机制在更新过程中积极替换代理,以确保更优的种群进化。

2.6 迭代过程

图3a,b展示了标准RIME与所提出的MMIME优化器的主要步骤,其中整个过程在预定的迭代次数( I m a x I_{max} Imax)内交替执行。在每次迭代中,所提出的MMIME利用SRS和HRP阶段或PLDO机制更新冰晶代理的位置,评估适应度值,并执行PGS。在所提出的MMIME中,引入PLDO,包含多项式函数,使每个突变向量组件的影响得到精细控制,为探索过程提供灵活性。通过排列引入的随机性增加了搜索空间探索的有效性。种群中的最佳冰晶代理由最佳适应度值确定,并作为优化问题的解决方案输出。

function [Best_rime_rate,Best_rime,Convergence_curve]=MRIME(N,Max_iter,lb,ub,dim)
% disp('RIME is now tackling your problem')
% initialize positionBest_rime=zeros(1,dim);
Best_rime_rate=inf;%change this to -inf for maximization problemsRimepop=initialization(N,dim,ub,lb);%Initialize the set of random solutions
Lb=lb.*ones(1,dim);% lower boundary
Ub=ub.*ones(1,dim);% upper boundary
it=1;%Number of iterations
Convergence_curve=zeros(1,Max_iter);
Rime_rates=zeros(1,N);%Initialize the fitness value
newRime_rates=zeros(1,N);
W = 5;%Soft-rime parameters, discussed in subsection 4.3.1 of the paper%Calculate the fitness value of the initial position
for i=1:N%     Rime_rates(1,i)=fobj(Rimepop(i,:));%Calculate the fitness value for each search agentx=Rimepop(i,:);[Im,Vm]=IVload;Iph=x(1);I0=x(2);Rs=x(3);Rsh=x(4);n=x(5);I02=x(6);n2=x(7);k = 1.380649e-23;T = 306.15;q = 1.602176634e-19;Vth= k*T/q;Ns=1;a=n*Vth*Ns;a2=n2*Vth*Ns;I = -Vm./(Rs + Rsh) - lambertw(Rs.*I0.*Rsh.*exp(Rsh.*(Rs.*Iph + Rs.*I0 + Vm)./(a.*(Rs + Rsh)))./(a.*(Rs + Rsh))).*a./Rs...- lambertw(Rs.*I02.*Rsh.*exp(Rsh.*(Rs.*Iph + Rs.*I02 + Vm)./(a2.*(Rs + Rsh)))./(a2.*(Rs + Rsh))).*a2./Rs + (Rsh.*(I0 + Iph + I02))./(Rs + Rsh);fit_I=sqrt(sum((Im-I).^2)/length(Im));Rime_rates(1,i)=fit_I;%Make greedy selectionsif Rime_rates(1,i)<Best_rime_rateBest_rime_rate=Rime_rates(1,i);Best_rime=Rimepop(i,:);end
end
% Main loopwhile it <= Max_iter%     itRimeFactor = (rand-0.5)*2*cos((pi*it/(Max_iter*10)))*(1-round(it*W/Max_iter)/W);%Parameters of Eq.(3),(4),(5)E =sqrt(it/Max_iter);%Eq.(6)newRimepop = Rimepop;%Recording new populationsnormalized_rime_rates=normr(Rime_rates);%Parameters of Eq.(7)if rand>0.5for i=1:Nfor j=1:dim%Soft-rime search strategyr1=rand();if r1< EnewRimepop(i,j)=Best_rime(1,j)+RimeFactor*((Ub(j)-Lb(j))*rand+Lb(j));%Eq.(3)endendendelsefor i=1:NnewRimepop(i,:)=newRimepop(i,:)+rand*(newRimepop(randperm(N,1),:)-newRimepop(randperm(N,1),:));endendfor i=1:Nfor j=1:dim%Hard-rime puncture mechanismr2=rand();if r2<normalized_rime_rates(i)newRimepop(i,j)=Best_rime(1,j);%Eq.(7)endendendfor i=1:N%Boundary absorptionFlag4ub=newRimepop(i,:)>ub;Flag4lb=newRimepop(i,:)<lb;newRimepop(i,:)=(newRimepop(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;x=newRimepop(i,:);[Im,Vm]=IVload;Iph=x(1);I0=x(2);Rs=x(3);Rsh=x(4);n=x(5);I02=x(6);n2=x(7);k = 1.380649e-23;T = 306.15;q = 1.602176634e-19;Vth= k*T/q;Ns=1;a=n*Vth*Ns;a2=n2*Vth*Ns;I = -Vm./(Rs + Rsh) - lambertw(Rs.*I0.*Rsh.*exp(Rsh.*(Rs.*Iph + Rs.*I0 + Vm)./(a.*(Rs + Rsh)))./(a.*(Rs + Rsh))).*a./Rs...- lambertw(Rs.*I02.*Rsh.*exp(Rsh.*(Rs.*Iph + Rs.*I02 + Vm)./(a2.*(Rs + Rsh)))./(a2.*(Rs + Rsh))).*a2./Rs + (Rsh.*(I0 + Iph + I02))./(Rs + Rsh);fit_I=sqrt(sum((Im-I).^2)/length(Im));newRime_rates(1,i)=fit_I;%Positive greedy selection mechanismif newRime_rates(1,i)<Rime_rates(1,i)Rime_rates(1,i) = newRime_rates(1,i);Rimepop(i,:) = newRimepop(i,:);if newRime_rates(1,i)< Best_rime_rateBest_rime_rate=Rime_rates(1,i);Best_rime=Rimepop(i,:);endendendConvergence_curve(it)=Best_rime_rate;it=it+1;
end

Hakmi S.H., Alnami H., Moustafa G., et al. Modified Rime-Ice Growth Optimizer with Polynomial Differential Learning Operator for Single-and Double-Diode PV Parameter Estimation Problem. Electronics. 2024, 13(9): 1611.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/pingmian/81869.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PyTorch可视化工具——使用Visdom进行深度学习可视化

文章目录 前置环境Visdom安装并启动VisdomVisdom图形APIVisdom静态更新API详解通用参数说明使用示例Visdom动态更新API详解1. 使用updateappend参数2. ~~使用vis.updateTrace方法~~3. 完整训练监控示例 Visdom可视化操作散点图plot.scatter()散点图案例线性图vis.line()vis.lin…

Java使用Collections集合工具类

1、Collections 集合工具类 Java 中的 Collections 是一个非常有用的工具类&#xff0c;它提供了许多静态方法来操作或返回集合。这个类位于 java.util 包中&#xff0c;主要包含对集合进行操作的方法&#xff0c;比如排序、搜索、线程安全化等。 Java集合工具类的使用&#x…

Unity基础学习(五)Mono中的重要内容(1)延时函数

目录 一、Mono中的延时函数Invoke 1. Invoke作用&#xff1a;延迟指定时间后执行一次函数。API&#xff1a; 2. InvokeRepeating作用&#xff1a;延迟后开始重复执行函数。API&#xff1a; 3. CancelInvoke作用&#xff1a;停止所有延时函数&#xff0c;或停止指定函数的延时…

180KHz 60V 5A开关电流升压/升降压型DC-DC转换器XL4019升降压芯片

介绍 XL6019是一款专为升压、升降压设计的 单片集成电路&#xff08;升压和降压是由外围电路拓扑确定的&#xff09;&#xff0c;可工作在DC5V到40V输入电 压范围&#xff0c;低纹波&#xff0c;内置功率MOS。XL6019内 置固定频率振荡器与频率补偿电路&#xff0c;简化了电 路…

如何畅通需求收集渠道,获取用户反馈?

要畅通需求收集渠道、有效获取用户反馈&#xff0c;核心在于多样化反馈入口、闭环反馈机制、用户分层管理、反馈数据结构化分析等四个方面。其中&#xff0c;多样化反馈入口至关重要&#xff0c;不同用户有不同的沟通偏好&#xff0c;只有覆盖多个反馈路径&#xff0c;才能捕捉…

Python结合ollama和stramlit开发聊天机器人

Python结合ollama和stramlit开发聊天机器人 一、环境准备1、streamlit安装2、langchain安装3、ollama的安装 二、Ollama平台聊天机器人实现1、需求2、模型调用3、前端实现页面呈现代码实现 三、详细代码地址四、参考资源 一、环境准备 1、streamlit安装 # 通过 pip 安装 pip …

java jdbc执行Oracle sql文件

执行代码 import java.io.FileInputStream; import java.io.InputStreamReader; import java.nio.charset.StandardCharsets; import java.sql.Connection; import java.sql.DriverManager;import org.apache.ibatis.jdbc.ScriptRunner;public class ExecSqlFileController {pu…

[Java实战]Spring Boot整合MinIO:分布式文件存储与管理实战(三十)

[Java实战]Spring Boot整合MinIO&#xff1a;分布式文件存储与管理实战&#xff08;三十&#xff09; 一、MinIO简介与核心原理 MinIO 是一款高性能、开源的分布式对象存储系统&#xff0c;兼容 Amazon S3 API&#xff0c;适用于存储图片、视频、日志等非结构化数据。其核心特…

开发指南115-CSS中选择器关系

1、选择后代 可以用选择器1 选择器2&#xff08;中间用空格分隔&#xff09;来表达&#xff0c;也可以在大括号里通过包含关系来表达 举例 .a .b 举例.a { .b{} } 注意css本身并不支持嵌套的写法&#xff0c;是scss等提供的扩展能力。 2、选择直系后代 选择器1 > 选择器2&a…

创建型:抽象工厂模式

目录 1、核心思想 2、实现方式 2.1 模式结构 2.2 实现案例 3、优缺点分析 4、适用场景 1、核心思想 目的&#xff1a;统一管理相关对象的创建&#xff0c;确保产品兼容性。优先用于需要强约束产品兼容性的场景&#xff08;如UI主题、跨平台适配&#xff09; 概念&#…

乘最多水的容器 | 算法 | 给定一个整数数组。有n条垂线。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

在我们日常生活中&#xff0c;蓄水似乎是一个极为朴素的物理行为&#xff1a;两堵墙之间&#xff0c;注入水&#xff0c;看谁能装得更多。可如果换个角度&#xff0c;从算法的视角去看这个问题&#xff0c;它会变得怎样&#xff1f;你是否意识到&#xff0c;这样一个简单的问题…

无人机避障——深蓝学院浙大Ego-Planner规划部分

ESDF-free&#xff1a; 被这种类型的障碍物死死卡住的情况&#xff1a; 在一定范围内建立ESDF&#xff1a; Ego-Planner框架&#xff1a; 找到{p,v} pair&#xff1a; 【注意】&#xff1a;首先根据在障碍物内航迹上的点Q&#xff0c;以及与它相邻但不在障碍物内的两个点&#…

零基础设计模式——大纲汇总

零基础学设计模式 - 大纲 前言 本教程旨在帮助零基础的同学快速入门设计模式&#xff0c;理解其核心思想和应用场景。我们将通过清晰的讲解和简单的示例&#xff0c;逐步引导你掌握常用的设计模式。 第一部分&#xff1a;设计模式入门 什么是设计模式&#xff1f; 设计模式…

leetcode 92. Reverse Linked List II

题目描述 92. Reverse Linked List II 是第206题的进阶版206. Reverse Linked List 思路很简单&#xff0c;但一次性通过还是有点难度的。 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(n…

CUDA的设备,流处理器(Streams),核,线程块(threadblock),线程,网格(‌gridDim),块(block)和多gpu设备同步数据概念

CUDA的设备,流处理器&#xff0c;核&#xff0c;线程块&#xff08;threadblock&#xff09;&#xff0c;线程&#xff0c;网格&#xff08;‌gridDim&#xff09;&#xff0c;块&#xff08;block&#xff09;和多gpu设备同步数据概念 CUDA的设备,流处理器&#xff0c;核&…

spring5-配外部文件-spEL-工厂bean-FactoryBean-注解配bean

spring配外部文件 我们先在Spring里配置一个数据源 1.导c3p0包,这里我们先学一下hibernate持久化框架&#xff0c;以后用mybites. <dependency><groupId>org.hibernate</groupId><artifactId>hibernate-core</artifactId><version>5.2.…

Feature Toggle 不再乱:如何设计一个干净、安全、可控的特性开关系统?

网罗开发 &#xff08;小红书、快手、视频号同名&#xff09; 大家好&#xff0c;我是 展菲&#xff0c;目前在上市企业从事人工智能项目研发管理工作&#xff0c;平时热衷于分享各种编程领域的软硬技能知识以及前沿技术&#xff0c;包括iOS、前端、Harmony OS、Java、Python等…

技术分享:大数据挖掘平台架构设计与行业应用实践

在数字化转型浪潮下&#xff0c;企业数据规模呈指数级增长。如何构建高效的数据挖掘体系&#xff0c;实现数据价值变现&#xff0c;成为技术团队面临的重要课题。本文将深入探讨大数据挖掘平台的核心架构、关键技术及行业应用实践。 一、平台架构设计 1. 数据采集层 支持多源异…

计算机视觉与深度学习 | EMD-KPCA-LSTM、EMD-LSTM、LSTM回归预测对比,多输入单输出(Matlab完整程序和数据)

以下是针对EMD-KPCA-LSTM、EMD-LSTM和LSTM回归预测对比的完整可运行MATLAB实现。包含数据生成、特征处理、模型构建和性能评估全流程,并提供关键代码注释和注意事项。 完整代码实现(含数据生成) %% 清理环境 clear; clc; close all; warning off;%% 生成模拟数据(正弦波+噪…

Axure应用交互设计:动态面板嵌套实现超强体验感菜单表头

亲爱的小伙伴,在您浏览之前,烦请关注一下,在此深表感谢!如有帮助请订阅专栏! Axure产品经理精品视频课已登录CSDN可点击学习https://edu.csdn.net/course/detail/40420 课程主题:动态面板嵌套 主要内容:利用动态面板多层嵌套实现菜单表头 应用场景:广泛应用于表单表…