Day 40

单通道图片的规范写法

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader , Dataset 
from torchvision import datasets, transforms 
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
torch.manual_seed(42)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))  
])train_dataset = datasets.MNIST(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.MNIST(root='./data',train=False,transform=transform
)batch_size = 64  
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten()  self.layer1 = nn.Linear(784, 128)  self.relu = nn.ReLU()  # 激活函数self.layer2 = nn.Linear(128, 10) def forward(self, x):x = self.flatten(x) x = self.layer1(x)  x = self.relu(x)     x = self.layer2(x)   return xmodel = MLP()
model = model.to(device)  criterion = nn.CrossEntropyLoss()  
optimizer = optim.Adam(model.parameters(), lr=0.001)  def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):model.train()all_iter_losses = []  iter_indices = []    for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)  # 移至GPU(如果可用)optimizer.zero_grad()  output = model(data) loss = criterion(output, target)  loss.backward()  optimizer.step()  iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)running_loss += loss.item() _, predicted = output.max(1) total += target.size(0) correct += predicted.eq(target).sum().item() if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totalepoch_test_loss, epoch_test_acc = test(model, test_loader, criterion, device)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')plot_iter_losses(all_iter_losses, iter_indices)return epoch_test_acc  


测试函数和绘图函数均被封装在了train函数中,但是test和绘图函数在定义train函数之后,这是因为在 Python 中,函数定义的顺序不影响调用,只要在调用前已经完成定义即可。

#测试模型(不变)
def test(model, test_loader, criterion, device):model.eval()  # 设置为评估模式test_loss = 0correct = 0total = 0with torch.no_grad():  # 不计算梯度,节省内存和计算资源for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()avg_loss = test_loss / len(test_loader)accuracy = 100. * correct / totalreturn avg_loss, accuracy  # 返回损失和准确率# 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 执行训练和测试(设置 epochs=2 验证效果)
epochs = 2  
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

下面是彩色图片的规范写法 ,彩色通道也是在第一步被直接展平,其他代码一致

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 1. 数据预处理
transform = transforms.Compose([transforms.ToTensor(),                # 转换为张量transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 标准化处理
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=transform
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义MLP模型(适应CIFAR-10的输入尺寸)
class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten()  # 将3x32x32的图像展平为3072维向量self.layer1 = nn.Linear(3072, 512)  # 第一层:3072个输入,512个神经元self.relu1 = nn.ReLU()self.dropout1 = nn.Dropout(0.2)  # 添加Dropout防止过拟合self.layer2 = nn.Linear(512, 256)  # 第二层:512个输入,256个神经元self.relu2 = nn.ReLU()self.dropout2 = nn.Dropout(0.2)self.layer3 = nn.Linear(256, 10)  # 输出层:10个类别def forward(self, x):# 第一步:将输入图像展平为一维向量x = self.flatten(x)  # 输入尺寸: [batch_size, 3, 32, 32] → [batch_size, 3072]# 第一层全连接 + 激活 + Dropoutx = self.layer1(x)   # 线性变换: [batch_size, 3072] → [batch_size, 512]x = self.relu1(x)    # 应用ReLU激活函数x = self.dropout1(x) # 训练时随机丢弃部分神经元输出# 第二层全连接 + 激活 + Dropoutx = self.layer2(x)   # 线性变换: [batch_size, 512] → [batch_size, 256]x = self.relu2(x)    # 应用ReLU激活函数x = self.dropout2(x) # 训练时随机丢弃部分神经元输出# 第三层(输出层)全连接x = self.layer3(x)   # 线性变换: [batch_size, 256] → [batch_size, 10]return x  # 返回未经过Softmax的logits# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 初始化模型
model = MLP()
model = model.to(device)  # 将模型移至GPU(如果可用)criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):model.train()  # 设置为训练模式# 记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)  # 移至GPUoptimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计准确率和损失running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次打印一次训练信息if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 计算当前epoch的平均训练损失和准确率epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / total# 测试阶段model.eval()  # 设置为评估模式test_loss = 0correct_test = 0total_test = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testprint(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)return epoch_test_acc  # 返回最终测试准确率# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 7. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# # 保存模型
# torch.save(model.state_dict(), 'cifar10_mlp_model.pth')
# # print("模型已保存为: cifar10_mlp_model.pth")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/pingmian/82922.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SPSS跨域分类:自监督知识+软模板优化

1. 图1:SPSS方法流程图 作用:展示了SPSS方法的整体流程,从数据预处理到模型预测的关键步骤。核心内容: 领域知识提取:使用三种词性标注工具(NLTK、spaCy、TextBlob)从源域和目标域提取名词或形容词(如例句中提取“excellent”“good”等形容词)。词汇交集与聚类:对提…

2025年通用 Linux 服务器操作系统该如何选择?

2025年通用 Linux 服务器操作系统该如何选择? 服务器操作系统的选择对一个企业IT和云服务影响很大,主推的操作系统在后期更换的成本很高,而且也有很大的迁移风险,所以企业在选择服务器操作系统时要尤为重视。 之前最流行的服务器…

如何在 Django 中集成 MCP Server

目录 背景说明第一步:使用 ASGI第二步:修改 asgi.py 中的应用第三步:Django 数据的异步查询 背景说明 有几个原因导致 Django 集成 MCP Server 比较麻烦 目前支持的 MCP 服务是 SSE 协议的,需要长连接,但一般来讲 Dj…

天拓四方工业互联网平台赋能:地铁电力配电室综合监控与无人巡检,实现效益与影响的双重显著提升

随着城市化进程的不断加快,城市轨道交通作为缓解交通压力、提升出行效率的重要方式,在全国各大城市中得到了迅猛发展。地铁电力配电室作为核心供电设施,其基础设施的安全性、稳定性和智能化水平也面临更高要求。 本文将围绕“工业物联网平台…

算法打卡第11天

36.有效的括号 (力扣20题) 示例 1: **输入:**s “()” **输出:**true 示例 2: **输入:**s “()[]{}” **输出:**true 示例 3: **输入:**s “(]”…

python 包管理工具uv

uv --version uv python find uv python list export UV_DEFAULT_INDEX"https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" # 换成私有的repo export UV_HTTP_TIMEOUT120 uv python install 3.12 uv venv myenv --python 3.12 --seed uvhttps://docs.ast…

spring的多语言怎么实现?

1.创建springboot项目,并配置application.properties文件 spring.messages.basenamemessages spring.messages.encodingUTF-8 spring.messages.fallback-to-system-localefalsespring.thymeleaf.cachefalse spring.thymeleaf.prefixclasspath:/templates/ spring.t…

JAVA:Kafka 消息可靠性详解与实践样例

🧱 1、简述 Apache Kafka 是高吞吐、可扩展的流处理平台,在分布式架构中广泛应用于日志采集、事件驱动和微服务解耦场景。但在使用过程中,消息是否会丢?何时丢?如何防止丢? 是很多开发者关心的问题。 Kafka 提供了一套完整的机制来保障消息从生产者 ➜ Broker ➜ 消费…

【AI非常道】二零二五年五月,AI非常道

经常在社区看到一些非常有启发或者有收获的话语,但是,往往看过就成为过眼云烟,有时再想去找又找不到。索性,今年开始,看到好的言语,就记录下来,一月一发布,亦供大家参考。 前面的记…

C++哈希

一.哈希概念 哈希又叫做散列。本质就是通过哈希函数把关键字key和存储位置建立映射关系,查找时通过这个哈希函数计算出key存储的位置,进行快速查找。 上述概念可能不那么好懂,下面的例子可以辅助我们理解。 无论是数组还是链表,查…

iOS 使用CocoaPods 添加Alamofire 提示错误的问题

Sandbox: rsync(59817) deny(1) file-write-create /Users/aaa/Library/Developer/Xcode/DerivedData/myApp-bpwnzikesjzmbadkbokxllvexrrl/Build/Products/Debug-iphoneos/myApp.app/Frameworks/Alamofire.framework/Alamofire.bundle把这个改成 no 2 设置配置文件

mysql的Memory引擎的深入了解

目录 1、Memory引擎介绍 2、Memory内存结构 3、内存表的锁 4、持久化 5、优缺点 6、应用 前言 Memory 存储引擎 是 MySQL 中一种高性能但非持久化的存储方案,适合临时数据存储和缓存场景。其核心优势在于极快的读写速度,需注意数据丢失风险和内存占…

若依项目AI 助手代码解析

基于 Vue.js 和 Element UI 的 AI 助手组件 一、组件整体结构 这个 AI 助手组件由三部分组成&#xff1a; 悬浮按钮&#xff1a;点击后展开 / 收起对话窗口对话窗口&#xff1a;显示历史消息和输入框API 调用逻辑&#xff1a;与 AI 服务通信并处理响应 <template><…

Vue2的diff算法

diff算法的目的是为了找出需要更新的节点&#xff0c;而未变化的节点则可以复用 新旧列表的头尾先互相比较。未找到可复用则开始遍历&#xff0c;对比过程中指针逐渐向列表中间靠拢&#xff0c;直到遍历完其中一个列表 具体策略如下&#xff1a; 同层级比较 Vue2的diff算法只…

mongodb集群之分片集群

目录 1. 适用场景2. 集群搭建如何搭建搭建实例Linux搭建实例(待定)Windows搭建实例1.资源规划2. 配置conf文件3. 按顺序启动不同角色的mongodb实例4. 初始化config、shard集群信息5. 通过router进行分片配置 1. 适用场景 数据量大影响性能 数据量大概达到千万级或亿级的时候&…

DEEPSEEK帮写的STM32消息流函数,直接可用.已经测试

#include "main.h" #include "MessageBuffer.h"static RingBuffer msgQueue {0};// 初始化队列 void InitQueue(void) {msgQueue.head 0;msgQueue.tail 0;msgQueue.count 0; }// 检查队列状态 type_usart_queue_status GetQueueStatus(void) {if (msgQ…

华为欧拉系统中部署FTP服务与Filestash应用:实现高效文件管理和共享

华为欧拉系统中部署FTP服务与Filestash应用:实现高效文件管理和共享 前言一、相关服务介绍1.1 Huawei Cloud EulerOS介绍1.2 Filestash介绍1.3 华为云Flexus应用服务器L实例介绍二、本次实践介绍2.1 本次实践介绍2.2 本次环境规划三、检查云服务器环境3.1 登录华为云3.2 SSH远…

React---day5

4、React的组件化 组件的分类&#xff1a; 根据组件的定义方式&#xff0c;可以分为&#xff1a;函数组件(Functional Component )和类组件(Class Component)&#xff1b;根据组件内部是否有状态需要维护&#xff0c;可以分成&#xff1a;无状态组件(Stateless Component )和…

测试策略:AI模型接口的单元测试与稳定性测试

测试策略:AI模型接口的单元测试与稳定性测试 在构建支持AI能力的系统中,开发者不仅要关注业务逻辑的正确性,也必须保障AI模型接口在各种环境下都能稳定运行。这就要求我们在开发阶段制定清晰的测试策略,从功能验证到性能保障,逐步推进系统可用性、可维护性与可扩展性的提…

UniApp 生产批次管理模块技术文档

UniApp 生产批次管理模块技术文档 1. 运行卡入站页面 (RunCardIn) 1.1 页面结构 <template><!-- 页面容器 --><view class"runCardIn" :style"{ paddingTop: padding }"><!-- 页头组件 --><pageHeader :title"$t(MENU:…