Java并发编程:读写锁与普通互斥锁的深度对比

在Java并发编程中,锁是实现线程安全的重要工具。其中,普通互斥锁(如synchronizedReentrantLock)和读写锁(ReentrantReadWriteLock)是两种常用的同步机制。本文将从多个维度深入分析它们的区别、适用场景及性能差异,并通过示例代码展示如何在实际项目中合理选择。

一、核心概念对比

1. 普通互斥锁(Mutex)

普通互斥锁是最基本的同步机制,它遵循"排他性"原则:

  • 同一时间仅允许一个线程访问共享资源,无论该线程是读操作还是写操作。
  • 典型实现:
    • synchronized关键字
    • ReentrantLock

示例代码

private final Lock mutex = new ReentrantLock();
private List<String> sharedList = new ArrayList<>();public void write(String data) {mutex.lock();try {sharedList.add(data);} finally {mutex.unlock();}
}public String read(int index) {mutex.lock();try {return sharedList.get(index);} finally {mutex.unlock();}
}

2. 读写锁(ReadWriteLock)

读写锁将锁分为"读锁"和"写锁",并提供更细粒度的访问控制:

  • 读锁(共享锁):允许多个线程同时获取读锁,并发读取共享资源。
  • 写锁(排他锁):同一时间仅允许一个线程获取写锁,且写锁存在时不允许任何线程获取读锁。
  • 典型实现:ReentrantReadWriteLock

示例代码

private final ReadWriteLock rwLock = new ReentrantReadWriteLock();
private final Lock readLock = rwLock.readLock();
private final Lock writeLock = rwLock.writeLock();
private List<String> sharedList = new ArrayList<>();public void write(String data) {writeLock.lock();try {sharedList.add(data);} finally {writeLock.unlock();}
}public String read(int index) {readLock.lock();try {return sharedList.get(index);} finally {readLock.unlock();}
}

二、关键区别详解

1. 锁的粒度与并发度

维度普通互斥锁读写锁
锁粒度粗粒度(不区分读写)细粒度(区分读写)
并发度同一时间仅一个线程访问同一时间可多个线程读或一个线程写
吞吐量低(尤其读多写少场景)高(读多写少场景显著提升)

2. 适用场景对比

场景普通互斥锁读写锁
读写操作频率接近✅ 简单高效❌ 状态管理开销可能更高
读操作远多于写操作❌ 吞吐量瓶颈✅ 并发读性能显著提升
写操作占主导✅ 实现简单❌ 需处理写锁饥饿问题
需保证强一致性✅ 读写均互斥❌ 写锁释放前可能有读线程

3. 饥饿问题

  • 普通互斥锁:公平模式下较少出现饥饿,但非公平模式可能导致某些线程长时间无法获取锁。
  • 读写锁:默认非公平模式下,写锁可能因读锁持续被获取而长时间等待(写锁饥饿)。

解决方案

// 创建公平读写锁,按请求顺序分配锁
private final ReadWriteLock rwLock = new ReentrantReadWriteLock(true);

三、性能对比测试

1. 测试环境

  • 硬件:Intel i7-8700K CPU @ 3.70GHz,16GB RAM
  • JDK:Java 17
  • 测试工具:JMH
  • 测试场景:模拟100线程并发访问,读:写比例分别为9:1、5:5、1:9

2. 测试结果

读:写比例普通互斥锁吞吐量(ops/sec)读写锁吞吐量(ops/sec)性能提升
9:154,231187,629~246%
5:582,14595,312~16%
1:978,32162,419-20%

3. 结果分析

  • 读多写少场景:读写锁通过允许多线程并发读,显著提升吞吐量。
  • 读写均衡场景:读写锁的性能优势减弱,因其状态管理开销高于普通互斥锁。
  • 写多场景:读写锁的性能甚至低于普通互斥锁,因此时写锁的排他性导致锁竞争加剧。

四、读写锁的进阶特性

1. 锁降级(Write→Read)

写锁可降级为读锁,保证数据可见性:

public void upgradeExample() {writeLock.lock();try {// 写操作...// 降级为读锁readLock.lock();try {// 释放写锁,但仍持有读锁writeLock.unlock();// 执行读操作...} finally {readLock.unlock();}} finally {if (writeLock.isHeldByCurrentThread()) {writeLock.unlock();}}
}

2. 锁升级(Read→Write)

不推荐直接升级读锁为写锁,可能导致死锁:

public void wrongUpgrade() {readLock.lock();try {// 错误示例:不可直接升级读锁为写锁// 会导致死锁(需先释放读锁)writeLock.lock(); try {// ...} finally {writeLock.unlock();}} finally {readLock.unlock();}
}

五、最佳实践建议

1. 选择策略

  • 优先考虑读写锁:当读操作占比超过70%时,读写锁通常能带来显著性能提升。
  • 谨慎使用公平模式:公平模式会降低吞吐量,仅在需严格避免饥饿时使用。
  • 避免锁升级:如需同时读写,建议先获取写锁,再降级为读锁。

2. 性能优化

  • 分段锁:对大型数据结构分区加锁(如ConcurrentHashMap的实现)。
  • 读写分离:将读操作和写操作分发到不同的服务实例。
  • 异步写回:对写操作性能敏感的场景,可将写操作异步化(如写入队列后立即返回)。

六、总结

普通互斥锁和读写锁各有其适用场景,合理选择能显著提升系统性能:

场景推荐锁类型关键理由
缓存系统(读多写少)ReentrantReadWriteLock并发读性能提升明显
计数器更新(写操作频繁)ReentrantLock读写锁状态管理开销反而降低性能
强一致性要求的金融系统synchronized/ReentrantLock避免读写锁的并发读带来的一致性问题
配置中心(读操作占绝对主导)StampedLock(乐观读)进一步提升无竞争读的性能

在实际开发中,建议通过JMH等工具进行性能基准测试,验证锁选择的合理性。同时,注意监控锁竞争情况(如通过JVM工具查看锁等待时间),及时调整锁策略。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/pingmian/83471.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《云原生安全攻防》-- K8s网络策略:通过NetworkPolicy实现微隔离

默认情况下&#xff0c;K8s集群的网络是没有任何限制的&#xff0c;所有的Pod之间都可以相互访问。这就意味着&#xff0c;一旦攻击者入侵了某个Pod&#xff0c;就能够访问到集群中任意Pod&#xff0c;存在比较大的安全风险。 在本节课程中&#xff0c;我们将详细介绍如何通过N…

Log4j2、Fastjson特征流量分析

文章目录 一、Log4j2流量特征分析1. 漏洞原理简述2. 核心流量特征&#xff08;1&#xff09;请求特征&#xff08;2&#xff09;响应特征&#xff08;3&#xff09;日志特征 3.检测与防御建议 二、fastjson流量特征分析1.漏洞原理简述2.核心流量特征&#xff08;1&#xff09;请…

Java编程之建造者模式

建造者模式&#xff08;Builder Pattern&#xff09;是一种创建型设计模式&#xff0c;它将一个复杂对象的构建与表示分离&#xff0c;使得同样的构建过程可以创建不同的表示。这种模式允许你分步骤构建一个复杂对象&#xff0c;并且可以在构建过程中进行不同的配置。 模式的核…

Spring AI之RAG入门

目录 1. 什么是RAG 2. RAG典型应用场景 3. RAG核心流程 3.1. 检索阶段 3.2. 生成阶段 4. 使用Spring AI实现RAG 4.1. 创建项目 4.2. 配置application.yml 4.3. 安装ElasticSearch和Kibana 4.3.1. 安装并启动ElasticSearch 4.3.2. 验证ElasticSearch是否启动成功 …

mysql数据库实现分库分表,读写分离中间件sharding-sphere

一 概述 1.1 sharding-sphere 作用&#xff1a; 定位关系型数据库的中间件&#xff0c;合理在分布式环境下使用关系型数据库操作&#xff0c;目前有三个产品 1.sharding-jdbc&#xff0c;sharding-proxy 1.2 sharding-proxy实现读写分离的api版本 4.x版本 5.x版本 1.3 说明…

运维视角下的广告系统之理解广告索引级联

广告索引中为什么要级联 这里的“级联”一般指的是多层索引结构&#xff0c;也叫级联索引&#xff08;Cascade Index 或 Multi-level Index&#xff09;。 在广告系统的索引中&#xff0c;级联设计有重要作用&#xff0c;主要原因如下&#xff1a; 1. 多维特征筛选的需求 广…

2025年5月24日系统架构设计师考试题目回顾

当前仅仅是个人用于记录&#xff0c;还未做详细分析&#xff0c;待更新… 综合知识 设 x,y 满足约束条件&#xff1a;x-1>0, x-y<0, x-y-x<0, 则 y/x 的最大值是()。 A. 3 B. 2 C. 4 D. 1 申请软件著作权登记时应当向中国版本保护中心提交软件的鉴别材料&#xff…

3D-激光SLAM笔记

目录 定位方案 编译tbb ros2humble安装 命令 colcon commond not found 栅格地图生成&#xff1a; evo画轨迹曲线 安装gtsam4.0.2 安装ceres-solver1.14.0 定位方案 1 方案一&#xff1a;改动最多 fasterlio 建图&#xff0c;加闭环优化&#xff0c;参考fast-lio增加关…

贪心算法应用:分数背包问题详解

贪心算法与分数背包问题 贪心算法&#xff08;Greedy Algorithm&#xff09;是算法设计中一种重要的思想&#xff0c;它在许多经典问题中展现出独特的优势。本文将用2万字篇幅&#xff0c;深入剖析贪心算法在分数背包问题中的应用&#xff0c;从基础原理到Java实现细节&#x…

PyTorch——非线性激活(5)

非线性激活函数的作用是让神经网络能够理解更复杂的模式和规律。如果没有非线性激活函数&#xff0c;神经网络就只能进行简单的加法和乘法运算&#xff0c;没法处理复杂的问题。 非线性变化的目的就是给我们的网络当中引入一些非线性特征 Relu 激活函数 Relu处理图像 # 导入必…

iOS 电子书听书功能的实现

在 iOS 应用中实现电子书听书&#xff08;文本转语音&#xff09;功能&#xff0c;可以通过系统提供的 AVFoundation 框架实现。以下是详细实现步骤和代码示例&#xff1a; 核心步骤&#xff1a; 导入框架创建语音合成器配置语音参数实现播放控制处理后台播放添加进度跟踪 完整…

ES中must与filter的区别

在 Elasticsearch 的布尔查询&#xff08;bool query&#xff09;中&#xff0c;must 和 filter 是两个核心子句&#xff0c;它们的核心区别在于 是否影响相关性评分&#xff0c;这直接决定了它们在查询性能、使用场景和结果排序上的差异。以下是详细对比&#xff1a; 一、核心…

vscode实时预览编辑markdown

vscode实时预览编辑markdown 点击vsode界面&#xff0c;实现快捷键如下&#xff1a; 按下快捷键 CtrlShiftV&#xff08;Windows/Linux&#xff09;或 CommandShiftV&#xff08;Mac&#xff09;即可在侧边栏打开 Markdown 预览。 效果如下&#xff1a;

Android第十一次面试flutter篇

Flutter基础​ 在 Flutter 中&#xff0c;​三棵树&#xff08;Widget Tree、Element Tree、RenderObject Tree&#xff09;​​ 是框架的核心设计&#xff0c;它们协同工作以实现高效的 UI 渲染和更新机制。 ​1. Widget Tree&#xff08;Widget 树&#xff09;​​ ​是什么…

多线程编程中的数据竞争与内存可见性问题解析

引言 在多线程编程中&#xff0c;看似简单的代码往往隐藏着复杂的并发问题。今天我们来分析一个经典的生产者-消费者场景&#xff0c;看看在多核CPU环境下可能出现的各种"意外"情况。 问题代码分析 让我们先看看这段看似正常的C#代码&#xff1a; using System; u…

Linux 与 Windows:哪个操作系统适合你?

Linux vs Windows:系统选择的关键考量 在数字化转型浪潮中,操作系统作为底层基础设施的重要性日益凸显。Linux与Windows作为主流选择,其差异不仅体现在技术架构上,更深刻影响着开发效率、运维成本与安全性。本文将从​​7个核心维度​​展开对比分析,并提供典型应用场景建…

佰力博科技与您探讨低温介电温谱测试仪的应用领域

低温介电温谱测试应用领域有如下&#xff1a; 一、电子材料&#xff1a; 低温介电温谱测试仪广泛应用于电子材料的性能测试&#xff0c;如陶瓷材料、半导体材料、压电材料等。通过该设备&#xff0c;可以评估材料在高温或低温环境下的介电性能&#xff0c;为材料的优化和应用提…

Windows 下彻底删除 VsCode

彻底删除 VS Code (Visual Studio Code) 意味着不仅要卸载应用程序本身&#xff0c;还要删除所有相关的配置文件、用户数据、插件和缓存。这可以确保你有一个完全干净的状态&#xff0c;方便你重新安装或只是彻底移除它。 重要提示&#xff1a; 在执行以下操作之前&#xff0c…

STM32与GD32标准外设库深度对比

近年来,随着全球芯片短缺和市场价格波动,工程师们开始寻求对常用MCU的替代方案。在STM32因产能受限而频频涨价的背景下,GD32作为国产替代的重要选项,获得了越来越多的关注。尤其是GD32F103系列,由于其在硬件封装、功能特性乃至软件支持上的“高相似度”,成为STM32F103的热…

使用Redis的四个常见问题及其解决方案

Redis 缓存穿透 定义&#xff1a;redis查询一个不存在的数据&#xff0c;导致每次都查询数据库 解决方案&#xff1a; 如果查询的数据为空&#xff0c;在redis对应的key缓存空数据&#xff0c;并设置短TTL。 因为缓存穿透通常是因为被恶意用不存在的查询参数进行压测攻击&…