问题3
求系统 U u + A U x = 0 U_u + A U_x = 0 Uu+AUx=0 的特征并写出通解,其中矩阵 A A A 如下:
A 1 = ( 3 2 1 0 2 1 0 0 1 ) , A 2 = ( 3 2 1 0 2 1 0 0 − 1 ) , A_1 = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & -1 \end{pmatrix}, A1=⎝⎛300220111⎠⎞,A2=⎝⎛30022011−1⎠⎞,
A 3 = ( 3 2 1 0 − 2 1 0 0 − 1 ) , A 4 = ( − 3 2 1 0 − 2 1 0 0 − 1 ) , A_3 = \begin{pmatrix} 3 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{pmatrix}, \quad A_4 = \begin{pmatrix} -3 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{pmatrix}, A3=⎝⎛3002−2011−1⎠⎞,A4=⎝⎛−3002−2011−1⎠⎞,
A 5 = ( 1 2 3 2 0 3 2 3 0 ) . A_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & 3 \\ 2 & 3 & 0 \end{pmatrix}. A5=⎝⎛122203330⎠⎞.
解答
系统为 ∂ U ∂ u + A ∂ U ∂ x = 0 \frac{\partial \mathbf{U}}{\partial u} + A \frac{\partial \mathbf{U}}{\partial x} = 0 ∂u∂U+A∂x∂U=0,其中 U = ( u 1 , u 2 , u 3 ) T \mathbf{U} = (u_1, u_2, u_3)^T U=(u1,u2,u3)T 是向量函数, u u u 和 x x x 是自变量。
- 特征:指矩阵 A A A 的特征值 λ \lambda λ,它们决定了特征曲线的方向。特征曲线由方程 x − λ u = 常数 x - \lambda u = \text{常数} x−λu=常数 给出。
- 通解:通过求解特征值问题和对角化(或类似方法)得到。通解形式为 U ( u , x ) = ∑ k f k ( x − λ k u ) v k \mathbf{U}(u, x) = \sum_{k} f_k(x - \lambda_k u) \mathbf{v}_k U(u,x)=k∑fk(x−λku)vk,其中 λ k \lambda_k λk 是特征值, v k \mathbf{v}_k vk 是相应的特征向量, f k f_k fk 是任意可微函数。
下面针对每个矩阵 A A A 求解特征值并写出通解。
1. 对于 A 1 = ( 3 2 1 0 2 1 0 0 1 ) A_1 = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A1=⎝⎛300220111⎠⎞
- 特征值: λ 1 = 3 \lambda_1 = 3 λ1=3, λ 2 = 2 \lambda_2 = 2 λ2=2, λ 3 = 1 \lambda_3 = 1 λ3=1(全部实数且互异)。
- 特征向量:
- λ 1 = 3 \lambda_1 = 3 λ1=3: v 1 = ( 1 0 0 ) \mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} v1=⎝⎛100⎠⎞
- λ 2 = 2 \lambda_2 = 2 λ2=2: v 2 = ( − 2 1 0 ) \mathbf{v}_2 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} v2=⎝⎛−210⎠⎞
- λ 3 = 1 \lambda_3 = 1 λ3=1: v 3 = ( 1 − 2 2 ) \mathbf{v}_3 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} v3=⎝⎛1−22⎠⎞
- 通解:
U ( u , x ) = f 1 ( x − 3 u ) ( 1 0 0 ) + f 2 ( x − 2 u ) ( − 2 1 0 ) + f 3 ( x − u ) ( 1 − 2 2 ) \mathbf{U}(u, x) = f_1(x - 3u) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + f_2(x - 2u) \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + f_3(x - u) \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} U(u,x)=f1(x−3u)⎝⎛100⎠⎞+f2(x−2u)⎝⎛−210⎠⎞+f3(x−u)⎝⎛1−22⎠⎞
即分量形式:
{ u 1 ( u , x ) = f 1 ( x − 3 u ) − 2 f 2 ( x − 2 u ) + f 3 ( x − u ) u 2 ( u , x ) = f 2 ( x − 2 u ) − 2 f 3 ( x − u ) u 3 ( u , x ) = 2 f 3 ( x − u ) \begin{cases} u_1(u, x) = f_1(x - 3u) - 2 f_2(x - 2u) + f_3(x - u) \\ u_2(u, x) = f_2(x - 2u) - 2 f_3(x - u) \\ u_3(u, x) = 2 f_3(x - u) \end{cases} ⎩⎪⎨⎪⎧u1(u,x)=f1(x−3u)−2f2(x−2u)+f3(x−u)u2