毕业项目推荐:29-基于yolov8/yolov5/yolo11的光伏板检测识别系统(Python+卷积神经网络)

文章目录

  • 项目介绍大全(可点击查看,不定时更新中)
  • 概要
  • 一、整体资源介绍
    • 技术要点
    • 功能展示:
      • 功能1 支持单张图片识别
      • 功能2 支持遍历文件夹识别
      • 功能3 支持识别视频文件
      • 功能4 支持摄像头识别
      • 功能5 支持结果文件导出(xls格式)
      • 功能6 支持切换检测到的目标查看
  • 二、系统环境与依赖配置说明
  • 三、数据集
  • 四、算法介绍
    • 1. YOLOv8 概述
      • 简介
    • 2. YOLOv5 概述
      • 简介
    • 3. YOLO11 概述
      • YOLOv11:Ultralytics 最新目标检测模型
  • 🌟 五、模型训练步骤
  • 🌟 六、模型评估步骤
  • 🌟 七、训练结果
  • 🌟八、完整代码

往期经典回顾

项目项目
基于yolov8的车牌检测识别系统基于yolov8/yolov5/yolo11的动物检测识别系统
基于yolov8的人脸表情检测识别系统基于深度学习的PCB板缺陷检测系统
基于yolov8/yolov5的茶叶等级检测系统基于yolov8/yolov5的农作物病虫害检测识别系统
基于yolov8/yolov5的交通标志检测识别系统基于yolov8/yolov5的课堂行为检测识别系统
基于yolov8/yolov5的海洋垃圾检测识别系统基于yolov8/yolov5的垃圾检测与分类系统
基于yolov8/yolov5的行人摔倒检测识别系统基于yolov8/yolov5的草莓病害检测识别系统

具体项目资料请看项目介绍大全

项目介绍大全(可点击查看,不定时更新中)

在这里插入图片描述

概要

人工智能 (AI) 在新能源领域的应用日益广泛,其中基于深度学习的光伏板检测成为一个备受关注的研究方向。通过利用计算机视觉和深度学习技术,我们可以自动识别光伏板表面的各类缺陷与异常,提高光伏电站的发电效率和设备运维水平。本文将介绍基于深度学习的光伏板检测系统,并提供一个简单的 Python 代码实现,以便读者更好地了解这一技术。​
光伏板是太阳能发电系统的核心部件,是将太阳能转化为电能的关键载体,直接关系到光伏电站的发电效益与可持续运营。然而,光伏板在长期户外运行过程中,容易出现多种问题,例如表面划痕、隐裂、热斑、组件积灰、边框腐蚀以及玻璃破损等。这些问题会导致光伏板光电转换效率大幅下降,发电量锐减,严重时还会引发组件过热损坏,甚至影响整个光伏阵列的稳定运行,增加电站的维护成本与安全隐患。因此,及早检测和准确识别光伏板的缺陷与异常,对于光伏电站运维人员来说至关重要。

此外,我们开发了一款带有UI界面光伏板检测识别系统,支持实时检测光伏板表面的各类状态识别,并能够直观地展示检测结果。系统采用PythonPyQt5开发,可以对图片、视频及摄像头输入进行目标检测,同时支持检测结果的保存。本文还提供了完整的Python代码和详细的使用指南,供有兴趣的读者学习参考。获取完整代码资源,请参见文章末尾。
  
yolov8/yolov5界面如下

在这里插入图片描述

yolo11界面如下
在这里插入图片描述

关键词:光伏板检测;深度学习;特征融合;注意力机制;卷积神经网络

在这里插入图片描述

一、整体资源介绍

项目中所用到的算法模型和数据集等信息如下:

算法模型:
    yolov8yolov8 + SE注意力机制yolov5yolov5 + SE注意力机制yolo11yolo11 + SE注意力机制

数据集:
    网上下载的数据集,格式都已转好,可直接使用。

以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点

技术要点

  • OpenCV:主要用于实现各种图像处理和计算机视觉相关任务。
  • Python:采用这种编程语言,因其简洁易学且拥有大量丰富的资源和库支持。
  • 数据增强技术: 翻转、噪点、色域变换,mosaic等方式,提高模型的鲁棒性。

功能展示:

部分核心功能如下:

  • 功能1: 支持单张图片识别
  • 功能2: 支持遍历文件夹识别
  • 功能3: 支持识别视频文件
  • 功能4: 支持摄像头识别
  • 功能5: 支持结果文件导出(xls格式)
  • 功能6: 支持切换检测到的目标查看

功能1 支持单张图片识别

系统支持用户选择图片文件进行识别。通过点击图片选择按钮,用户可以选择需要检测的图片,并在界面上查看所有识别结果。该功能的界面展示如下图所示:

在这里插入图片描述

在这里插入图片描述

功能2 支持遍历文件夹识别

系统支持选择整个文件夹进行批量识别。用户选择文件夹后,系统会自动遍历其中的所有图片文件,并将识别结果实时更新显示在右下角的表格中。该功能的展示效果如下图所示:

在这里插入图片描述

在这里插入图片描述
)

功能3 支持识别视频文件

在许多情况下,我们需要识别视频中的目标。因此,系统设计了视频选择功能。用户点击视频按钮即可选择待检测的视频,系统将自动解析视频并逐帧识别多个车牌,同时将识别结果记录在右下角的表格中。以下是该功能的展示效果:
在这里插入图片描述

在这里插入图片描述

功能4 支持摄像头识别

在许多场景下,我们需要通过摄像头实时识别目标。为此,系统提供了摄像头选择功能。用户点击摄像头按钮后,系统将自动调用摄像头并进行实时车牌识别,识别结果会即时记录在右下角的表格中。
在这里插入图片描述

在这里插入图片描述

功能5 支持结果文件导出(xls格式)

本系统还添加了对识别结果的导出功能,方便后续查看,目前支持导出xls数据格式,功能展示如下:
在这里插入图片描述

在这里插入图片描述

功能6 支持切换检测到的目标查看

在这里插入图片描述

在这里插入图片描述

二、系统环境与依赖配置说明

本项目采用 Python 3.8.10 作为开发语言,整个后台逻辑均由 Python 编写,主要依赖环境如下:
图形界面框架:

  • PyQt5 5.15.9:用于搭建系统图形用户界面,实现窗口交互与组件布局。 深度学习框架:
  • torch 1.9.0+cu111: PyTorch 深度学习框架,支持 CUDA 11.1 加速,用于模型构建与推理。
  • torchvision 0.10.0+cu111:用于图像处理、数据增强及模型组件辅助。 CUDA与 cuDNN(GPU 加速支持):
  • CUDA 11.1.1(版本号:cuda_11.1.1_456.81):用于 GPU 加速深度学习运算。
  • cuDNN 8.0.5.39(适用于 CUDA 11.1):NVIDIA 深度神经网络库,用于加速模型训练与推理过程。 图像处理与科学计算:
  • opencv-python 4.7.0.72:实现图像读取、显示、处理等功能。
  • numpy 1.24.4:用于高效数组计算及矩阵操作。
  • PIL (pillow) 9.5.0:图像文件读写与基本图像处理库。
  • matplotlib 3.7.1(可选):用于结果图形化展示与可视化调试。

三、数据集

本数据集聚焦于光伏板表面的各类状态识别,共721张,是个人标注的。旨在为光伏板的智能检测、维护与性能优化提供基础数据支持。数据集涵盖了光伏板在实际运行环境中常见的 6 种表面状态

具体类别及说明如下:

  • 鸟粪(Bird-drop):包含光伏板表面被鸟类粪便污染的图像。鸟粪的堆积会遮挡阳光照射,降低光伏板的光电转换效率,长期积累还可能腐蚀面板表面。
  • 物理损坏(Physical-Damage):涵盖因外力撞击、磨损、破裂等导致的光伏板表面物理损伤图像,如划痕、裂纹、边角破损等。物理损坏不仅影响发电效率,还可能引发进一步的安全隐患。
  • 灰尘(Dusty):收录了光伏板表面覆盖不同厚度灰尘的图像。灰尘是光伏板运行中最常见的污染因素之一,会通过散射和吸收阳光减少到达光伏电池的光通量。
  • 干净(Clean):作为基准类别,包含表面无明显污染、损伤的洁净光伏板图像,可用于对比分析其他状态对光伏板性能的影响。
  • 电力损坏(Electrical-damage):涉及因电路故障、过载等导致的光伏板表面电学相关损伤图像,如烧蚀痕迹、焊点氧化等,这类损坏直接影响光伏板的电气性能。
  • 雪覆盖(Snow-Covered):包含冬季或寒冷地区光伏板表面被积雪覆盖的图像。积雪会完全遮挡阳光,导致光伏板短期无法发电,且融化后的水分可能渗入组件内部造成损坏。

在这里插入图片描述

四、算法介绍

1. YOLOv8 概述

简介

YOLOv8算法的核心特性和改进如下:

  • 全新SOTA模型
    YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X五种尺度的模型,以满足不同场景的需求。
  • Backbone
    骨干网络和Neck部分参考了YOLOv7 ELAN的设计思想。
    YOLOv5的C3结构替换为梯度流更丰富的C2f结构
    针对不同尺度的模型,调整了通道数,使其更适配各种任务需求。
    在这里插入图片描述
    网络结构如下:
    在这里插入图片描述

相比之前版本,YOLOv8对模型结构进行了精心微调,不再是“无脑”地将同一套参数应用于所有模型,从而大幅提升了模型性能。这种优化使得不同尺度的模型在面对多种场景时都能更好地适应。

然而,新引入的C2f模块虽然增强了梯度流,但其内部的Split等操作对特定硬件的部署可能不如之前的版本友好。在某些场景中,C2f模块的这些特性可能会影响模型的部署效率

2. YOLOv5 概述

简介

YOLOV5有YOLOv5n,YOLOv5s,YOLOv5m,YOLOV5l、YOLO5x五个版本。这个模型的结构基本一样,不同的是deth_multiole模型深度和width_multiole模型宽度这两个参数。就和我们买衣服的尺码大小排序一样,YOLOV5n网络是YOLOV5系列中深度最小,特征图的宽度最小的网络。其他的三种都是在此基础上不断加深,不断加宽。不过最常用的一般都是yolov5s模型。

在这里插入图片描述
本系统采用了基于深度学习的目标检测算法——YOLOv5。作为YOLO系列算法中的较新版本,YOLOv5在检测的精度和速度上相较于YOLOv3和YOLOv4都有显著提升。它的核心理念是将目标检测问题转化为回归问题,简化了检测过程并提高了性能。

YOLOv5引入了一种名为SPP (Spatial Pyramid Pooling)的特征提取方法。SPP能够在不增加计算量的情况下,提取多尺度特征,从而显著提升检测效果。

在检测流程中,YOLOv5首先通过骨干网络对输入图像进行特征提取,生成一系列特征图。然后,对这些特征图进行处理,生成检测框和对应的类别概率分数,即每个检测框内物体的类别和其置信度

YOLOv5的特征提取网络采用了CSPNet (Cross Stage Partial Network)结构。它将输入特征图分成两部分,一部分通过多层卷积处理,另一部分进行直接下采样,最后再将两部分特征图进行融合。这种设计增强了网络的非线性表达能力,使其更擅长处理复杂背景和多样化物体的检测任务。

在这里插入图片描述

3. YOLO11 概述

YOLOv11:Ultralytics 最新目标检测模型

YOLOv11 是 Ultralytics 公司在 2024 年推出的 YOLO 系列目标检测模型的最新版本。以下是对 YOLOv11 的具体介绍:

主要特点

  1. 增强的特征提取

    • 采用改进的骨干和颈部架构,如在主干网络中引入了 c2psa 组件,并将 c2f 升级为 c3k2
    • c3k 允许用户自定义卷积模块的尺寸,提升了灵活性。
    • c2psa 通过整合 psa(位置敏感注意力机制)来增强模型的特征提取效能。
    • 颈部网络采用了 pan 架构,并集成了 c3k2 单元,有助于从多个尺度整合特征,并优化特征传递的效率。
  2. 针对效率和速度优化

    • 精细的架构设计和优化的训练流程,在保持准确性和性能最佳平衡的同时,提供更快的处理速度。
    • 相比 YOLOv10,YOLOv11 的延迟降低了 25%-40%,能够达到每秒处理 60 帧 的速度,是目前最快的目标检测模型之一。
  3. 更少的参数,更高的准确度

    • YOLOv11mCOCO 数据集上实现了比 YOLOv8m 更高的 mAP,参数减少了 22%,提高了计算效率,同时不牺牲准确度。
  4. 跨环境的适应性

    • 可无缝部署在 边缘设备云平台 和配备 NVIDIA GPU 的系统上,确保最大的灵活性。
  5. 支持广泛的任务范围

    • 支持多种计算机视觉任务,包括 目标检测实例分割图像分类姿态估计定向目标检测(OBB)

架构改进

  1. 主干网络

    • 引入了 c2psa 组件,并将 c2f 升级为 c3k2
    • c3k 支持用户自定义卷积模块尺寸,增强灵活性。
    • c2psa 整合了 psa(位置敏感注意力机制),提升特征提取效能。
  2. 颈部网络

    • 采用 pan 架构,并集成了 c3k2 单元,帮助从多个尺度整合特征并优化特征传递效率。
  3. 头部网络

    • YOLOv11 的检测头设计与 YOLOv8 大致相似。
    • 在分类(cls)分支中,采用了 深度可分离卷积 来增强性能。

性能优势

  1. 精度提升

    • COCO 数据集上取得了显著的精度提升:
      • YOLOv11x 模型的 mAP 得分高达 54.7%
      • 最小的 YOLOv11n 模型也能达到 39.5%mAP 得分
    • 与前代模型相比,精度有明显进步。
  2. 速度更快

    • 能够满足实时目标检测需求

🌟 五、模型训练步骤

   提供封装好的训练脚本,如下图,更加详细的的操作步骤可以参考我的飞书在线文档:https://aax3oiawuo.feishu.cn/wiki/HLpVwQ4QWiTd4Ckdeifcvvdtnve , 强烈建议直接看文档去训练模型,文档是实时更新的,有任何的新问题,我都会实时的更新上去。另外B站也会提供视频。

  1. 使用pycharm打开代码,找到train.py打开,示例截图如下:
    在这里插入图片描述

  2. 修改 model_yaml 的值,根据自己的实际情况修改,想要训练 yolov8s模型 就 修改为 model_yaml = yaml_yolov8s, 训练 添加SE注意力机制的模型就修改为 model_yaml = yaml_yolov8_SE

  3. 修改data_path 数据集路径,我这里默认指定的是traindata.yaml 文件,如果训练我提供的数据,可以不用改

  4. 修改 model.train()中的参数,按照自己的需求和电脑硬件的情况更改

    # 文档中对参数有详细的说明
    model.train(data=data_path,             # 数据集imgsz=640,                  # 训练图片大小epochs=200,                 # 训练的轮次batch=2,                    # 训练batchworkers=0,                  # 加载数据线程数device='0',                 # 使用显卡optimizer='SGD',            # 优化器project='runs/train',       # 模型保存路径name=name,                  # 模型保存命名)
    
  5. 修改traindata.yaml文件, 打开 traindata.yaml 文件,如下所示:
    在这里插入图片描述
    在这里,只需修改 path 的值,其他的都不用改动(仔细看上面的黄色字体),我提供的数据集默认都是到 yolo 文件夹,设置到 yolo 这一级即可,修改完后,返回 train.py 中,执行train.py

  6. 打开 train.py ,右键执行。
    在这里插入图片描述

  7. 出现如下类似的界面代表开始训练了
    在这里插入图片描述

  8. 训练完后的模型保存在runs/train文件夹下
    在这里插入图片描述


🌟 六、模型评估步骤

  1. 打开val.py文件,如下图所示:
    在这里插入图片描述

  2. 修改 model_pt 的值,是自己想要评估的模型路径

  3. 修改 data_path ,根据自己的实际情况修改,具体如何修改,查看上方模型训练中的修改步骤

  4. 修改 model.val()中的参数,按照自己的需求和电脑硬件的情况更改

    model.val(data=data_path,           # 数据集路径imgsz=300,                # 图片大小,要和训练时一样batch=4,                  # batchworkers=0,                # 加载数据线程数conf=0.001,               # 设置检测的最小置信度阈值。置信度低于此阈值的检测将被丢弃。iou=0.6,                  # 设置非最大抑制 (NMS) 的交叉重叠 (IoU) 阈值。有助于减少重复检测。device='0',               # 使用显卡project='runs/val',       # 保存路径name='exp',               # 保存命名)
    
  5. 修改完后,即可执行程序,出现如下截图,代表成功(下图是示例,具体以自己的实际项目为准。)
    在这里插入图片描述

  6. 评估后的文件全部保存在在 runs/val/exp... 文件夹下
    在这里插入图片描述


🌟 七、训练结果

我们每次训练后,会在 run/train 文件夹下出现一系列的文件,如下图所示:
在这里插入图片描述

   如果大家对于上面生成的这些内容(confusion_matrix.png、results.png等)不清楚是什么意思,可以在我的知识库里查看这些指标的具体含义,示例截图如下:

在这里插入图片描述

🌟八、完整代码

   如果您希望获取博文中提到的所有实现相关的完整资源文件(包括测试图片、视频、Python脚本、UI文件、训练数据集、训练代码、界面代码等),这些文件已被全部打包。以下是完整资源包的截图

在这里插入图片描述

您可以通过下方演示视频视频简介部分进行获取

演示视频:

29-基于深度学习的光伏板检测识别系统-yolov8/yolov5-经典版界面

29-基于深度学习的光伏板检测识别系统-yolo11-彩色版界面

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/pingmian/94868.shtml
繁体地址,请注明出处:http://hk.pswp.cn/pingmian/94868.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【实时Linux实战系列】实时数据可视化技术实现

在当今数据驱动的世界中,实时数据可视化已成为理解和利用实时信息的关键工具。无论是在金融交易监控、工业生产监控、智能交通管理还是物联网设备监控中,能够将复杂的数据以直观的图表形式展示出来,对于快速决策和问题解决至关重要。实时数据…

【LeetCode每日一题】21. 合并两个有序链表 2. 两数相加

每日一题21. 合并两个有序链表题目总体思路算法步骤时间复杂度与空间复杂度代码2. 两数相加题目总体思路算法步骤时间复杂度与空间复杂度代码知识感悟2025.8.3021. 合并两个有序链表 题目 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所…

DVWA靶场通关笔记-文件包含(Impossible级别)

目录 一、源码分析 二、文件包含防范分析 1、明确指定允许包含的文件 2、拒绝所有未在白名单中的输入 3、总结 (1)白名单 (Allow List) (2)硬编码/映射 (Hardcoding/Mapping) (3)输入过滤 (Input F…

构建坚不可摧的数据堡垒:深入解析 Oracle 高可用与容灾技术体系

在当今数字化时代,数据是企业的核心资产,而承载这些数据的数据库系统的连续性与稳定性直接关系到企业的生死存亡。一次计划外的停机或灾难性的数据丢失,带来的不仅是经济上的巨大损失,更是对品牌信誉和客户信任的致命打击。因此&a…

【3D算法技术入门】如何基于建筑图片重建三维数字资产?

要基于建筑图片重建三维数字资产是一个复杂的计算机视觉任务,涉及图像采集、特征提取、相机姿态估计、稠密重建和三维模型优化等多个步骤。下面我将提供一个基于Python的解决方案框架,使用开源库实现从图片到三维模型的基本流程。 首先需要安装必要的库&…

⭐CVPR2025 自动驾驶半监督 LiDAR 分割新范式:HiLoTs 框架深度解析

📄论文题目:HiLoTs: High-Low Temporal Sensitive Representation Learning for Semi-Supervised LiDAR Segmentation in Autonomous Driving ✍️作者及机构: R.D. Lin、Pengcheng Weng、Yinqiao Wang、Fei Wang(西安交通大学软件…

【 MYSQL | 基础篇 函数与约束 】

摘要:本文介绍数据库中的函数与约束,函数含字符串、数值、日期、流程四类,可实现字符串处理、数值计算等需求。约束分六类,重点讲外键约束的语法、删除更新行为,保证数据正确完整。思维导图1. 函数函数是指一段可以直接…

Oracle 数据库性能调优:从瓶颈诊断到精准优化之道

引言:性能优化的本质在当今数据驱动的时代,数据库性能直接关系到企业的运营效率和用户体验。Oracle 作为全球领先的关系型数据库管理系统,承载着众多企业的核心业务。然而,随着数据量的增长和业务复杂度的提升,数据库性…

杨校老师竞赛课堂之C++语言GESP一级笔记

考试大纲 GESP一级考试大纲 计算机基础与编程环境 计算机历史 变量的定义与使用 基本数据类型(整型、浮点型、字符型、布尔型) 输入与输出(cin与cout、scanf与printf) 基本运算(算术运算、关系运算、逻辑运算&am…

操作系统-管程

1. 为什么需要管程?—— 信号量 (Semaphore) 的困境在理解管程之前,你必须先知道它要解决什么问题。之前,我们使用信号量 (Semaphore) 来实现进程/线程间的同步与互斥。虽然信号量功能强大,但它存在两个主要问题:编程复…

日志的实现

目录 日志与策略模式 Log.hpp class LogStrategy基类 class ConsoleLogStrategy派生类 classFileLogStrategy派生类 日志等级 获得时间戳 localtime_r函数详解 函数原型 struct tm结构的指针 Logger类(重点) class LogMessage 日志信息类 std::stringstream 用法 重…

【论文阅读】Sparse4D v2:Recurrent Temporal Fusion with Sparse Model

标题: Sparse4D v2:Recurrent Temporal Fusion with Sparse Model 作者: Xuewu Lin, Tianwei Lin, Zixiang Pei, Lichao Huang, Zhizhong Su motivation 在v1的基础上,作者发现长时序有更好的效果,但v1的计算量太大&am…

构建免费的音视频转文字工具:支持多语言的语音识别项目

在当今数字时代,音视频内容越来越多,但如何快速将其转换为文字一直是一个挑战。本项目提供了一个免费的解决方案,支持将视频和音频文件转换为文字,并且支持多语言识别。 一个支持中英文的音视频转文字工具,集成了 Vos…

【开题答辩全过程】以 基于SpringBootVue的智能敬老院管理系统为例,包含答辩的问题和答案

个人简介一名14年经验的资深毕设内行人,语言擅长Java、php、微信小程序、Python、Golang、安卓Android等开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。感谢大家的…

Linux 830 shell:expect,ss -ant ,while IFS=read -r line,

[rootsamba caozx26]# scp /home/caozx26/pub root192.168.235.3:~/ root192.168.235.3s password: /home/caozx26/pub: not a regular file [rootsamba caozx26]# ls app km nntp.sh ntp.sh until1.sh 公共 图片 音乐 find.sh l2 ntp1.sh pub u…

​​​​​​​GPT-5发布引爆争议,奥特曼连夜回应!付费充值的Plus用户成最大赢家?

摘要: GPT-5发布后,社区口碑两极分化,从“强无敌”到“还我4o”的呼声并存。面对技术故障和用户质疑,OpenAI CEO萨姆奥尔特曼及团队火速回应,公布了一系列补救措施和未来计划。本文将带你速览这场风波始末,…

Python 操作 Redis 的客户端 - Redis Stream

Python 操作 Redis 的客户端 - Redis Stream1. Redis Stream2. Redis Commands2.1. CoreCommands.xadd() (生产端)2.2. CoreCommands.xlen() (生产端)2.3. CoreCommands.xdel() (生产端)2.4. CoreCommands.xrange() (生产端)2.5. RedisClusterCommands.delete()3. Redis Stream…

【Qt开发】按钮类控件(一)-> QPushButton

目录 1 -> 什么是 PushButton? 2 -> 相关属性 3 -> 代码示例 3.1 -> 带有图标的按钮 3.2 -> 带有快捷键的按钮 4 -> 总结 1 -> 什么是 PushButton? 在 Qt 框架中,QPushButton 是最基础且最常用的按钮控件之一&am…

Citrix 零日漏洞自五月起遭积极利用

安全研究员 Kevin Beaumont 披露了有关 CVE-2025-6543 的惊人细节,这是一个严重的 Citrix NetScaler 漏洞,在该公司发布补丁之前的几个月里,该漏洞被积极利用作为零日攻击。 Citrix 最初将其轻描淡写为简单的“拒绝服务”漏洞,但…

【系列08】端侧AI:构建与部署高效的本地化AI模型 第7章:架构设计与高效算子

第7章:架构设计与高效算子 要将AI模型成功部署到端侧,除了对现有模型进行压缩和优化,更根本的方法是在设计之初就考虑其在资源受限环境下的运行效率。本章将深入探讨如何设计高效的网络架构,以及如何理解并优化常用的核心算子。高…