第T8周:猫狗识别

● 语言环境:Python3.8.8
● 编译器:Jupyter Lab
● 深度学习环境:TensorFlow2.4.1

猫狗识别

  • 一、前期工作
    • 1. 设置GPU
  • 二、数据预处理
    • 1. 加载数据
    • 2.再次检查数据
    • 3.配置数据集
  • 三、构建VG-16网络
  • 四、编译
  • 五、训练模型
  • 六、模型评估
  • 七、预测
  • 八、总结

一、前期工作

1. 设置GPU

import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpus[0]],"GPU")# 打印显卡信息,确认GPU可用
print(gpus)

2.导入数据

import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号import os,PIL,pathlib#隐藏警告
import warnings
warnings.filterwarnings('ignore')data_dir = "./365-7-data"
data_dir = pathlib.Path(data_dir)image_count = len(list(data_dir.glob('*/*')))print("图片总数为:",image_count)

二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中

batch_size = 8
img_height = 224
img_width = 224
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="training",seed=12,image_size=(img_height, img_width),batch_size=batch_size)
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="validation",seed=12,image_size=(img_height, img_width),batch_size=batch_size)

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)

2.再次检查数据

for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break

● Image_batch是形状的张量(8, 224, 224, 3)。这是一批形状224x224x3的8张图片(最后一维指的是彩色通道RGB)。
● Label_batch是形状(8,)的张量,这些标签对应8张图片

3.配置数据集

● shuffle() : 打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456
● prefetch() :预取数据,加速运行,其详细介绍可以参考我前两篇文章,里面都有讲解。
● cache() :将数据集缓存到内存当中,加速运行

AUTOTUNE = tf.data.AUTOTUNEdef preprocess_image(image,label):return (image/255.0,label)# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds   = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

在这里插入图片描述

三、构建VG-16网络

from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropoutdef VGG16(nb_classes, input_shape):input_tensor = Input(shape=input_shape)# 1st blockx = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)# 2nd blockx = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)# 3rd blockx = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)# 4th blockx = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)# 5th blockx = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)# full connectionx = Flatten()(x)x = Dense(4096, activation='relu',  name='fc1')(x)x = Dense(4096, activation='relu', name='fc2')(x)output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)model = Model(input_tensor, output_tensor)return modelmodel=VGG16(1000, (img_width, img_height, 3))
model.summary()

在这里插入图片描述

四、编译

model.compile(optimizer="adam",loss     ='sparse_categorical_crossentropy',metrics  =['accuracy'])

五、训练模型

from tqdm import tqdm
import tensorflow.keras.backend as Kepochs = 10
lr     = 1e-4# 记录训练数据,方便后面的分析
history_train_loss     = []
history_train_accuracy = []
history_val_loss       = []
history_val_accuracy   = []for epoch in range(epochs):train_total = len(train_ds)val_total   = len(val_ds)"""total:预期的迭代数目ncols:控制进度条宽度mininterval:进度更新最小间隔,以秒为单位(默认值:0.1)"""with tqdm(total=train_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=1,ncols=100) as pbar:lr = lr*0.92K.set_value(model.optimizer.lr, lr)for image,label in train_ds:   """训练模型,简单理解train_on_batch就是:它是比model.fit()更高级的一个用法想详细了解 train_on_batch 的同学,可以看看我的这篇文章:https://www.yuque.com/mingtian-fkmxf/hv4lcq/ztt4gy"""history = model.train_on_batch(image,label)train_loss     = history[0]train_accuracy = history[1]pbar.set_postfix({"loss": "%.4f"%train_loss,"accuracy":"%.4f"%train_accuracy,"lr": K.get_value(model.optimizer.lr)})pbar.update(1)history_train_loss.append(train_loss)history_train_accuracy.append(train_accuracy)print('开始验证!')with tqdm(total=val_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=0.3,ncols=100) as pbar:for image,label in val_ds:      history = model.test_on_batch(image,label)val_loss     = history[0]val_accuracy = history[1]pbar.set_postfix({"loss": "%.4f"%val_loss,"accuracy":"%.4f"%val_accuracy})pbar.update(1)history_val_loss.append(val_loss)history_val_accuracy.append(val_accuracy)print('结束验证!')print("验证loss为:%.4f"%val_loss)print("验证准确率为:%.4f"%val_accuracy)

在这里插入图片描述

六、模型评估

from datetime import datetime
current_time = datetime.now() # 获取当前时间epochs_range = range(epochs)plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)plt.plot(epochs_range, history_train_accuracy, label='Training Accuracy')
plt.plot(epochs_range, history_val_accuracy, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效plt.subplot(1, 2, 2)
plt.plot(epochs_range, history_train_loss, label='Training Loss')
plt.plot(epochs_range, history_val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

七、预测

import numpy as np# 采用加载的模型(new_model)来看预测结果
plt.figure(figsize=(18, 3))  # 图形的宽为18高为5
plt.suptitle("预测结果展示")for images, labels in val_ds.take(1):for i in range(8):ax = plt.subplot(1,8, i + 1)  # 显示图片plt.imshow(images[i].numpy())# 需要给图片增加一个维度img_array = tf.expand_dims(images[i], 0) # 使用模型预测图片中的人物predictions = model.predict(img_array)plt.title(class_names[np.argmax(predictions)])plt.axis("off")

在这里插入图片描述

在这里插入图片描述

八、总结

VGG优缺点分析:

● VGG优点

VGG的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)。

● VGG缺点

1)训练时间过长,调参难度大。2)需要的存储容量大,不利于部署。例如存储VGG-16权重值文件的大小为500多MB,不利于安装到嵌入式系统中。

结构说明:

● 13个卷积层(Convolutional Layer),分别用blockX_convX表示
● 3个全连接层(Fully connected Layer),分别用fcX与predictions表示
● 5个池化层(Pool layer),分别用blockX_pool表示

VGG的网络结构比较统一,重复使用卷积层堆叠,然后接最大池化。池化层的窗口是2x2,步长2,这样每次池化后特征图尺寸减半。然后全连接层部分有三个,最后是softmax分类。VGG16和VGG19的区别在于卷积层的数量,比如在某个块中使用2个还是3个卷积层,或者更后面块中的数量不同。比如,VGG16的配置可能是:块1有2个卷积层,块2有2个,块3有3个,块4有3个,块5有3个,然后全连接层。而VGG19可能在这些块中多加一些卷积层,使得总层数达到19层。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/web/78193.shtml
繁体地址,请注明出处:http://hk.pswp.cn/web/78193.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

主流微前端框架比较

主流微前端框架比较 以下表格列出了当前主流微前端框架的核心对比信息,包括基本介绍、核心特性、适用场景、技术栈兼容性、优缺点、社区维护情况和典型应用案例等: 框架基本介绍核心特性与机制适用场景技术栈兼容性优缺点社区维护情况典型应用案例qiankun蚂蚁金服推出的生产…

大学生入学审核系统设计与实现【基于SpringBoot + Vue 前后端分离技术】

一、项目概述 1.1 项目背景 随着高校的不断扩招,传统的入学审核管理模式已不能满足大规模学生数据的处理需求。人工管理不仅效率低下,还容易出现疏漏。本系统通过信息化手段,提升入学审核过程中的数据管理和审批效率。 1.2 系统目标 系统…

云计算-容器云-服务网格Bookinfo

服务网格:创建 Ingress Gateway 将 Bookinfo 应用部署到 default 命名空间下,请为 Bookinfo 应用创建一个网 关,使外部可以访问 Bookinfo 应用。 上传ServiceMesh.tar.gz包 [rootk8s-master-node1 ~]# tar -zxvf ServiceMesh.tar.gz [rootk…

Spring 分批处理 + 冷热数据分离:历史订单高效迁移与数据清理实战

在实际业务中,随着时间推移,订单量持续增长,若未及时进行数据治理,会造成数据库膨胀、查询缓慢、性能下降等问题。为了实现数据分层管理和系统高性能运行,我们在项目中采用了“冷热数据分离 分批迁移 数据清理”的综…

新手SEO优化核心步骤

内容概要 对于SEO新手而言,建立系统化的优化框架是突破入门瓶颈的关键。SEO的核心在于通过技术手段与内容策略的结合,提升网站在搜索引擎中的可见性与用户价值。具体而言,新手需优先掌握关键词研究,明确目标用户的搜索意图&#…

C++ 之 【list的简介、list 的构造函数、iterator、容量操作、元素访问、增删查改与迭代器失效】

目录 1.list的介绍 2.list的使用 2.1 构造函数 2.2 iterator 的使用 2.3 容量操作 2.4 元素访问 2.5 增删查改 2.5.1头插头删与尾插尾删 2.5.2 insert 、erase 函数 2.5.3 clear、swap函数 2.5.4 关于find函数 3.迭代器失效 1.list的介绍 (1)list的底层通常实现为带…

Laravel Octane 项目加速与静态资源优化指南

Laravel Octane 项目加速与静态资源优化指南 一、Octane 核心加速配置 扩展安装与环境配置 composer require laravel/octane # 安装核心扩展‌php artisan octane:install # 生成配置文件(选择 Swoole/RoadRunner 等服务器)‌服务器参数调优‌ …

高露洁牙膏是哪个国家的品牌?高露洁牙膏哪一款最好?

高露洁是来自于美国一个比较有知名度的品牌,在1806年的时候创立。总部是在美国纽约公园大道,在1873年时,高露洁就已经开始销售罐装牙膏。 在1896年时期推出可折叠管牙膏,在口腔护理产品发展的过程中拥有着不容忽视的地位。在1992…

【Python爬虫详解】第八篇:突破反爬体系的工程实践

当矛与盾的较量进入白热化,突破反爬需要的不只是技巧,更是一套完整的工程化解决方案——本文将揭示对抗现代反爬体系的九大核心战术。 一、JavaScript混淆的深度破解 1. AST(抽象语法树)解混淆 案例:某电商平台商品价…

【Linux调整FTP端口】

Linux调整FTP端口 一、确保新端口未被占用在修改端口之前,可以使用以下命令检查端口是否被占用: 二、修改vsftpd配置文件1. 打开vsftpd配置文件2. 找到并修改端口配置3. 保存并退出4. 重启vsftpd服务 三、配置防火墙 在Linux系统中修改FTP端口&#xff0…

npm打包内存不足- JavaScript heap out of memory

直接贴出报错信息 <--- Last few GCs --->[30904:0000010F60FE58E0] 22090 ms: Scavenge 2037.4 (2069.4) -> 2036.4 (2074.2) MB, 2.5 / 0.0 ms (average mu 0.228, current mu 0.216) allocation failure [30904:0000010F60FE58E0] 22101 ms: Scavenge 2…

AI大语言模型破译“未知未知”的密钥:开源情报、被动收入与智能体协作的深层机理与实践

在人类认识世界的漫长征程中&#xff0c;信息与知识的获取和运用一直是核心驱动力。我们从“一无所知”的状态&#xff0c;逐渐积累“已知已知”&#xff0c;并在此基础上识别“已知未知”&#xff0c;设定目标去探索解答。然而&#xff0c;真正能够带来范式转变、颠覆现有格局…

kubelet 清理资源以缓解磁盘压力

kubelet 资源清理缓解磁盘压力指南 在 Kubernetes 集群中&#xff0c;当节点磁盘压力过大时&#xff0c;可通过以下几种方式利用 kubelet 清理资源&#xff0c;从而缓解磁盘压力。 一、镜像垃圾回收 自动回收 kubelet 内置了镜像垃圾回收机制&#xff0c;其行为由配置参数控…

SPOJ 11576 TRIP2 - A Famous King’s Trip 【Tarjan+欧拉回路】

自我吐槽 &#xff08;哭 题目传送门 SPOJ 洛谷 题目大意 让你在简单无向图上删去2条边&#xff0c;使该图联通并存在欧拉回路 输出字典序最小的一对边 思路 考虑到存在欧拉回路的充要条件&#xff0c;即 i n x ≡ 0 ( m o d 2 ) ∀ i ( 1 ≤ i ≤ n ) in_x\equiv 0 (\m…

藏文情感分析器入门学习实践

&#x1f3af; 项目目标&#xff1a; 输入一段藏文短句。自动分析这句话的情感倾向&#xff1a;积极&#xff08;正面&#xff09;/消极&#xff08;负面&#xff09;/中立。 &#x1f50d; 技术原理简介 情感分析是什么&#xff1f; 情感分析&#xff08;Sentiment Analysi…

双指针(5)——有效三角形个数

题目&#xff1a; 这道题我们首先可能会想到暴力解法&#xff0c;三个for循环然后进行check&#xff08;&#xff09;。时间复杂度肯定是不允许的。 同时&#xff0c;验证可以组成三角形的条件是任意两边之和大于第三边&#xff0c;这就意味着我们每组要进行三次比较。但也有捷…

书生实战营之沐曦专场

一&#xff1a;实验环境进入和启动实验容器(D.run平台) 1.1首先进入平台进行注册 D.run平台https://console.d.run/ 注册和登录环节就跳过了。 1.2 启动实验容器--详细步骤如下 1.2.1选择容器的名称、区域、镜像&#xff08;注意镜像必须选择Dlinfer&#xff09; 1.2.2可以选…

内置类型成员变量的初始化详解

在 C 中&#xff0c;内置类型&#xff08;如 int、float、double、char、指针等&#xff09;的初始化方式与类类型&#xff08;如 std::string、自定义类&#xff09;不同。由于内置类型没有构造函数&#xff0c;它们的初始化行为由编译器直接处理。以下是详细解析&#xff1a;…

对第三方软件开展安全测评,如何保障其安全使用?

对第三方软件开展安全测评&#xff0c;能够精准找出软件存在的各类安全隐患&#xff0c;进而为软件的安全使用给予保障。此次会从漏洞发现、风险评估、测试环境等多个方面进行具体说明。 漏洞发现情况 在测评过程中&#xff0c;我们借助专业技术与工具&#xff0c;对第三方软…

11.Spring Boot 3.1.5 中使用 SpringDoc OpenAPI(替代 Swagger)生成 API 文档

Spring Boot 3.1.5 中使用 SpringDoc OpenAPI&#xff08;替代 Swagger&#xff09;生成 API 文档 1. 项目结构 假设项目名为 springboot-openapi-demo&#xff0c;以下是项目的基本结构&#xff1a; springboot-openapi-demo/ ├── src/ │ ├── main/ │ │ ├─…