LearnOpenGL-笔记-其十一

Normal Mapping

又到了介绍法线贴图的地方,我感觉我已经写了很多遍了...

法线贴图用最简单的话来介绍的话,就是通过修改贴图对应物体表面的法线来修改光照效果,从而在不修改物体实际几何形状的前提下实现不同于物体几何形状的视觉效果。

因此对于法线贴图来说,最重要的内容就是去修改法线贴图对于物体表面的法线。

  vec3 normal = texture(normalMap, TexCoords).rgb;normal = normalize(normal * 2.0 - 1.0);normal = normalize(TBN * normal);

这是我们在物体的片元着色器实现的内容,就是根据法线贴图的内容更换法线。

在这里我们不妨回顾一下法线贴图的原理:

法线贴图的“蓝色”就代表“正对表面外”,红色/绿色代表“沿U/V方向偏转”,整个流程无非就是:法线贴图以RGB值来记录对法线方向的干扰,这个干扰是在切线空间中进行的,我们还需要TBN矩阵——这个工具来将变换后的法线映射回世界坐标系中。

效果如图:

看起来确实有凹凸不平的质感——但其实,这只是薄薄的一个平面生成的效果。

Parallax Mapping

视差贴图和法线贴图类似也是也是不改变物体实际几何形状的前提下去修改视觉效果,可是和法线贴图直接去修改法线方向不同,视差贴图通过动态偏移纹理坐标实现高度不同的视觉效果。

vec2 ParallaxMapping(vec2 texCoords, vec3 viewDir)
{ float height =  texture(depthMap, texCoords).r;     return texCoords - viewDir.xy * (height * heightScale);        
}void main()
{           // offset texture coordinates with Parallax Mappingvec3 viewDir = normalize(fs_in.TangentViewPos - fs_in.TangentFragPos);vec2 texCoords = fs_in.TexCoords;texCoords = ParallaxMapping(fs_in.TexCoords,  viewDir);       if(texCoords.x > 1.0 || texCoords.y > 1.0 || texCoords.x < 0.0 || texCoords.y < 0.0)discard;// obtain normal from normal mapvec3 normal = texture(normalMap, texCoords).rgb;normal = normalize(normal * 2.0 - 1.0);   // get diffuse colorvec3 color = texture(diffuseMap, texCoords).rgb;// ambientvec3 ambient = 0.1 * color;// diffusevec3 lightDir = normalize(fs_in.TangentLightPos - fs_in.TangentFragPos);float diff = max(dot(lightDir, normal), 0.0);vec3 diffuse = diff * color;// specular    vec3 reflectDir = reflect(-lightDir, normal);vec3 halfwayDir = normalize(lightDir + viewDir);  float spec = pow(max(dot(normal, halfwayDir), 0.0), 32.0);vec3 specular = vec3(0.2) * spec;FragColor = vec4(ambient + diffuse + specular, 1.0);
}

可以看到我们的视差贴图会根据深度贴图的R值来修改原来纹理坐标,在片元着色器的执行流程中,我们的纹理会根据视线方向来动态地调整根据深度贴图的R值修改过的纹理坐标,从而达到视觉落差的效果。

说起来当然很简单,但是其背后的工作原理呢?

移花接木,狸猫换太子,卧槽这个视差贴图怎么这么坏啊。 用比较简单的话来说就是:首先我们的视线看向这个片元时,视线真正与物体表面的交点在A点,但是我们在A点的着色渲染成B点的颜色的话,不就实现了纹理坐标的偏移,从而实现视觉落差的效果了。这个B点是怎么得到的呢?就是根据我们的视差贴图修改该片元的高度值后与视线相交得到的。

陡峭视差映射(Steep Parallax Mapping)是视差映射的扩展,原则是一样的,但不是使用一个样本而是多个样本来确定向量。即使在陡峭的高度变化的情况下,它也能得到更好的结果,原因在于该技术通过增加采样的数量提高了精确性。

陡峭视差映射的基本思想是将总深度范围划分为同一个深度/高度的多个层。从每个层中我们沿着向量方向移动采样纹理坐标,直到我们找到一个采样低于当前层的深度值。

其实就是我们多很多个深度层,然后将视线和这些深度层的交点与深度贴图的深度值一一比较,找到第一个符合深度贴图的深度大于交点深度值的深度层,把这个深度层与视线的交点对于的深度值作为我们的纹理颜色渲染对象即可。

代码上这样改动:

vec2 ParallaxMapping(vec2 texCoords, vec3 viewDir)
{ // number of depth layersconst float minLayers = 8;const float maxLayers = 32;float numLayers = mix(maxLayers, minLayers, abs(dot(vec3(0.0, 0.0, 1.0), viewDir)));  // calculate the size of each layerfloat layerDepth = 1.0 / numLayers;// depth of current layerfloat currentLayerDepth = 0.0;// the amount to shift the texture coordinates per layer (from vector P)vec2 P = viewDir.xy / viewDir.z * heightScale; vec2 deltaTexCoords = P / numLayers;// get initial valuesvec2  currentTexCoords     = texCoords;float currentDepthMapValue = texture(depthMap, currentTexCoords).r;while(currentLayerDepth < currentDepthMapValue){// shift texture coordinates along direction of PcurrentTexCoords -= deltaTexCoords;// get depthmap value at current texture coordinatescurrentDepthMapValue = texture(depthMap, currentTexCoords).r;  // get depth of next layercurrentLayerDepth += layerDepth;  }return currentTexCoords;
}

效果如图:

在这个基础上可以实现效果更好的视差遮蔽映射(Parallax Occlusion Mapping),只需要多加一个线性插值的操作即可。

vec2 ParallaxMapping(vec2 texCoords, vec3 viewDir)
{ // number of depth layersconst float minLayers = 8;const float maxLayers = 32;float numLayers = mix(maxLayers, minLayers, abs(dot(vec3(0.0, 0.0, 1.0), viewDir)));  // calculate the size of each layerfloat layerDepth = 1.0 / numLayers;// depth of current layerfloat currentLayerDepth = 0.0;// the amount to shift the texture coordinates per layer (from vector P)vec2 P = viewDir.xy / viewDir.z * heightScale; vec2 deltaTexCoords = P / numLayers;// get initial valuesvec2  currentTexCoords     = texCoords;float currentDepthMapValue = texture(depthMap, currentTexCoords).r;while(currentLayerDepth < currentDepthMapValue){// shift texture coordinates along direction of PcurrentTexCoords -= deltaTexCoords;// get depthmap value at current texture coordinatescurrentDepthMapValue = texture(depthMap, currentTexCoords).r;  // get depth of next layercurrentLayerDepth += layerDepth;  }// get texture coordinates before collision (reverse operations)vec2 prevTexCoords = currentTexCoords + deltaTexCoords;// get depth after and before collision for linear interpolationfloat afterDepth  = currentDepthMapValue - currentLayerDepth;float beforeDepth = texture(depthMap, prevTexCoords).r - currentLayerDepth + layerDepth;// interpolation of texture coordinatesfloat weight = afterDepth / (afterDepth - beforeDepth);vec2 finalTexCoords = prevTexCoords * weight + currentTexCoords * (1.0 - weight);return finalTexCoords;
}

效果如图:

HDR

上来都是一些介绍HDR高动态范围概念的文字,我觉得这个翻译实在废话有点多,说白了HDR就是解决摄像设备里人为设置的亮度范围导致的过亮或者过暗时丢失的细节的机制:它允许你短暂地突破这个亮度范围,在捕获到细节后再将这些带有细节的图像融合在一起之后调整亮度到范围内。

很好,明白原理之后让我们深入细节。

首先我们需要一个浮点数类型的帧缓冲:

// 创建浮点帧缓冲
unsigned int hdrFBO;
glGenFramebuffers(1, &hdrFBO);

然后我们还涉及到色调映射(Tonemapping)和曝光调整(Exposure)。

// 2. now render floating point color buffer to 2D quad and tonemap HDR colors to default framebuffer's (clamped) color range
hdrShader.use();
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, colorBuffer);
hdrShader.setInt("hdr", hdr);
hdrShader.setFloat("exposure", exposure);
renderQuad();
#version 330 core
out vec4 FragColor;in vec2 TexCoords;uniform sampler2D hdrBuffer; // HDR帧缓冲的颜色纹理
uniform bool hdr;            // 是否启用HDR色调映射
uniform float exposure;      // 曝光度void main()
{             const float gamma = 2.2;vec3 hdrColor = texture(hdrBuffer, TexCoords).rgb; // 采样HDR颜色if(hdr){// Reinhard色调映射(被注释掉了)// vec3 result = hdrColor / (hdrColor + vec3(1.0));// 曝光色调映射vec3 result = vec3(1.0) - exp(-hdrColor * exposure);// Gamma校正result = pow(result, vec3(1.0 / gamma));FragColor = vec4(result, 1.0);}else{// 只做Gamma校正,不做色调映射vec3 result = pow(hdrColor, vec3(1.0 / gamma));FragColor = vec4(result, 1.0);}
}

效果如图:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/web/82105.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring Boot 读取.env文件获取配置

Spring Boot 读取.env文件获取配置 在Resouce 目录下创建.env文件 # DEEP SEEK TOKEN DEEP_SEEK_TOKENyour_deep_seek_key # 阿里云百炼 TOKEN ALI_BAILIAN_TOKENyour_ali_bailian_keyyml引入.env文件 spring:config:import: optional:classpath:.env[.properties]使用.env文…

【C++高级主题】命令空间(三):未命名的命名空间

目录 一、未命名的命名空间的基本概念 1.1 定义与特点 1.2 基本语法 1.3 访问方式 1.4 未命名的命名空间的作用 二、未命名的命名空间与静态声明的比较 2.1 静态声明的作用 2.2 未命名的命名空间的优势 2.3 示例代码比较 2.4. 未命名的命名空间的作用域和链接属性 三…

【Unity】AudioSource超过MaxDistance还是能听见

unity版本&#xff1a;2022.3.51f1c1 将SpatialBlend拉到1即可 或者这里改到0 Hearing audio outside max distance - #11 by wderstine - Questions & Answers - Unity Discussions

多个vue2工程共享node_modules

手头有多个vue2项目&#xff0c;它们每个都需要一个node_modules&#xff0c;拷贝起来超级麻烦。于是想到能否共享一个node_modules呢&#xff1f;&#xff1f; 方法其实挺多&#xff0c;我选择了一个较简单的&#xff1a;符号连接法(win11平台) 创建方法很简单&#xff1a;比…

C语言-10.字符串

10.1字符串 10.1-1字符串 字符数组 char word[] = {‘H’,‘e’,‘l’,‘l’,‘o’,‘!’}; word[0]Hword[1]eword[2]lword[3]lword[4]oword[5]!这不是C语言的字符串,因为不能用字符串的方式做计算 字符串 char word[] = {‘H’,‘e’,‘l’,‘l’,‘o’,‘!’}; word[0]Hwo…

Python训练营打卡Day41(2025.5.31)

知识回顾 数据增强卷积神经网络定义的写法batch归一化&#xff1a;调整一个批次的分布&#xff0c;常用与图像数据特征图&#xff1a;只有卷积操作输出的才叫特征图调度器&#xff1a;直接修改基础学习率 卷积操作常见流程如下&#xff1a; 1. 输入 → 卷积层 → Batch归一化层…

乐观锁:高效并发无锁方案

4.乐观锁 这一章主要介绍乐观锁。前面的管程部分讲了悲观锁&#xff0c;现在做一些总结&#xff1a; 悲观锁&#xff08;Pessimistic Lock&#xff09;&#xff1a;悲观锁认为数据在多线程或多进程环境下总是容易发生冲突/冲突的概率高&#xff0c;所以在数据操作前&#xff…

山海鲸轻 3D 渲染技术深度解析:预渲染如何突破多终端性能瓶颈

在前期课程中&#xff0c;我们已系统讲解了山海鲸两大核心渲染模式——云渲染与端渲染的技术特性及配置方法。为满足复杂场景下的差异化需求&#xff0c;山海鲸创新推出轻3D渲染功能&#xff0c;本文将深度解析该技术的实现原理与操作实践。 一、轻3D功能研发背景 针对多终端协…

【合集】Linux——31个普通信号

Linux普通信号总表&#xff08;1-31&#xff09;​​ ​编号​​信号名​​触发原因​​默认动作​1SIGHUP终端连接断开&#xff08;如SSH会话终止&#xff09;或守护进程重载配置&#xff08;如nginx -s reload&#xff09;终止进程2SIGINT用户输入CtrlC中断前台进程终止进程…

小程序使用npm包的方法

有用的链接 npm init -y 这个命令很重要, 会初始化 package.json 再重新打开微信小程序开发工具 选择工具中npm构建 在程序中引用时在main.js中直接使用包名的方式引用即可 如安装的是generator包&#xff0c;npm构建后就会生成 const myPackage require(***-generato…

腾讯云推出云开发AI Toolkit,国内首个面向智能编程的后端服务

5月28日&#xff0c;腾讯云开发 CloudBase 宣布推出 AI Toolkit&#xff08;CloudBase AI Toolkit&#xff09;&#xff0c;这是国内首个面向智能编程的后端服务&#xff0c;适配 Cursor 等主流 AI 编程工具。 云开发 AI Toolkit旨在解决 AI 辅助编程的“最后一公里”问题&…

系统是win11+两个ubuntu,ubuntu20.04和ubuntu22.04,想删除ubuntu20.04且不用保留数据

在 Ubuntu 22.04 的终端里运行这些命令: 重启电脑&#xff0c;选择启动 Ubuntu 22.04&#xff1b;打开终端&#xff1b;从 lsblk 开始操作。 如果你不确定当前启动的是哪个系统&#xff0c;可以在终端输入&#xff1a; lsb_release -a它会输出&#xff1a; Distributor ID: …

大模型应用开发第三讲:大模型是Agent的“大脑”,提供通用推理能力(如GPT-4、Claude 3)

大模型应用开发第三讲&#xff1a;大模型是Agent的“大脑”&#xff0c;提供通用推理能力&#xff08;如GPT-4、Claude 3&#xff09; 资料取自《大模型应用开发&#xff1a;动手做AI Agent 》。 查看总目录&#xff1a;学习大纲 关于DeepSeek本地部署指南可以看下我之前写的…

第十四篇:MySQL 运维中的故障场景还原与排查实战技巧

本篇通过典型故障场景的还原与分析&#xff0c;帮助你掌握高效、系统的 MySQL 故障排查与应急处理方法&#xff0c;构建稳定可靠的数据库运维体系。 一、故障排查的基本思路 快速定位问题入口&#xff1a; 错误日志、连接报错、监控告警&#xff1b; 确认影响范围&#xff1a…

MySQL 分页查询优化

目录 前言1. LIMIT offset, count 的性能陷阱&#xff1a;为什么它慢&#xff1f;&#x1f629;2. 优化策略一&#xff1a;基于排序字段的“跳跃式”查询 (Seek Method) &#x1f680;3. 优化策略二&#xff1a;利用子查询优化 OFFSET 扫描 (ID Subquery)4. 基础优化&#xff1…

使用curlconverter网站快速生成requests请求包

在python写requests请求的时候&#xff0c;抓包后需要复制粘贴包的内容&#xff0c;然后手动修改和写代码。 最近发现一个好的网站 https://curlconverter.com/python/ 可以复制curl(bash)数据后&#xff0c;直接生成数据包&#xff0c;非常便捷。 举例说明&#xff1a; 选…

python打卡day41

简单CNN 知识回顾 数据增强 卷积神经网络定义的写法 batch归一化&#xff1a;调整一个批次的分布&#xff0c;常用与图像数据 特征图&#xff1a;只有卷积操作输出的才叫特征图 调度器&#xff1a;直接修改基础学习率 卷积操作常见流程如下&#xff1a; 1. 输入 → 卷积层 →…

系统思考:化繁为简的艺术

系统思考&#xff0c;其实是一门化繁为简的艺术。当我们能够把复杂的问题拆解成清晰的核心以及更加简单&#xff0c;从而提升团队的思考品质和行动品质&#xff0c;发挥最大的合力。 每个公司都想在某方面成为最优秀的&#xff0c;但是实际上具有穿透性的洞察力和摆脱虚荣心的清…

2025.05.28【Parallel】Parallel绘图:拟时序分析专用图

Improve general appearance Add title, use a theme, change color palette, control variable orders and more Highlight a group Highlight a group of interest to help people understand your story 文章目录 Improve general appearanceHighlight a group探索Paralle…

Elasticsearch父子关系解析

引言 在复杂业务场景中&#xff0c;数据关联查询是搜索与分析的核心需求。以电商订单、文章评论、客户关系等场景为例&#xff0c;传统关系型数据库通过外键实现的多表关联&#xff0c;在分布式搜索场景下面临性能与扩展性挑战。Elasticsearch通过父子关系&#xff08;Parent-…