【ARM AMBA APB 入门 1.1 -- APB 读写寄存器 RTL 实现】


请阅读【ARM AMBA 总线 文章专栏导读】


文章目录

    • APB 寄存器访问
      • APB 读寄存器 RTL 代码实现
      • APB 写寄存器 RTL 代码实现

APB 寄存器访问

在这里插入图片描述

APB 读寄存器 RTL 代码实现

APB 总线读寄存器操作代码实现:

wire [31:0] SOC_PLL_CFG_REG;
wire [31:0] SOC_PLL_LOCK_REG;
wire [31:0] SOC_PLL_BP_REG;always@(posedge clk) beginif(psel & (~pwrite)) begincase(paddr)32'b00000000 + 32'h10 : prdata <= SOC_PLL_CFG_REG;32'b00000000 + 32'h14 : prdata <= SOC_PLL_LOCK_REG;32'b00000000 + 32'h18 : prdata <= SOC_PLL_BP_REG;default: prdata <= 32'hdeadbeaf;endcaseend
endassign SOC_PLL_CFG_REG[31:24] = 8'b0;
assign SOC_PLL_CFG_REG[23:12] = soc_pll_cfg_reg_rd;
assign SOC_PLL_CFG_REG[11:9] = soc_pll_postdiv1;
assign SOC_PLL_CFG_REG[8:6] = SOC_PLL0_postdiv2;
assign SOC_PLL_CFG_REG[5:0] = soc_pll_postdvi2;

从上面代码可以看到 当 psel 为 高,且 pwrite 为 低的时候 去判断 paddr 的地址对应哪个寄存器的地址,然后将该寄存器的值赋值给 prdata。

同时也可以看到,SOC_PLL_CFG_REG 位域中的各个值,来源于不同的信号。

APB 写寄存器 RTL 代码实现

reg_wr = psel & pwrite & penable;
reg_rd = psel & (~pwrite)
assign soc_pll_cfg_reg_wr = (paddr == 32'h00000000 + 32'h10) & reg_wr;
assign soc_pll_cfg_reg_rd = (paddr == 32'h00000000 + 32'h10) & reg_rd;always@(posedge clk or negedge rst_n) beginif(!rst_n) beginsoc_pll_cfg_reg_rd < 12'd57;endelse if (soc_pll_cfg_reg_wr) beginsoc_pll_cfg_reg_rd < pwdata[23:12];end
endalways@(posedge clk or negedge rst_n) beginif(!rst_n) beginsoc_pll_postdiv1 < 3'b0;endelse if (soc_pll_cfg_reg_wr) beginsoc_pll_postdiv1 < pwdata[11:9];end
endalways@(posedge clk or negedge rst_n) beginif(!rst_n) beginsoc_pll_postdiv2 < 3'b3;endelse if (soc_pll_cfg_reg_wr) beginsoc_pll_postdvi2 < pwdata[8:6];end
end
always@(posedge clk or negedge rst_n) beginif(!rst_n) beginsoc_pll_postdvi2 < 6'd4;endelse if (soc_pll_cfg_reg_wr) beginsoc_pll_postdvi2 < pwdata[5:0];end
end

从上面的代码中可以看到,在写 SOC_PLL_CFG_REG 这个寄存器的的时候需要先保证 soc_pll_cfg_reg_wr 这个信号为高,这个信号的作用是保证 寄存器的地址已经 APB 总线都准备好了之后才进行写操作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/web/82180.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++修炼:位图和布隆过滤器

Hello大家好&#xff01;很高兴我们又见面啦&#xff01;给生活添点passion&#xff0c;开始今天的编程之路&#xff01; 我的博客&#xff1a;<但凡. 我的专栏&#xff1a;《编程之路》、《数据结构与算法之美》、《题海拾贝》、《C修炼之路》 1、引言 在计算机科学…

Java大厂后端技术栈故障排查实战:Spring Boot、Redis、Kafka、JVM典型问题与解决方案

Java大厂后端技术栈故障排查实战&#xff1a;Spring Boot、Redis、Kafka、JVM典型问题与解决方案 引言 在互联网大厂&#xff0c;Java后端系统往往承载着高并发、高可用和复杂业务需求。系统架构日益复杂&#xff0c;涵盖微服务、缓存、消息队列、数据库等多种组件&#xff0…

交叉编译tcpdump工具

1.导出交叉编译工具链 export PATH$PATH:/opt/rockchip/gcc-linaro-6.3.1-2017.05-x86_64_arm-linux-gnueabihf/bin 下载源码包libpcap-1.10.5&#xff0c;配置、并编译安装。 github仓库地址 ./configure --hostarm-linux CCarm-linux-gnueabihf-gcc --prefix$PWD/install …

Pytest Fixture 是什么?

Fixture 是什么&#xff1f; Fixture 是 Pytest 测试框架的核心功能之一&#xff0c;用于为测试函数提供所需的依赖资源或环境。它的核心目标是&#xff1a; ✅ 提供测试数据&#xff08;如模拟对象、数据库记录&#xff09; ✅ 初始化系统状态&#xff08;如配置、临时文件&a…

【深度剖析】流处理系统性能优化:解决维表JOIN、数据倾斜与数据膨胀问题

目录 前言:为什么你的流处理作业总是慢? 一、维表JOIN优化:从普通连接到高性能查询 1.1 时态表的双面性 1.2 Lookup Join 优化 1.3 多表JOIN优化策略 二、数据倾斜:单分区也会遇到的隐形杀手 2.1 单分区数据倾斜 2.2 热点键打散技术 2.3 时间窗口预聚合 三、数据…

Codeforces Round 1028 (Div. 2)(ABC)

A. Gellyfish and Tricolor Pansy 翻译&#xff1a; 水母和小花在玩一个叫 “决斗 ”的游戏。 水母有 a HP&#xff0c;花花有 b HP。 它们各有一个骑士。水母的骑士有 c HP&#xff0c;而花花的骑士有 d HP。 他们将进行一轮游戏&#xff0c;直到其中一方获胜。对于 k1、2、.…

数字创新智慧园区建设及运维方案

该文档是 “数字创新智慧园区” 建设及运维方案,指出传统产业园区存在管理粗放等问题,“数字创新园区” 通过大数据、AI、物联网、云计算等数字化技术,旨在提升园区产业服务、运营管理水平,增强竞争力,实现绿色节能、高效管理等目标。建设内容包括智能设施、核心支撑平台、…

缓存一致性协议的影响

在操作系统中&#xff0c;线程切换相比进程切换更轻量级的关键原因之一是 缓存&#xff08;Cache&#xff09;的有效性&#xff0c;尤其是对 CPU 缓存&#xff08;如 L1/L2/L3&#xff09;和 TLB&#xff08;Translation Lookaside Buffer&#xff09;的影响。以下从缓存角度详…

六月一日python-AI代码

python 运行 import turtle as t # 导入turtle库并简称为t&#xff0c;用于图形绘制 import random # 导入random库&#xff0c;用于随机数生成t.delay(0) # 设置绘图延迟为0&#xff0c;加快绘图速度 colors ["red", "blue", "gr…

58、辣椒种植学习

辣椒&#xff08;学名&#xff1a;Capsicum annuum&#xff09;属于茄科辣椒属&#xff0c;是一种重要的蔬菜兼调味作物&#xff0c;具有较高的经济价值和营养价值。其果实富含维生素C、辣椒素等成分&#xff0c;既可鲜食&#xff0c;也可加工成干辣椒、辣椒粉、辣椒酱等产品&a…

C语言进阶--程序的编译(预处理动作)+链接

1.程序的翻译环境和执行环境 在ANSI C标准的任何一种实现中&#xff0c;存在两种不同的环境。 第一种是翻译环境&#xff1a;将源代码转换为可执行的机器指令&#xff08;0/1&#xff09;; 第二种是执行环境&#xff1a;用于实际执行代码。 2.详解编译链接 2.1翻译环境 程…

微调大模型:什么时候该做,什么时候不该做?

目录 一、什么是“微调”&#xff1f;你真的需要它吗&#xff1f; 二、什么时候不该微调&#xff1f; &#x1f6ab; 不该微调的 5 个典型场景&#xff1a; 1. 通用问答、闲聊、常识类内容 2. 企业内部问答 / 文档助手 3. 想要通过微调“学会格式” 4. 没有大量高质量标…

微深节能 码头装卸船机定位与控制系统 格雷母线

微深节能码头装卸船机定位与控制系统&#xff1a;格雷母线技术赋能港口作业智能化升级 在现代化港口散货装卸作业中&#xff0c;装卸船机是连接船舶与陆域运输的核心枢纽设备。传统装卸船机依赖人工操作&#xff0c;存在定位偏差大、动态协同难、安全风险高等痛点。微深节能基于…

如何检查popover气泡组件样式?调试悬停元素CSS样式的解决方案

1. 问题 当我们要检查这种弹出层的CSS样式时&#xff0c;会发现特别棘手&#xff0c;因为鼠标移走就消失了。如果是display:none控制的&#xff0c;可能还能找到&#xff0c;如果是用js通过v-if控制的&#xff0c;就无法调试了。 2. 解决方案 使用 setTimeout debugger 就…

网络攻防技术一:绪论

文章目录 一、网络空间CyberSpace1、定义2、基本四要素 二、网络空间安全1、定义2、保护对象3、安全属性4、作用空间 三、网络攻击1、攻击分类2、攻击过程 四、网络防护1、定义2、安全模型3、安全服务5类4、特定安全机制8种5、普遍性安全机制5种 五、网络安全技术发展简史1、第…

彻底理解Spring三级缓存机制

文章目录 前言一、Spring解决循环依赖时&#xff0c;为什么要使用三级缓存&#xff1f; 前言 Spring解决循环依赖的手段&#xff0c;是通过三级缓存&#xff1a; singletonObjects&#xff1a;存放所有生命周期完整的单例对象。&#xff08;一级缓存&#xff09;earlySingleto…

【 SpringCloud | 微服务 网关 】

单体架构时我们只需要完成一次用户登录、身份校验&#xff0c;就可以在所有业务中获取到用户信息。而微服务拆分后&#xff0c;每个微服务都独立部署&#xff0c;这就存在一些问题&#xff1a; 每个微服务都需要编写登录校验、用户信息获取的功能吗&#xff1f; 当微服务之间调…

【前端面经】字节跳动一面

写在前面&#xff1a;面经只是记录博主遇到的题目。每题的答案在编写文档的时候已经有问过deepseek&#xff0c;它只是一种比较普世的答案&#xff0c;要学得深入还是靠自己 Q&#xff1a;三栏布局的实现方式&#xff08;圣杯模型&#xff09;如何实现 A&#xff1a; /* 整个 …

ST-GCN

1.bash 安装git 在目录下右键使用git bash打开 需要安装wgetbash download_model.sh&#xff0c;下载.sh文件 wget: command not found&#xff0c;Windows系统使用git命令 下载预训练权重_sh文件下载-CSDN博客 bash tools/get_models.sh 生成了三个.pt文件

计算机网络全维度解析:架构协议、关键设备、安全机制与新兴技术深度融合

计算机网络作为当今数字化社会的基石&#xff0c;其复杂性和应用广泛性远超想象。本文将从基础架构、协议体系、关键设备、安全机制到新兴技术&#xff0c;进行全方位、深层次的解析&#xff0c;并辅以实际应用场景和案例分析。 一、网络架构与分类的深度剖析 1.1 网络分类的立…