微服务面试(分布式事务、注册中心、远程调用、服务保护)

1.分布式事务

分布式事务,就是指不是在单个服务或单个数据库架构下,产生的事务,例如:

  • 跨数据源的分布式事务
  • 跨服务的分布式事务
  • 综合情况

我们之前解决分布式事务问题是直接使用Seata框架的AT模式,但是解决分布式事务问题的方案远不止这一种。

1.1.CAP定理

解决分布式事务问题,需要一些分布式系统的基础知识作为理论指导,首先就是CAP定理

1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有三个指标:

  • Consistency(一致性)
  • Availability(可用性)
  • Partition tolerance (分区容错性)
    它们的第一个字母分别是 C、A、P。Eric Brewer认为任何分布式系统架构方案都不可能同时满足这3个目标,这个结论就叫做 CAP 定理。
    为什么呢?
    在这里插入图片描述

1.1.1.一致性

Consistency(一致性):用户访问分布式系统中的任意节点,得到的数据必须一致
比如现在包含两个节点,其中的初始数据是一致的:
在这里插入图片描述
当我们修改其中一个节点的数据时,两者的数据产生了差异:
在这里插入图片描述
要想保住一致性,就必须实现node01 到 node02的数据 同步:
在这里插入图片描述

1.1.2.可用性

Availability (可用性):用户访问分布式系统时,读或写操作总能成功
只能读不能写,或者只能写不能读,或者两者都不能执行,就说明系统弱可用或不可用。

1.1.3.分区容错

Partition,就是分区,就是当分布式系统节点之间出现网络故障导致节点之间无法通信的情况:
在这里插入图片描述
如上图,node01和node02之间网关畅通,但是与node03之间网络断开。于是node03成为一个独立的网络分区;node01和node02在一个网络分区

Tolerance,就是容错,即便是系统出现网络分区,整个系统也要持续对外提供服务

1.1.4.矛盾

在分布式系统中,网络不能100%保证畅通,也就是说网络分区的情况一定会存在。而我们的系统必须要持续运行,对外提供服务。所以分区容错性(P)是硬性指标,所有分布式系统都要满足。而在设计分布式系统时要取舍的就是一致性(C)和可用性(A)了。

假如现在出现了网络分区,如图:
在这里插入图片描述
由于网络故障,当我们把数据写入node01时,可以与node02完成数据同步,但是无法同步给node03。现在有两种选择

  • 允许用户任意读写,保证可用性。但由于node03无法完成同步,就会出现数据不一致的情况。满足AP
  • 不允许用户写,可以读,直到网络恢复,分区消失。这样就确保了一致性,但牺牲了可用性。满足CP

可见,在分布式系统中,A和C之间只能满足一个

1.2.BASE理论

既然分布式系统要遵循CAP定理,那么问题来了,我到底是该牺牲一致性还是可用性呢?如果牺牲了一致性,出现数据不一致该怎么处理?
人们在总结系统设计经验时,最终得到了一些心得

  • Basically Available (基本可用):分布式系统在出现故障时,允许损失部分可用性,即保证核心可用
  • Soft State(软状态):在一定时间内,允许出现中间状态,比如临时的不一致状态。
  • Eventually Consistent(最终一致性):虽然无法保证强一致性,但是在软状态结束后,最终达到数据一致

以上就是BASE理论。

简单来说,BASE理论就是一种取舍的方案,不再追求完美,而是最终达成目标。因此解决分布式事务的思想也是这样,有两个方向

  • AP思想:各个子事务分别执行和提交,无需锁定数据。允许出现结果不一致,然后采用弥补措施恢复,实现最终一致即可。例如AT模式就是如此
  • CP思想:各个子事务执行后不要提交,而是等待彼此结果,然后同时提交或回滚。在这个过程中锁定资源,不允许其它人访问,数据处于不可用状态,但能保证一致性。例如XA模式

1.3.AT模式的脏写问题

我们先回顾一下AT模式的流程,AT模式也分为两个阶段:
在这里插入图片描述

第一阶段是记录数据快照,执行并提交事务

在这里插入图片描述
第二阶段根据阶段一的结果来判断:

  • 如果每一个分支事务都成功,则事务已经结束(因为阶段一已经提交),因此删除阶段一的快照即可
  • 如果有任意分支事务失败,则需要根据快照恢复到更新前数据。然后删除快照
    在这里插入图片描述
    这种模式在大多数情况下(99%)并不会有什么问题,不过在极端情况下,特别是多线程并发访问AT模式的分布式事务时,有可能出现脏写问题,如图:

在这里插入图片描述
解决思路就是引入了全局锁的概念。在释放DB锁之前,先拿到全局锁。避免同一时刻有另外一个事务来操作当前数据。(db锁的等待时长非常长,而事务2的全局锁的等待时长只有300毫秒,所以一般最后事务1一定会拿到全局锁和db锁,不会想回等待进入死锁)

在这里插入图片描述
具体可以参考官方文档:
https://seata.apache.org/zh-cn/docs/dev/mode/at-mode/

全局锁能够限制的是都被seata统一管理的,如果有一个操作不是seata提哦难过一管理的,是其他操作的,那么全局锁就会失效,需要人工介入

在这里插入图片描述

1.4.TCC模式

TCC模式与AT模式非常相似,每阶段都是独立事务,不同的是TCC通过人工编码来实现数据恢复。需要实现三个方法:

  • try:资源的检测和预留
  • confirm:完成资源操作业务;要求 try 成功 confirm 一定要能成功。
  • cancel:预留资源释放,可以理解为try的反向操作

1.4.1.流程分析

举例,一个扣减用户余额的业务。假设账户A原来余额是100,需要余额扣减30元。
阶段一( Try ):检查余额是否充足,如果充足则冻结金额增加30元,可用余额扣除30

初始余额:

在这里插入图片描述
余额充足,可以冻结

在这里插入图片描述
此时,总金额 = 冻结金额 + 可用金额,数量依然是100不变。事务直接提交无需等待其它事务

阶段二(Confirm):假如要提交(Confirm),之前可用金额已经扣减,并转移到冻结金额。因此可用金额不变,直接冻结金额扣减30即可:

在这里插入图片描述

此时,总金额 = 冻结金额 + 可用金额 = 0 + 70 = 70元

阶段二(Canncel):如果要回滚(Cancel),则释放之前冻结的金额,也就是冻结金额扣减30,可用余额增加30

在这里插入图片描述

在这里插入图片描述

1.4.2.事务悬挂和空回滚

假如一个分布式事务中包含两个分支事务,try阶段,一个分支成功执行,另一个分支事务阻塞

在这里插入图片描述
如果阻塞时间太长,可能导致全局事务超时而触发二阶段的cancel操作。两个分支事务都会执行cancel操作

在这里插入图片描述
要知道,其中一个分支是未执行try操作的,直接执行了cancel操作,反而会导致数据错误。因此,这种情况下,尽管cancel方法要执行,但其中不能做任何回滚操作,这就是空回滚

对于整个空回滚的分支事务将来try方法阻塞结束依然会执行。但是整个全局事务其实已经结束了,因此永远不会再有confirm或cancel,也就是说这个事务执行了一半,处于悬挂状态,这就是业务悬挂问题。

以上问题都需要我们在编写try、cancel方法时处理。

1.4.3.总结

TCC模式的每个阶段是做什么的?

  • Try:资源检查和预留
  • Confirm:业务执行和提交
  • Cancel:预留资源的释放

TCC的优点是什么?

  • 一阶段完成直接提交事务,释放数据库资源,性能好
  • 相比AT模型,无需生成快照,无需使用全局锁,性能最强
  • 不依赖数据库事务,而是依赖补偿操作,可以用于非事务型数据库

TCC的缺点是什么?

  • 有代码侵入,需要人为编写try、Confirm和Cancel接口,太麻烦
  • 软状态,事务是最终一致
  • 需要考虑Confirm和Cancel的失败情况,做好幂等处理、事务悬挂和空回滚处理

1.5. 最大努力通知

除了上述的两种方式,有些企业嫌弃上述的方案,实现起来过于麻烦,所以可能会使用最大努力通知
在这里插入图片描述

2.注册中心

2.1.环境隔离

企业实际开发中,往往会搭建多个运行环境,例如:

  • 开发环境
  • 测试环境
  • 预发布环境
  • 生产环境

这些不同环境之间的服务和数据之间需要隔离。
还有的企业中,会开发多个项目,共享nacos集群。此时,这些项目之间也需要把服务和数据隔离

因此,Nacos提供了基于namespace的环境隔离功能。具体的隔离层次如图所示:

在这里插入图片描述
说明:

  • Nacos中可以配置多个namespace,相互之间完全隔离。默认的namespace名为public
  • namespace下还可以继续分组,也就是group ,相互隔离。 默认的group是DEFAULT_GROUP
  • group之下就是服务和配置

2.1.1.创建namespace

nacos提供了一个默认的namespace,叫做public:

在这里插入图片描述
默认所有的服务和配置都属于这个namespace,当然我们也可以自己创建新的namespace

在这里插入图片描述
添加完成后,可以在页面看到我们新建的namespace,并且Nacos为我们自动生成了一个命名空间id

在这里插入图片描述
我们切换到配置列表页,你会发现dev这个命名空间下没有任何配置

在这里插入图片描述
因为之前我们添加的所有配置都在public下

在这里插入图片描述

2.1.2.微服务配置namespace

默认情况下,所有的微服务注册发现、配置管理都是走public这个命名空间。如果要指定命名空间则需要修改application.yml文件
比如,我们修改item-service服务的bootstrap.yml文件,添加服务发现配置,指定其namespace

在这里插入图片描述

spring:application:name: item-service # 服务名称profiles:active: devcloud:nacos:server-addr: 192.168.150.101 # nacos地址discovery: # 服务发现配置namespace: 8c468c63-b650-48da-a632-311c75e6d235 # 设置namespace,必须用id# 。。。略

启动item-service,查看服务列表,会发现item-service出现在dev下

在这里插入图片描述
其它服务则出现在public下:

在这里插入图片描述
此时访问http://localhost:8082/doc.html,基于swagger做测试:

切换前能够查看item的最新价格的

在这里插入图片描述

item的微服务使用了新的命名空间,但是cart的微服务使用的是default的命名空间,就会查询不到,所以查询的newPrice就会为空

在这里插入图片描述
会发现查询结果中缺少商品的最新价格信息。
我们查看服务运行日志:

在这里插入图片描述
会发现cart-service服务在远程调用item-service时,并没有找到可用的实例。这证明不同namespace之间确实是相互隔离的,不可访问

当我们把namespace切换回public,或者统一都是以dev时访问恢复正常。

2.2.分级模型

在一些大型应用中,同一个服务可以部署很多实例。而这些实例可能分布在全国各地的不同机房。由于存在地域差异,网络传输的速度会有很大不同,因此在做服务治理时需要区分不同机房的实例。

例如item-service,我们可以部署3个实例:

  • 127.0.0.1:8081
  • 127.0.0.1:8082
  • 127.0.0.1:8083

假如这些实例分布在不同机房,例如:

  • 127.0.0.1:8081,在上海机房
  • 127.0.0.1:8082,在上海机房
  • 127.0.0.1:8083,在杭州机房

Nacos中提供了集群(cluster)的概念,来对应不同机房。也就是说,一个服务(service)下可以有很多集群(cluster),而一个集群(cluster)中下又可以包含很多实例(instance)
如图:

在这里插入图片描述
因此,结合我们上一节学习的namespace命名空间的知识,任何一个微服务的实例在注册到Nacos时,都会生成以下几个信息,用来确认当前实例的身份,从外到内依次是

  • namespace:命名空间
  • group:分组
  • service:服务名
  • cluster:集群
  • instance:实例,包含ip和端口

这就是nacos中的服务分级模型。

在Nacos内部会有一个服务实例的注册表,是基于Map实现的,其结构与分级模型的对应关系如下:

在这里插入图片描述
查看nacos控制台,会发现默认情况下所有服务的集群都是default

在这里插入图片描述
如果我们要修改服务所在集群,只需要修改bootstrap.yml即可:

spring:cloud:nacos:discovery:cluster-name: BJ # 集群名称,自定义

我们修改item-service的bootstrap.yml,然后重新创建一个实例:
在这里插入图片描述

再次查看nacos:

在这里插入图片描述
发现8084这个新的实例确实属于BJ这个集群了。

2.3 Eureka和Nacos对比

Eureka是Netflix公司开源的一个注册中心组件,目前被集成在SpringCloudNetflix这个模块下。它的工作原理与Nacos类似:

  • nacos时间更短,响应更加快,能够更快发现异常
  • eureka 更慢,但是变相保护了服务,因为网络出现波动很正常,不能一出现波动就断开

在这里插入图片描述
综上,Eureka和Nacos的相似点有:

  • 都支持服务注册发现功能
  • 都有基于心跳的健康监测功能
  • 都支持集群,集群间数据同步默认是AP模式,即最全高可用性

Eureka和Nacos的区别有:

  • Eureka的心跳是30秒一次,Nacos则是5秒一次
  • Eureka如果90秒未收到心跳,则认为服务疑似故障,可能被剔除。Nacos中则是15秒超时,30秒剔除。
  • Eureka每隔60秒执行一次服务检测和清理任务;Nacos是每隔5秒执行一次。
  • Eureka只能等微服务自己每隔30秒更新一次服务列表;Nacos即有定时更新,也有在服务变更时的广播推送
  • Eureka仅有注册中心功能,而Nacos同时支持注册中心、配置管理
  • Eureka和Nacos都支持集群,而且默认都是AP模式

3 远程调用

3.1 负载均衡

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

4.服务保护

4.1 线程隔离

首先我们来看下线程隔离功能,无论是Hystix还是Sentinel都支持线程隔离。不过其实现方式不同。
线程隔离有两种方式实现:

  • 线程池隔离:给每个服务调用业务分配一个线程池,利用线程池本身实现隔离效果
  • 信号量隔离:不创建线程池,而是计数器模式,记录业务使用的线程数量,达到信号量上限时,禁止新的请求

如图:

在这里插入图片描述
两者的优缺点如下:

在这里插入图片描述
Sentinel的线程隔离就是基于信号量隔离实现的,而Hystix两种都支持,但默认是基于线程池隔离。

在这里插入图片描述

4.2.滑动窗口算法

熔断功能中,需要统计异常请求或慢请求比例,也就是计数。在限流的时候,要统计每秒钟的QPS,同样是计数。可见计数算法在熔断限流中的应用非常多。sentinel中采用的计数器算法就是滑动窗口计数算法

4.2.1.固定窗口计数

要了解滑动窗口计数算法,我们必须先知道固定窗口计数算法,其基本原理如图:

在这里插入图片描述

说明:

  • 将时间划分为多个窗口,窗口时间跨度称为Interval,本例中为1000ms;
  • 每个窗口维护1个计数器,每有1次请求就将计数器+1。限流就是设置计数器阈值,本例为3,图中红线标记
  • 如果计数器超过了限流阈值,则超出阈值的请求都被丢弃

示例:

在这里插入图片描述
说明:

  • 第1、2秒,请求数量都小于3,没问题
  • 第3秒,请求数量为5,超过阈值,超出的请求被拒绝

但是我们考虑一种特殊场景,如图:

在这里插入图片描述
说明:

  • 假如在第5、6秒,请求数量都为3,没有超过阈值,全部放行
  • 但是,如果第5秒的三次请求都是在4.5-5秒之间进来;第6秒的请求是在5-5.5之间进来。那么从第4.5-5.5之间就有6次请求!也就是说每秒的QPS达到了6,远超阈值

这就是固定窗口计数算法的问题,它只能统计当前某1个时间窗的请求数量是否到达阈值,无法结合前后的时间窗的数据做综合统计。
因此,我们就需要滑动时间窗口算法来解决。

4.2.2.滑动窗口计数

固定时间窗口算法中窗口有很多,其跨度和位置是与时间区间绑定,因此是很多固定不动的窗口。而滑动时间窗口算法中只包含1个固定跨度的窗口,但窗口是可移动动的,与时间区间无关。

具体规则如下:

  • 窗口时间跨度Interval大小固定,例如1秒
  • 时间区间跨度为Interval / n ,例如n=2,则时间区间跨度为500ms
  • 窗口会随着当前请求所在时间currentTime移动,窗口范围从(currentTime-Interval)时刻之后的第一个时区开始,到currentTime所在时区结束。

如图所示:

在这里插入图片描述
限流阈值依然为3,绿色小块就是请求,上面的数字是其currentTime值。

  • 在第1300ms时接收到一个请求,其所在时区就是1000~1500
  • 按照规则,currentTime-Interval值为300ms,300ms之后的第一个时区是500-1000,因此窗口范围包含两个时区:500-1000、1000-1500,也就是粉红色方框部分
  • 统计窗口内的请求总数,发现是3,未达到上限。
    若第1400ms又来一个请求,会落在1000~1500时区,虽然该时区请求总数是3,但滑动窗口内总数已经达到4,因此该请求会被拒绝:

在这里插入图片描述
假如第1600ms又来的一个请求,处于1500-2000时区,根据算法,滑动窗口位置应该是1000-1500和1500~2000这两个时区,也就是向后移动:

在这里插入图片描述
这就是滑动窗口计数的原理,解决了我们之前所说的问题。而且滑动窗口内划分的时区越多,这种统计就越准确

4.3.令牌桶算法

限流的另一种常见算法是令牌桶算法。Sentinel中的热点参数限流正是基于令牌桶算法实现的。其基本思路如图:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/web/82575.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux --进程优先级

概念 什么是进程优先级,为什么需要进程优先级,怎么做到进程优先级这是本文需要解释清楚的。 优先级的本质其实就是排队,为了去争夺有限的资源,比如cpu的调度。cpu资源分配的先后性就是指进程的优先级。优先级高的进程有优先执行的…

React 性能监控与错误上报

核心问题与技术挑战 现代 React 应用随着业务复杂度增加,性能问题和运行时错误日益成为影响用户体验的关键因素。没有可靠的监控与错误上报机制,我们将陷入被动修复而非主动预防的困境。 性能指标体系与错误分类 关键性能指标定义 // performance-me…

芒果深度学习检测:开启农业新视界(猫脸码客第230期)

芒果深度学习检测:开启农业新视界 一、引言 芒果作为热带水果中的“明星”,在全球水果市场占据着重要地位,拥有广泛的市场需求和可观的经济价值。伴随人们生活品质的提升,对芒果品质的要求也愈发严苛。芒果产业规模持续扩张&#…

PDF文件转换之输出指定页到新的 PDF 文件

背景 一份 PDF 学习资料需要打印其中某几页,文件有几百兆,看到 WPS 有PDF拆分功能,但是需要会员,开了一个月会员后完成了转换。突然想到,会员到期后如果还要拆解的话,怎么办呢?PDF 文件拆解功能…

【计网】SW、GBN、SR、TCP

目录 三种可靠传输机制(数据链路层) 停止-等待(Stop and Wait,SW)协议 回退N帧(Go-back-N,GBN)协议 选择重传(Selective Repeat,SR)协议 传输…

Go的隐式接口机制

正确使用Interface 不要照使用C/Java等OOP语言中接口的方式去使用interface。 Go的Interface的抽象不仅可以用于dynamic-dispatch 在工程上、它最大的作用是:隔离实现和抽象、实现完全的dependency inversion 以及interface segregation(SOLID principle中的I和D)。…

Async-profiler 内存采样机制解析:从原理到实现

引言 在 Java 性能调优的工具箱中,async-profiler 是一款备受青睐的低开销采样分析器。它不仅能分析 CPU 热点,还能精确追踪内存分配情况。本文将深入探讨 async-profiler 实现内存采样的多种机制,结合代码示例解析其工作原理。 为什么需要内…

Android 颜色百分比对照

本文就是简单写个demo,打印下颜色百分比的数值.方便以后使用. 1: 获取透明色 具体的代码如下: /*** 获取透明色* param percent* param red* param green* param blue* return*/public static int getTransparentColor(int percent, int red, int green, int blue) {int alp…

MPLS-EVPN笔记详述

目录 EVPN简介: EVPN路由: 基本四种EVPN路由 扩展: EVPN工作流程: 1.启动阶段: 2.流量转发: 路由次序整理: 总结: EVPN基本术语: EVPN表项: EVPN支持的多种服务模式: 简介: 1.Port Based: 简介: 配置实现: 2.VLAN Based: 简介: 配置实现: 3.VLAN Bundle: 简…

SpringBoot自定义线程池详细教程

文章目录 1. 线程池基础概念1.1 什么是线程池1.2 Java线程池核心参数1.3 线程池执行流程 2. SpringBoot中的线程池2.1 SpringBoot默认线程池2.2 SpringBoot异步任务基础 3. 自定义线程池配置3.1 配置文件方式3.2 Java配置方式3.3 线程池工厂配置 4. 异步任务实际应用4.1 业务服…

智能快递地址解析接口如何用PHP调用?

一、什么是智能快递地址解析接口 随着互联网技术的普及和电子商务的迅猛发展,网购已成为现代人日常生活的重要组成部分。然而,在这个便捷的背后,一个看似不起眼却影响深远的问题正悄然浮现——用户填写的快递地址格式混乱、信息不全甚至错漏…

概率分布,支撑AI算法的数学基石

概率分布,是现代人工智能(AI)算法不可或缺的数学语言。它不仅描述了数据中的不确定性,更揭示了机器学习模型背后的本质运作机制。本文将带你深入了解概率分布的数学本质,以及它在监督学习、深度学习、生成模型等核心AI领域的关键作用,揭秘概率论如何成为AI理论和实践的强…

2025年Splunk的替代方案:更智能的安全选择

在安全信息和事件管理(SIEM)领域,2025年的竞争愈发激烈。Splunk凭借其强大的功能和稳定性长期占据市场主导地位,但其高昂的成本、复杂性和扩展性挑战促使许多企业转向其他解决方案。无论是初创公司、快速发展的中型企业&#xff0…

(10)Fiddler抓包-Fiddler如何设置捕获Firefox浏览器的Https会话

1.简介 经过上一篇对Fiddler的配置后,绝大多数的Https的会话,我们可以成功捕获抓取到,但是有些版本的Firefox浏览器仍然是捕获不到其的Https会话,需要我们更进一步的配置才能捕获到会话进行抓包。 2.环境 1.环境是Windows 10版…

simulink mask的使用技巧

1.mask界面布局 1.1如何调整控件的位置和控件大小? 反正2020a是调不了, 找了好久,只能是调布局,例如你要调成下面这样: 第一个控件的iTem location属性选择New row 后面跟着的几个和第一个同一行的空间属性选择Cu…

Go中MAP底层原理分析

MAP底层原理分析 参考 https://golang.design/go-questions/map/principalmap | Golang 中文学习文档 先来看一下map结构体,(runtime.hmap结构体就是代表着 go 中的map,与切片一样map的内部实现也是结构体) type hmap struct {/…

#开发环境篇:postMan可以正常调通,但是浏览器里面一直报403

本地header代理下面内容即可 headers: { // 添加必要的请求头 ‘Host’: ‘服务端域名’, ‘Origin’: https://服务端域名, ‘Referer’: https://服务端域名 }, devServer: {// 本地开发代理API地址proxy: {^/file: {target: https://服务端域名,changeOrigin: true, // 是否…

【论文阅读 | PR 2024 |ICAFusion:迭代交叉注意力引导的多光谱目标检测特征融合】

论文阅读 | PR 2024 |ICAFusion:迭代交叉注意力引导的多光谱目标检测特征融合 1.摘要&&引言2.方法2.1 架构2.2 双模态特征融合(DMFF)2.2.1 跨模态特征增强(CFE)2.2.2 空间特征压缩(SFS)…

效率、便捷、安全:智慧充电桩一站式解决方案如何重塑新能源充电体验?

在新能源浪潮席卷全球的背景下,电动汽车的普及对充电基础设施提出了更高要求。传统充电模式因效率低、操作繁琐、安全隐患等问题,难以满足用户需求。智慧充电桩一站式解决方案应运而生,通过技术创新将效率、便捷与安全融为一体,彻…

杰发科技AC7840——Timer修改重装载值

需要在运行过程中修改定时器的中断时间 int main(void) {SystemClock_Config(); /*时钟初始化*/GPIO_LedInit(); /*GPIO初始化*/TIMER_Init(); /*定时器初始化*/InitDebug(); …