双指针算法介绍及使用(下)

在上一篇文章中我们已经对双指针有了一定了解,接下来我们通过题目来对双指针进行更好的理解。

1. leetcode 202. 快乐数

这道题使用的方法是快慢指针, 比如说一个数X,那么创建两个变量X1和X2,然后X1每次变化两次,X2变化一次,那么X1和X2肯定会相遇(假如说X不是快乐数,那么X1和X2会在一个变化范围内相遇,反之就是在1的位置相遇)。

PS:这道题在我看来不是传统意义上的快慢指针,在我看来跟多的是使用了其思想。

我们在代码里面使用了slow和fast两个指针来模拟相遇。

class Solution {
public:int happysum(int a){int count=0;while(a){int b=a%10;count+=b*b;a/=10;}return count;}bool isHappy(int n) {int slow=n;int fast=n;fast=happysum(fast);while(slow!=fast){slow=happysum(slow);fast=happysum(fast);fast=happysum(fast);}return fast==1;}
};

2. leetcode 11. 盛最多水的容器

这道题的话暴力是肯定不行的,那么我们可以通过左右指针的方式 。简单来说就是最左和最右两边先进行一次计算,然后哪边短哪边移动,然后比较这几个值的大小就可以得到结果。

PS:我们也可以理解为计算横坐标在某个值时的最大值。

class Solution {
public:int maxArea(vector<int>& h) {int left=0;int n=h.size()-1;int right=n;int mymax=0;while(left<right){int count=min(h[left],h[right])*n;n--;if(h[left]>=h[right])right--;elseleft++;mymax=max(mymax,count);}return mymax;}
};

3. leetcode 611. 有效三角形的个数

 三角形三边需满足 “任意两边之和大于第三边”,但直接枚举所有三元组验证效率低(时间复杂度高)。所以需要利用排序 + 双指针优化。

简单来说,就是先拿一个最大的,然后在剩下的里面通过left++和right--来直接找到符合的区间,因为实现排好序了所以一旦找到直接right-left就可以了。

class Solution {
public:int triangleNumber(vector<int>& nums) {int count=0;sort(nums.begin(),nums.end());int n=nums.size()-1;for(int i=n;i>=2;--i){int left=0;int right=i-1;while(left!=right){if(nums[left]+nums[right]>nums[i]){count+=right-left;right--;}else{left++;}}}return count;}
};

 4. leetcode LCR 179. 查找总价格为目标值的两个商品

 这道题也可以通过二分的方式来进行解决,在这里我们通过双指针的方式来进行解决。

简单来说就是先设一个left和一个right,然后通过t-p[left]的方式来得到一个值(即以p[left]为确定值的前提来查找有没有另一个值)。因为这个数组是升序的,所以说如果找不到就说明是p[left]太小了,所以left++即可。

class Solution {
public:vector<int> twoSum(vector<int>& p, int t) {int n=p.size();int left=0;vector<int> v;for(left=0;;++left){int right=n-1;while(left<right){if(t-p[left]>p[right])break;else if(t-p[left]<p[right]){right--;}else{v.push_back(p[left]);v.push_back(p[right]);return v;}}}}
};

5. leetcode 15. 三数之和

这道题的话就和上面那到类似,唯一要注意的就是题目要求中说答案中不可以包含重复的三元组。

所以我们要先对其进行去重。三个数都有可能重复,所以三个数都要检查一下。

class Solution {
public:vector<vector<int>> threeSum(vector<int>& nums) {sort(nums.begin(),nums.end());vector<vector<int>> v;int n=nums.size();for(int i=0;i<=n-3;++i){if(i>0&&nums[i]==nums[i-1])continue;int left=i+1;int right=n-1;int t=nums[i];while(left<right){if(t+nums[left]+nums[right]>0){right--;}else if(t+nums[left]+nums[right]<0){left++;}else{v.push_back({nums[i],nums[left],nums[right]});while(left<right&&nums[left]==nums[left+1])left++;while(left<right&&nums[right]==nums[right-1])right--;right--;left++;}}}return v;}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/web/90518.shtml
繁体地址,请注明出处:http://hk.pswp.cn/web/90518.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Elasticsearch整合:Repository+RestClient双模式查询优化

Elasticsearch整合&#xff1a;RepositoryRestClient双模式查询优化Elasticsearch 双模式查询优化&#xff1a;Repository RestClient 整合指南一、架构设计&#xff1a;双模式协同工作流二、Repository 模式&#xff1a;快速开发最佳实践2.1 基础配置2.2 高级特性&#xff1a…

Elasticsearch 高级查询语法 Query DSL 实战指南

目录 1、DSL 概述 1.1 DSL按照查询的结构层次划分 1.2 DSL按照检索功能的用途和特性划分 1.3 示例数据准备 2、match_all ——匹配所有文档 3、精确匹配 3.1 term——单字段精确匹配查询 3.2 terms——多值精确匹配 3.3 range——范围查询 3.4 exists——是否存在查询…

DNS 服务正反向解析与 Web 集成实战:从配置到验证全流程

DNS 服务正反向解析配置全流程指南 一、前言 在网络环境中&#xff0c;DNS&#xff08;Domain Name System&#xff09;服务起着至关重要的作用&#xff0c;它负责将域名解析为 IP 地址&#xff0c;以及将 IP 地址反向解析为域名。本文将详细介绍如何配置 DNS 服务的正反向解析…

2025.07.25【宏基因组】|PathoScope 安装与使用指南

PathoScope 安装与使用指南&#xff1a;微生物组数据分析利器 作为一名生物信息工程师&#xff0c;在微生物组数据分析中&#xff0c;我们常常需要高效、准确的工具来鉴定和量化样本中的微生物组成。PathoScope 正是这样一款强大的工具&#xff0c;它能够帮助我们从高通量测序…

AI结对编程:分布式团队的集体记忆外脑

AI结对编程:分布式团队的集体记忆外脑 “当新人通过AI瞬间掌握三年积累的业务规则时,传统‘传帮带’模式正式宣告过时——分布式团队最珍贵的资产不再是代码,而是被AI固化的集体经验。” 一、人脑的带宽困局 柏林新人加入新加坡支付团队,面临恐怖的知识迷宫: - …

栈----1.有效的括号

20. 有效的括号 - 力扣&#xff08;LeetCode&#xff09; /** 括号特性: 左括号必定先出现,每个左括号都需要一个右括号与之匹配,后出现的左括号先匹配 解法: 依据后出现的左括号先匹配,很容易联想到栈,即后进先出 遍历字符串,遇到左括号就在栈中添加一个对应的右括号 遇到右括…

数据报表怎么自动填写内容?总结了几个方法

你有没有遇到过这种情况&#xff1f;月底赶销售报告&#xff0c;Excel里密密麻麻的数据要往Word里搬&#xff0c;光是复制粘贴就折腾半小时&#xff0c;好不容易搞完&#xff0c;老板突然说数据有更新…得&#xff0c;全白干&#xff01;更崩溃的是&#xff0c;这种重复劳动每个…

构造函数是否可以声明成虚函数?

构造函数&#xff08;constructor&#xff09;不能被声明为虚函数。✅ 原因解释 构造函数的主要职责是创建并初始化对象本身&#xff0c;而虚函数机制是基于 虚表指针&#xff08;vptr&#xff09; 的&#xff0c;它只有在对象构造完成之后才会起作用。 所以&#xff1a; 在构造…

【Rust线程池】如何构建Rust线程池、Rayon线程池用法详细解析

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…

CAN总线网络的参数协同:从一致性要求到容差边界

CAN总线网络的参数协同&#xff1a;从一致性要求到容差边界 一、引言&#xff1a;CAN总线的“隐形契约”二、CAN通信的核心参数&#xff1a;不止于波特率三、参数一致性的必要性&#xff1a;为何波特率相同仍会失败&#xff1f;四、容差范围的科学界定&#xff1a;从理论计算到…

Activity 启动模式

如何指定 Activity 的启动模式&#xff1f;在 AndroidMainfest.xml 中通过给 <activity> 标签指定 android:lauchMode 来选择启动模式。4种启动模式standard&#xff08;默认&#xff09;&#xff1a;每当启动一个 Activity&#xff0c;都会创建一个新的实例压入返回栈。…

7·22胜算云AI日报:OpenAI再扩容且与英国政府签订三年AI计划、字节GR-3、微软Culture计划、国数局数据基地

OpenAI Oracle&#xff1a;4.5 GW「Stargate II」再扩容&#xff0c;AI 电力版图重排 7 月 22 日&#xff0c;OpenAI 与 Oracle 联合公布“Stargate II”计划&#xff1a;双方将在美国多地追加 4.5 GW 超算级电力与冷却配套&#xff0c;使 Stargate 系列园区总规模跃升至 5 GW…

【优选算法】链表

目录链表常用的技巧和操作1、常用技巧2、常用操作一、[两数相加](https://leetcode.cn/problems/add-two-numbers/description/)二、[两两交换链表中的节点](https://leetcode.cn/problems/swap-nodes-in-pairs/description/)三、[重排链表](https://leetcode.cn/problems/reor…

制造业新突破:AR 培训系统助力复杂操作轻松上手​

在制造业&#xff0c;生产设备复杂、操作流程繁琐&#xff0c;新员工掌握操作技能不易。比如汽车制造企业的发动机装配环节&#xff0c;涉及众多精密零部件安装&#xff0c;对安装顺序、位置精度要求严格&#xff0c;一点小失误都可能影响发动机性能甚至引发质量问题。过去新员…

《计算机网络》实验报告八 加密、数字签名与证书

目 录 1、实验目的 2、实验环境 3、实验内容 3.1 对称加密 3.2 散列函数 3.3 非对称加密 3.4 数字签名 3.5 证书 4、实验结果与分析 4.1 对称加密 4.2 散列函数 4.3 非对称加密 4.4 数字签名 4.5 证书 5、实验小结 5.1 问题与解决办法&#xff1a; 5.2 心得体…

MySQL(157)如何分析和优化存储过程?

分析和优化存储过程是数据库性能优化的重要环节。通过对存储过程进行分析和优化&#xff0c;可以提高数据库操作的执行效率&#xff0c;减少资源消耗&#xff0c;改善系统整体性能。以下是详细的步骤和代码示例&#xff0c;介绍如何分析和优化 MySQL 存储过程。 一、分析存储过…

基于深度学习的胸部 X 光图像肺炎分类系统(一)

本文先重点介绍了过采样的原理是实现。 由于医学数据相对缺乏&#xff0c;过采样是解决数据问题的方法之一。 后续写一篇搭建神经网络的说明 目录 概述 导入必要的库 数据加载和预处理函数 处理样本不均衡函数 构建改进的 CNN 模型函数 主函数 数据生成器generator&…

【PGCCC】在 Postgres 中构建复制安全的 LSM 树

在原生 Postgres 实现中&#xff0c;全文搜索由B 树或GIN&#xff08;广义倒排索引&#xff09;结构支持。这些索引针对相对快速的查找进行了优化&#xff0c;但受限于 B 树的写入吞吐量。 当我们构建pg_searchPostgres 搜索和分析扩展时&#xff0c;我们的优先级有所不同。为了…

架构如钟摆:在变与不变之间优雅平衡

在当今数字转型浪潮中&#xff0c;企业在“快速创新”与“长期稳定”之间反复拉扯。是否应该重建所有架构以适应AI&#xff1f;又是否该死守传统系统确保安全与合规&#xff1f;在The Open Group阿姆斯特丹峰会上&#xff0c;凯捷全球 CTO Ron Tolido 借用了一个极具画面感的比…

LLM中的位置嵌入矩阵(Position Embedding Matrix)是什么

LLM中的位置嵌入矩阵(Position Embedding Matrix)是什么 在大语言模型(LLM)中,位置嵌入矩阵(Position Embedding Matrix) 是用来表示输入序列中每个词的位置信息的矩阵。它的核心作用是:让模型能够区分“相同词在不同位置的语义差异”(比如“猫喜欢鱼”中的“猫”和“…