Linux线程入门

目录

Linux线程概念

什么是线程

重新理解进程

线程的优点

线程的缺点

线程的异常

线程用途


Linux线程概念

什么是线程

  • 在一个程序里的一个执行路线就叫做线程(thread)。更准确的定义是:线程是“一个进程内部的控制序列”。
  • 一切进程至少都有一个执行线程。
  • 线程在进程内部运行,本质是在进程地址空间内运行。
  • 在Linux系统中,在CPU眼中,看到的PCB都要比传统的进程更轻量化。
  • 透过进程虚拟地址空间,可以看到进程的大部分资源,将进程资源合理分配给每个执行流,就形成了线程执行流。

根据前言知识,我们创建一个进程的时候,实际上伴随着其进程控制块(task_struct)、进程地址空间(mm_struct)以及页表的创建,而虚拟地址与物理地址就是通过页表映射的。

对于每一个进程的创建都会经过此过程,所以每个进程都是相互独立的,互不干扰的。

对于前面线程的定义来说,一个程序中的一个执行路线就叫线程, 一切进程至少又一个执行线程。所以我们可以简单的知道进程与线程的一个简单的关系:线程是进程的一个执行分支。

除此之外,线程是在进程内部运行的,本质在进程的地址空间上运行,并且进程的资源合理分配给每一个执行流。所以我们可以简单画出线程创建的结果:

此时我们创建了四个线程。

  • 其每一个线程都是进程的一个执行流,也就是我们说的执行分支。
  • 其每一个线程都是在进程内部运行的,都是在进程地址空间内运行的。
  • 并且,进程资源合理分配给每个执行流,几乎都是被所有线程共享的。

所以简单的来说,一个进程可以包含多个线程,这些线程共享进程的资源。

单纯从技术角度,这个是一定能实现的,因为它比创建一个原始进程所做的工作更轻量化了。

 那么刚刚了解了线程,肯定会对以前对进程的了解有一定的困惑,那该如何重新理解之前的进程?

重新理解进程

如图用红色方框框起来的内容,我们将这个整体叫做进程。

因此,对于进程的定义,进程 = 内核数据结构 + 程序的代码和数据,此定义就不准确了。不能简简单单通过task_struct来衡量了。所以的定义应该是 进程 = 多个内核数据结构 + 程序的代码和数据 + 所占的物理内存

现在我们应该站在内核角度来理解进程:承担分配系统资源的基本实体,叫做进程。

换言之,当我们创建进程时是创建一个task_struct、创建地址空间、维护页表,然后在物理内存当中开辟空间、构建映射,打开进程默认打开的相关文件、注册信号对应的处理方案等等。

而我们之前接触到的进程都只有一个task_struct,也就是该进程内部只有一个执行流,即单执行流进程,反之,内部有多个执行流的进程叫做多执行流进程。

在Linux中,站在CPU的角度,是什么样呢?

根据前言对进程的学习,CPU是无法直接以进程为单位进行调度的,而是通过一个队列,然后task_struct 通过内嵌的 sched_entity 间接参与队列。

站在CPU的角度,能否识别当前调度的task_struct是进程还是线程?

答案是不能的,而且也不需要。因为CPU只关心一个一个的独立执行流。无论进程内部只有一个执行流还是有多个执行流,对于CPU而言,只需要将执行流安排好,以他们为基本单位进行调度即可。

单执行流被调度

多执行流被调度

 所以在Linux系统中,对于CPU来说,虽然看到的是task_struct,但是比传统的PCB要更加轻量化。

  • 传统PCB:在经典操作系统中,PCB是描述进程的核心数据结构,包含进程的所有信息(PID、状态、内存映射、文件描述符、上下文等)。

  • Linux的task_struct:虽然名字叫“任务结构体”,但它实际是线程的抽象(因为Linux不区分进程和线程,均用task_struct表示)。一个进程可能包含多个task_struct(多线程时),共享同一份资源(如内存空间)。

所以在Linux系统下,对CPU而言,线程<=执行流<=进程。

所以在Liunx系统下,线程是基本调度单位,线程也就是task_struct!!!但仅限Linux下。

Linux下并不存在真正的线程!而是用进程模拟的!

操作系统中存在大量的进程,一个进程内又存在一个或多个线程,因此线程的数量一定比进程的数量多,当线程的数量足够多的时候,很明显线程的执行粒度要比进程更细。

如果一款操作系统要支持真的线程,那么就需要对这些线程进行管理。比如说创建线程、终止线程、调度线程、切换线程、给线程分配资源、释放资源以及回收资源等等,所有的这一套相比较进程都需要另起炉灶,搭建一套与进程平行的线程管理模块。

因此,如果要支持真的线程一定会提高设计操作系统的复杂程度。在Linux看来,描述线程的控制块和描述进程的控制块是类似的,因此Linux并没有重新为线程设计数据结构,而是直接复用了进程控制块,所以我们说Linux中的所有执行流都叫做轻量级进程。

但也有支持真的线程的操作系统,比如Windows操作系统,因此Windows操作系统系统的实现逻辑一定比Linux操作系统的实现逻辑要复杂得多。

既然在Linux没有真正意义的线程,那么也就绝对没有真正意义上的线程相关的系统调用!

这很好理解,既然在Linux中都没有真正意义上的线程了,那么自然也没有真正意义上的线程相关的系统调用了。但是Linux可以提供创建轻量级进程的接口,也就是创建进程,共享空间,其中最典型的代表就是vfork函数。

vfork函数的功能就是创建子进程,但是父子共享空间,v函数fork的函数原型如下:

pid_t vfork(void);

vfork函数的返回值与fork函数的返回值相同:

  • 给父进程返回子进程的PID。
  • 给子进程返回0。

只不过vfork函数创建出来的子进程与其父进程共享地址空间,例如在下面的代码中,父进程使用vfork函数创建子进程,子进程将全局变量g_val由100改为了200,父进程休眠3秒后再读取到全局变量g_val的值。

#include <iostream>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>using namespace std;int g_val = 100;int main()
{pid_t id = vfork();if (id == 0){//childg_val = 200;printf("child:PID:%d, PPID:%d, g_val:%d\n", getpid(), getppid(), g_val);exit(0);}// fathersleep(2);printf("father:PID:%d, PPID:%d, g_val:%d\n", getpid(), getppid(), g_val);return 0;
}

父进程读取到g_val的值是子进程修改后的值,也就证明了vfork创建的子进程与其父进程是共享地址空间的。

其实这样暗示了fork创建的子进程并不属于线程!!! fork创建的是完整的子进程,该子进程是父进程的完整副本

线程的优点

  • 创建一个新线程的代价要比创建一个新进程小得多
  • 与进程之间的切换相比,线程之间的切换需要操作系统做的工作要少很多
  • 线程占用的资源要比进程少很多
  • 能充分利用多处理器的可并行数量
  • 在等待慢速I/O操作结束的同时,程序可执行其他的计算任务
  • 计算密集型应用,为了能在多处理器系统上运行,将计算分解到多个线程中实现
  • I/O密集型应用,为了提高性能,将I/O操作重叠。线程可以同时等待不同的I/O操作。

线程的缺点

  • 性能损失:一个很少被外部事件阻塞的计算密集型线程往往无法与共它线程共享同一个处理器。如果计算密集型线程的数量比可用的处理器多,那么可能会有较大的性能损失,这里的性能损失指的是增加了额外的同步和调度开销,而可用的资源不变。
  • 健壮性降低:编写多线程需要更全面更深入的考虑,在一个多线程程序里,因时间分配上的细微偏差或者因共享了不该共享的变量而造成不良影响的可能性是很大的,换句话说线程之间是缺乏保护的。
  • 缺乏访问控制:进程是访问控制的基本粒度,在一个线程中调用某些OS函数会对整个进程造成影响。
  • 程难度提高:编写与调试一个多线程程序比单线程程序困难得多

线程的异常

  • 单个线程如果出现除零,野指针问题导致线程崩溃,进程也会随着崩溃
  • 线程是进程的执行分支,线程出异常,就类似进程出异常,进而触发信号机制,终止进程,进程终止,该进程内的所有线程也就随即退出

线程用途

  • 合理的使用多线程,能提高CPU密集型程序的执行效率
  • 合理的使用多线程,能提高IO密集型程序的用户体验(如生活中我们一边写代码一边下载开发工具,就是多线程运行的一种表现)

最用再用一张图在总结一下

 这篇文章仅仅是对线程的一个简单的入门,后面还会对线程进行更为详细的讲解与其应用场景!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/bicheng/82953.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

通信应用高速模数转换器ADC

在5G通信、医疗成像、航空航天及工业自动化等关键领域&#xff0c;高速ADC模数转换器作为信号链的“心脏”&#xff0c;其性能直接决定了系统的精度与效率。然而&#xff0c;如何精确测试高速ADC的动态参数、优化设计验证流程、应对复杂应用场景的挑战&#xff0c;始终是工程师…

PostgreSQL 中 JSONB 数据类型的深度解析以及如何使用

一、JSONB 核心特性解析 1. 存储结构与优势 ​​二进制存储​​&#xff1a;将 JSON 数据解析为二进制格式&#xff08;分解键值对&#xff0c;去除空格和重复键&#xff09;​​高效查询​​&#xff1a;支持 GIN/GiST 索引&#xff0c;查询速度比 JSON 类型快 10 倍​​数据…

C++_核心编程_ 左移运算符重载 “<<” 左移运算符

作用&#xff1a;可以输出自定义数据类型 */ //目标 调用p1,输出Person 中的属性 m_A ,m_B &#xff1a; /* #### 4.5.2 左移运算符重载 “<<” 左移运算符 作用&#xff1a;可以输出自定义数据类型 *///目标 调用p1,输出Person 中的属性 m_A ,m_B &#xff1a; class…

thinkphp 5.1 部分知识记录<一>

1、配置基础 惯例配置->应用配置->模块配置->动态配置 惯例配置:核心框架内置的配置文件,无需更改。应用配置:每个应用的全局配置文件(框架安装后会生成初始的应用配置文件),有部分配置参数仅能在应用配置文件中设置。模块配置:每个模块的配置文件(相同的配置…

数据结构 -- 树相关面试题

二、树相关的填空题 1.对于一个具有 n 个结点的二叉树&#xff0c;当它为一棵 ________ 二叉树时&#xff0c;具有最小高度&#xff0c;即为 ________&#xff1b;当它为一棵单支树时具有最大高度&#xff0c;即为 ________。 2.对于一个具有 n 个结点的二叉树&#xff0c;当它…

2025河北CCPC 题解(部分)

签到题&#xff1a;AC代码如下 &#xff1a; // Problem: H - What is all you need? // Contest: Virtual Judge - sdccpc20250526 // URL: https://vjudge.net/contest/718568#problem/H // Memory Limit: 1024 MB // Time Limit: 1000 ms // // Powered by CP Editor (ht…

计算机视觉---YOLOv4

YOLOv4&#xff08;You Only Look Once v4&#xff09;于2020年由Alexey Bochkovskiy等人提出&#xff0c;是YOLO系列的重要里程碑。它在YOLOv3的基础上整合了当时最先进的计算机视觉技术&#xff0c;实现了检测速度与精度的显著提升。以下从主干网络、颈部网络、头部检测、训练…

OpenCV 第7课 图像处理之平滑(一)

1. 图像噪声 在采集、处理和传输过程中,数字图像可能会受到不同噪声的干扰,从而导致图像质量降低、图像变得模糊、图像特征被淹没,而图像平滑处理就是通过除去噪声来达到图像增强的目的。常见的图像噪声有椒盐噪声、高斯噪声等。 1.1 椒盐噪声 椒盐噪声(Salt-and-pepper N…

Spring AI 系列3: Promt提示词

一、Promt提示词 Promt提示是引导 AI 模型生成特定输出的输入&#xff0c; 提示的设计和措辞会显著影响模型的响应。 在 Spring AI 中与 AI 模型交互的最低层级&#xff0c;处理提示有点类似于在 Spring MVC 中管理”视图”。 这涉及创建带有动态内容占位符的大段文本。 这些占…

随叫随到的电力补给:移动充电服务如何重塑用户体验?

在快节奏的现代生活中&#xff0c;电力已成为维系日常运转的隐形血脉。智能手机、电动汽车、便携设备的普及&#xff0c;让“电量焦虑”逐渐演变为一种时代症候。而移动充电服务的兴起&#xff0c;正悄然改变这一局面。它像一位隐形的能源管家&#xff0c;随时响应需求&#xf…

LeetCode 75. 颜色分类 - 双指针法高效解决(Java实现)

文章目录 问题描述算法思路&#xff1a;三指针分区法核心思想指针定义 Java实现算法执行流程关键问题解析&#xff1a;为什么交换0后不需要重新检查&#xff1f;交换0时的两种情况分析详细解释&#xff1a; 复杂度分析示例演示&#xff08;输入&#xff1a;[2,0,2,1,1,0]&#…

【MySQL】C语言连接

要使用C语言连接mysql&#xff0c;需要使用mysql官网提供的库&#xff0c;大家可以去官网下载 我们使用C接口库来进行连接 要正确使用&#xff0c;我们需要做一些准备工作: 保证mysql服务有效在官网上下载合适自己平台的mysql connect库&#xff0c;以备后用 下载开发库 s…

NFS 挂载配置与优化最佳实践指南

文章目录 NFS 挂载配置与优化最佳实践指南1. 服务器端配置1.1 安装 NFS 服务1.2 配置共享目录常用配置选项说明 1.3 启动与检查服务 2. 客户端挂载2.1 安装 NFS 客户端2.2 挂载 NFS 共享2.3 自动挂载 3. 客户端挂载选项4. 性能优化与故障排查4.1 性能优化建议4.2 常见问题排查 …

3D PDF如何制作?SOLIDWORKS MBD模板定制技巧

SOLIDWORKS制作3D PDF模版 SOLIDWORKS MBD能够帮助工程师以清晰直观的方式描述产品尺寸信息。在3D PDF文件中&#xff0c;用户可以自由旋转和移动视图&#xff0c;方便查看模型的各个尺寸细节。 本文将带您一步步学习如何使用SOLIDWORKS MBD制作专业的3D PDF模板&#xff0c;…

Unity-QFramework框架学习-MVC、Command、Event、Utility、System、BindableProperty

QFramework QFramework简介 QFramework是一套渐进式、快速开发框架&#xff0c;适用于任何类型的游戏及应用项目&#xff0c;它包含一套开发架构和大量的工具集 QFramework的特性 简洁性&#xff1a;QFramework 强调代码的简洁性和易用性&#xff0c;让开发者能够快速上手&a…

R3GAN训练自己的数据集

简介 简介&#xff1a;这篇论文挑战了"GANs难以训练"的广泛观点&#xff0c;通过提出一个更稳定的损失函数和现代化的网络架构&#xff0c;构建了一个简洁而高效的GAN基线模型R3GAN。作者证明了通过合适的理论基础和架构设计&#xff0c;GANs可以稳定训练并达到优异…

【PhysUnits】15.1 引入P1后的加一特质(add1.rs)

一、源码 代码实现了类型系统中的"加一"操作&#xff08;Add1 trait&#xff09;&#xff0c;用于在编译期进行数字的增量计算。 //! 加一操作特质实现 / Increment operation trait implementation //! //! 说明&#xff1a; //! 1. Z0、P1,、N1 1&#xff0…

记录算法笔记(2025.5.29)最小栈

设计一个支持 push &#xff0c;pop &#xff0c;top 操作&#xff0c;并能在常数时间内检索到最小元素的栈。 实现 MinStack 类: MinStack() 初始化堆栈对象。void push(int val) 将元素val推入堆栈。void pop() 删除堆栈顶部的元素。int top() 获取堆栈顶部的元素。int get…

Android高级开发第一篇 - JNI(初级入门篇)

文章目录 Android高级开发JNI开发第一篇&#xff08;初级入门篇&#xff09;&#x1f9e0; 一、什么是 JNI&#xff1f;✅ 为什么要用 JNI&#xff1f; ⚙️ 二、开发环境准备开发工具 &#x1f680; 三、创建一个支持 JNI 的 Android 项目第一步&#xff1a;创建新项目项目结构…

PyTorch Image Models (timm) 技术指南

timm PyTorch Image Models (timm) 技术指南功能概述 一、引言二、timm 库概述三、安装 timm 库四、模型加载与推理示例4.1 通用推理流程4.2 具体模型示例4.2.1 ResNeXt50-32x4d4.2.2 EfficientNet-V2 Small 模型4.2.3 DeiT-3 large 模型4.2.4 RepViT-M2 模型4.2.5 ResNet-RS-1…