【Day40】

DAY 40 训练和测试的规范写法

知识点回顾

  1. 彩色灰度图片测试训练规范写法封装在函数中
  2. 操作第一个维度batchsize全部展
  3. dropout操作训练阶段随机丢弃神经元测试阶段eval模式关闭dropout

作业仔细学习测试和训练代码逻辑这是基础这个代码框架后续会一直沿用后续重点慢慢就是转向模型定义阶段

"""
DAY 40 训练和测试的规范写法本节介绍深度学习中训练和测试的规范写法,包括:
1. 训练和测试函数的封装
2. 展平操作
3. dropout的使用
4. 训练过程可视化
"""import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
from torch.utils.data import DataLoader# 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei']  # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号# 设置随机种子,确保结果可复现
torch.manual_seed(42)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")#====================== 1. 数据加载 ======================def load_data(batch_size=64, is_train=True):"""加载CIFAR-10数据集Args:batch_size: 批次大小is_train: 是否为训练集Returns:dataloader: 数据加载器"""transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])dataset = torchvision.datasets.CIFAR10(root='./data', train=is_train,download=True,transform=transform)dataloader = DataLoader(dataset,batch_size=batch_size,shuffle=is_train,  # 训练集打乱,测试集不打乱num_workers=2)return dataloader#====================== 2. 模型定义 ======================class SimpleNet(nn.Module):def __init__(self, dropout_rate=0.5):super(SimpleNet, self).__init__()# 修改第一层卷积的输入通道为3(彩色图像)self.conv1 = nn.Conv2d(3, 32, 3, 1)self.conv2 = nn.Conv2d(32, 64, 3, 1)self.dropout1 = nn.Dropout2d(dropout_rate)  # 2D dropout用于卷积层self.dropout2 = nn.Dropout(dropout_rate)    # 1D dropout用于全连接层# 展平后的特征图大小计算:# 原始图像: 32x32# conv1: (32-3+1)x(32-3+1) = 30x30# maxpool: 15x15# conv2: (15-3+1)x(15-3+1) = 13x13# maxpool: 6x6# 因此全连接层输入大小为: 64 * 6 * 6self.fc1 = nn.Linear(64 * 6 * 6, 128)self.fc2 = nn.Linear(128, 10)def forward(self, x):x = self.conv1(x)x = F.relu(x)x = F.max_pool2d(x, 2)x = self.conv2(x)x = F.relu(x)x = F.max_pool2d(x, 2)x = self.dropout1(x)  # 训练时随机丢弃,测试时自动关闭# 展平操作:保留batch_size维度,其余维度展平x = torch.flatten(x, 1)  # 等价于 x.view(x.size(0), -1)x = self.fc1(x)x = F.relu(x)x = self.dropout2(x)x = self.fc2(x)return F.log_softmax(x, dim=1)#====================== 3. 训练函数 ======================def train(model, train_loader, optimizer, epoch, history):"""训练一个epochArgs:model: 模型train_loader: 训练数据加载器optimizer: 优化器epoch: 当前epoch数history: 记录训练历史的字典Returns:epoch_loss: 当前epoch的平均损失epoch_acc: 当前epoch的准确率"""model.train()  # 设置为训练模式,启用dropouttrain_loss = 0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()  # 清空梯度output = model(data)   # 前向传播loss = F.nll_loss(output, target)  # 计算损失loss.backward()        # 反向传播optimizer.step()       # 更新参数train_loss += loss.item()pred = output.max(1, keepdim=True)[1]  # 获取最大概率的索引correct += pred.eq(target.view_as(pred)).sum().item()total += target.size(0)if batch_idx % 100 == 0:print(f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)} 'f'({100. * batch_idx / len(train_loader):.0f}%)]\t'f'Loss: {loss.item():.6f}\t'f'Accuracy: {100. * correct / total:.2f}%')# 计算epoch的平均损失和准确率epoch_loss = train_loss / len(train_loader)epoch_acc = 100. * correct / total# 记录训练历史history['train_loss'].append(epoch_loss)history['train_acc'].append(epoch_acc)return epoch_loss, epoch_acc#====================== 4. 测试函数 ======================def test(model, test_loader, history):"""在测试集上评估模型Args:model: 模型test_loader: 测试数据加载器history: 记录训练历史的字典Returns:test_loss: 测试集上的平均损失accuracy: 测试集上的准确率"""model.eval()  # 设置为评估模式,关闭dropouttest_loss = 0correct = 0with torch.no_grad():  # 测试时不需要计算梯度for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += F.nll_loss(output, target, reduction='sum').item()pred = output.max(1, keepdim=True)[1]correct += pred.eq(target.view_as(pred)).sum().item()test_loss /= len(test_loader.dataset)accuracy = 100. * correct / len(test_loader.dataset)# 记录测试历史history['test_loss'].append(test_loss)history['test_acc'].append(accuracy)print(f'\nTest set: Average loss: {test_loss:.4f}, 'f'Accuracy: {correct}/{len(test_loader.dataset)} 'f'({accuracy:.2f}%)\n')return test_loss, accuracy#====================== 5. 可视化函数 ======================def plot_training_history(history):"""绘制训练历史曲线Args:history: 包含训练和测试历史数据的字典"""epochs = range(1, len(history['train_loss']) + 1)# 创建一个包含两个子图的图表plt.figure(figsize=(12, 4))# 绘制损失曲线plt.subplot(1, 2, 1)plt.plot(epochs, history['train_loss'], 'b-', label='训练损失')plt.plot(epochs, history['test_loss'], 'r-', label='测试损失')plt.title('训练和测试损失')plt.xlabel('Epoch')plt.ylabel('损失')plt.legend()plt.grid(True)# 绘制准确率曲线plt.subplot(1, 2, 2)plt.plot(epochs, history['train_acc'], 'b-', label='训练准确率')plt.plot(epochs, history['test_acc'], 'r-', label='测试准确率')plt.title('训练和测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.legend()plt.grid(True)plt.tight_layout()plt.show()def visualize_predictions(model, test_loader, num_samples=5):"""可视化模型预测结果Args:model: 训练好的模型test_loader: 测试数据加载器num_samples: 要显示的样本数量"""model.eval()# 获取一批数据dataiter = iter(test_loader)images, labels = next(dataiter)# 获取预测结果with torch.no_grad():outputs = model(images.to(device))_, predicted = torch.max(outputs, 1)# 显示图像和预测结果fig = plt.figure(figsize=(12, 3))for idx in range(num_samples):ax = fig.add_subplot(1, num_samples, idx + 1)img = images[idx] / 2 + 0.5  # 反标准化npimg = img.numpy()plt.imshow(np.transpose(npimg, (1, 2, 0)))ax.set_title(f'预测: {classes[predicted[idx]]}\n实际: {classes[labels[idx]]}',color=('green' if predicted[idx] == labels[idx] else 'red'))plt.axis('off')plt.tight_layout()plt.show()#====================== 6. 主函数 ======================# CIFAR-10数据集的类别
classes = ('飞机', '汽车', '鸟', '猫', '鹿', '狗', '青蛙', '马', '船', '卡车')def main():# 超参数设置batch_size = 64epochs = 9lr = 0.01dropout_rate = 0.5# 初始化训练历史记录history = {'train_loss': [],'train_acc': [],'test_loss': [],'test_acc': []}# 加载数据print("正在加载训练集...")train_loader = load_data(batch_size, is_train=True)print("正在加载测试集...")test_loader = load_data(batch_size, is_train=False)# 创建模型model = SimpleNet(dropout_rate=dropout_rate).to(device)optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9)# 训练和测试print(f"开始训练,使用设备: {device}")for epoch in range(1, epochs + 1):train_loss, train_acc = train(model, train_loader, optimizer, epoch, history)test_loss, test_acc = test(model, test_loader, history)# 可视化训练过程print("训练完成,绘制训练历史...")plot_training_history(history)# 可视化预测结果print("可视化模型预测结果...")visualize_predictions(model, test_loader)if __name__ == '__main__':main()"""
重点说明:1. 训练和测试的区别:- 训练时:model.train(),启用dropout- 测试时:model.eval(),关闭dropout2. 展平操作:- torch.flatten(x, 1) 或 x.view(x.size(0), -1)- 保留第一维度(batch_size),其余维度展平3. dropout的使用:- 训练阶段:随机丢弃神经元,防止过拟合- 测试阶段:自动关闭dropout,使用完整网络4. 规范写法的优点:- 代码结构清晰,便于维护- 功能模块化,易于复用- 训练过程可控,便于调试- 适用于不同的数据集和模型
"""
Train Epoch: 1 [19200/50000 (38%)]      Loss: 1.878432  Accuracy: 24.59%
Train Epoch: 1 [25600/50000 (51%)]      Loss: 1.737842  Accuracy: 27.03%
Train Epoch: 1 [32000/50000 (64%)]      Loss: 1.608304  Accuracy: 29.29%
Train Epoch: 1 [38400/50000 (77%)]      Loss: 1.654722  Accuracy: 30.90%
Train Epoch: 1 [44800/50000 (90%)]      Loss: 1.781868  Accuracy: 32.24%Test set: Average loss: 1.4125, Accuracy: 4879/10000 (48.79%)Train Epoch: 2 [0/50000 (0%)]   Loss: 1.725113  Accuracy: 31.25%
Train Epoch: 2 [6400/50000 (13%)]       Loss: 1.371717  Accuracy: 43.70%
Train Epoch: 2 [12800/50000 (26%)]      Loss: 1.377221  Accuracy: 43.85%
Train Epoch: 2 [19200/50000 (38%)]      Loss: 1.497515  Accuracy: 44.32%
Train Epoch: 2 [25600/50000 (51%)]      Loss: 1.509949  Accuracy: 44.92%
Train Epoch: 2 [32000/50000 (64%)]      Loss: 1.322219  Accuracy: 45.19%
Train Epoch: 2 [38400/50000 (77%)]      Loss: 1.451519  Accuracy: 45.65%
Train Epoch: 2 [44800/50000 (90%)]      Loss: 1.284523  Accuracy: 46.09%Test set: Average loss: 1.2420, Accuracy: 5596/10000 (55.96%)Train Epoch: 3 [0/50000 (0%)]   Loss: 1.457208  Accuracy: 57.81%
Train Epoch: 3 [6400/50000 (13%)]       Loss: 1.411661  Accuracy: 49.80%
Train Epoch: 3 [12800/50000 (26%)]      Loss: 1.251750  Accuracy: 49.25%
Train Epoch: 3 [19200/50000 (38%)]      Loss: 1.485202  Accuracy: 49.98%
Train Epoch: 3 [25600/50000 (51%)]      Loss: 1.219448  Accuracy: 50.09%
Train Epoch: 3 [32000/50000 (64%)]      Loss: 1.319644  Accuracy: 50.40%
Train Epoch: 3 [38400/50000 (77%)]      Loss: 1.431417  Accuracy: 50.58%
Train Epoch: 3 [44800/50000 (90%)]      Loss: 1.321420  Accuracy: 51.04%Test set: Average loss: 1.1419, Accuracy: 6067/10000 (60.67%)Train Epoch: 4 [0/50000 (0%)]   Loss: 1.274258  Accuracy: 54.69%
Train Epoch: 4 [6400/50000 (13%)]       Loss: 1.455593  Accuracy: 53.57%
Train Epoch: 4 [12800/50000 (26%)]      Loss: 1.439796  Accuracy: 53.95%
Train Epoch: 4 [19200/50000 (38%)]      Loss: 1.333504  Accuracy: 54.18%
Train Epoch: 4 [25600/50000 (51%)]      Loss: 1.127613  Accuracy: 54.53%
Train Epoch: 4 [32000/50000 (64%)]      Loss: 1.197434  Accuracy: 54.76%
Train Epoch: 4 [38400/50000 (77%)]      Loss: 1.217459  Accuracy: 54.58%
Train Epoch: 4 [44800/50000 (90%)]      Loss: 1.249435  Accuracy: 54.67%Test set: Average loss: 1.0938, Accuracy: 6156/10000 (61.56%)Train Epoch: 5 [0/50000 (0%)]   Loss: 1.200900  Accuracy: 54.69%
Train Epoch: 5 [6400/50000 (13%)]       Loss: 1.200518  Accuracy: 55.96%
Train Epoch: 5 [12800/50000 (26%)]      Loss: 1.267728  Accuracy: 56.58%
Train Epoch: 5 [19200/50000 (38%)]      Loss: 1.501915  Accuracy: 56.76%
Train Epoch: 5 [25600/50000 (51%)]      Loss: 1.248580  Accuracy: 56.72%
Train Epoch: 5 [32000/50000 (64%)]      Loss: 1.385589  Accuracy: 56.64%
Train Epoch: 5 [38400/50000 (77%)]      Loss: 1.377769  Accuracy: 56.59%
Train Epoch: 5 [44800/50000 (90%)]      Loss: 1.355240  Accuracy: 56.62%Test set: Average loss: 1.0414, Accuracy: 6448/10000 (64.48%)Train Epoch: 6 [0/50000 (0%)]   Loss: 1.194540  Accuracy: 64.06%
Train Epoch: 6 [6400/50000 (13%)]       Loss: 1.255205  Accuracy: 59.00%
Train Epoch: 6 [12800/50000 (26%)]      Loss: 1.216109  Accuracy: 58.45%
Train Epoch: 6 [19200/50000 (38%)]      Loss: 0.916238  Accuracy: 58.74%
Train Epoch: 6 [25600/50000 (51%)]      Loss: 1.081454  Accuracy: 58.52%
Train Epoch: 6 [32000/50000 (64%)]      Loss: 1.170482  Accuracy: 58.42%
Train Epoch: 6 [38400/50000 (77%)]      Loss: 1.263351  Accuracy: 58.43%
Train Epoch: 6 [44800/50000 (90%)]      Loss: 1.197278  Accuracy: 58.45%Test set: Average loss: 0.9976, Accuracy: 6609/10000 (66.09%)Train Epoch: 7 [0/50000 (0%)]   Loss: 1.296109  Accuracy: 51.56%
Train Epoch: 7 [6400/50000 (13%)]       Loss: 1.194998  Accuracy: 59.25%
Train Epoch: 7 [12800/50000 (26%)]      Loss: 1.045425  Accuracy: 58.80%
Train Epoch: 7 [19200/50000 (38%)]      Loss: 1.096962  Accuracy: 59.35%
Train Epoch: 7 [25600/50000 (51%)]      Loss: 1.002581  Accuracy: 59.48%
Train Epoch: 7 [32000/50000 (64%)]      Loss: 1.101984  Accuracy: 59.45%
Train Epoch: 7 [38400/50000 (77%)]      Loss: 0.934384  Accuracy: 59.56%
Train Epoch: 7 [44800/50000 (90%)]      Loss: 1.025743  Accuracy: 59.56%Test set: Average loss: 0.9824, Accuracy: 6663/10000 (66.63%)Train Epoch: 8 [0/50000 (0%)]   Loss: 1.121836  Accuracy: 60.94%
Train Epoch: 8 [6400/50000 (13%)]       Loss: 1.057686  Accuracy: 60.47%
Train Epoch: 8 [12800/50000 (26%)]      Loss: 1.132846  Accuracy: 60.13%
Train Epoch: 8 [19200/50000 (38%)]      Loss: 1.094760  Accuracy: 59.88%
Train Epoch: 8 [25600/50000 (51%)]      Loss: 1.392307  Accuracy: 59.98%
Train Epoch: 8 [32000/50000 (64%)]      Loss: 0.905305  Accuracy: 60.01%
Train Epoch: 8 [38400/50000 (77%)]      Loss: 1.293327  Accuracy: 60.11%
Train Epoch: 8 [44800/50000 (90%)]      Loss: 1.154168  Accuracy: 60.13%Test set: Average loss: 0.9402, Accuracy: 6824/10000 (68.24%)Train Epoch: 9 [0/50000 (0%)]   Loss: 0.742247  Accuracy: 70.31%
Train Epoch: 9 [6400/50000 (13%)]       Loss: 0.880693  Accuracy: 60.89%
Train Epoch: 9 [12800/50000 (26%)]      Loss: 1.063176  Accuracy: 61.19%
Train Epoch: 9 [19200/50000 (38%)]      Loss: 1.462891  Accuracy: 61.12%
Train Epoch: 9 [25600/50000 (51%)]      Loss: 1.227893  Accuracy: 61.29%
Train Epoch: 9 [32000/50000 (64%)]      Loss: 0.829324  Accuracy: 61.12%
Train Epoch: 9 [38400/50000 (77%)]      Loss: 1.199507  Accuracy: 61.10%
Train Epoch: 9 [44800/50000 (90%)]      Loss: 1.242885  Accuracy: 61.04%Test set: Average loss: 0.9322, Accuracy: 6954/10000 (69.54%)

训练完成,绘制训练历史...

 

 可视化模型预测结果...

浙大疏锦行 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/bicheng/82988.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【HTML-13】HTML表格合并技术详解:打造专业数据展示

表格是HTML中展示结构化数据的重要元素,而表格合并则是提升表格表现力的关键技术。本文将全面介绍HTML中的表格合并方法,帮助您创建更专业、更灵活的数据展示界面。 1. 表格合并基础概念 在HTML中,表格合并主要通过两个属性实现&#xff1a…

<uniapp><threejs>在uniapp中,怎么使用threejs来显示3D图形?

前言 本专栏是基于uniapp实现手机端各种小功能的程序,并且基于各种通讯协议如http、websocekt等,实现手机端作为客户端(或者是手持机、PDA等),与服务端进行数据通讯的实例开发。 发文平台 CSDN 环境配置 系统:windows 平台:visual studio code、HBuilderX(uniapp开…

如何制作全景VR图?

全景VR图,特别是720度全景VR,为观众提供一种沉浸式体验。 全景VR图能够捕捉场景的全貌,还能将多个角度的图片或视频无缝拼接成一个完整的全景视角,让观众在虚拟环境中自由探索。随着虚拟现实(VR)技术的飞速…

前端使用qrcode来生成二维码的时候中间添加logo图标

这个开源仓库可以让你在前端页面中生成二维码图片,并且支持调整前景色和背景色,但是有个问题,就是不能添加logo图片。issue: GitHub Where software is built 但是已经有解决方案了: add a logo picture Issue #21…

【C语言】函数指针及其应用

目录 1.1 函数指针的概念和应用 1.2 赋值与内存模型 1.3 调用方式与注意事项 二、函数指针的使用 2.1 函数指针的定义和访问 2.2 动态调度:用户输入驱动函数执行 2.3 函数指针数组进阶应用 2.4 函数作为参数的高阶抽象 三、回调函数 3.1 指针函数…

安装flash-attention失败的终极解决方案(WINDOWS环境)

想要看linux版本下安装问题的请走这里:安装flash-attention失败的终极解决方案(LINUX环境) 其实,现在的flash-attention不像 v2.3.2之前的版本,基本上不兼容WINDOWS环境。但是在WINDOWS环境安装总还是有那么一点不顺畅…

[C]基础16.数据在内存中的存储

博客主页:向不悔本篇专栏:[C]您的支持,是我的创作动力。 文章目录 0、总结1、整数在内存中的存储1.1 整数的二进制表示方法1.2 不同整数的表示方法1.3 内存中存储的是补码 2、大小端字节序和字节序判断2.1 什么是大小端2.2 为什么有大小端2.3…

Python 基于卷积神经网络手写数字识别

Ubuntu系统:22.04 python版本:3.9 安装依赖库: pip install tensorflow2.13 matplotlib numpy -i https://mirrors.aliyun.com/pypi/simple 代码实现: import tensorflow as tf from tensorflow.keras.models import Sequent…

ElectronBot复刻-电路测试篇

typec-16p 接口部分 USB1(Type - C 接口):这是通用的 USB Type - C 接口,具备供电和数据传输功能。 GND 引脚(如 A1、A12、B1、B12 等):接地引脚,用于提供电路的参考电位&#xff0…

ESP8266+STM32 AT驱动程序,心知天气API 记录时间: 2025年5月26日13:24:11

接线为 串口2 接入ESP8266 esp8266.c #include "stm32f10x.h"//8266预处理文件 #include "esp8266.h"//硬件驱动 #include "delay.h" #include "usart.h"//用得到的库 #include <string.h> #include <stdio.h> #include …

CDN安全加速:HTTPS加密最佳配置方案

CDN安全加速的HTTPS加密最佳配置方案需从证书管理、协议优化、安全策略到性能调优进行全链路设计&#xff0c;以下是核心实施步骤与注意事项&#xff1a; ​​一、证书配置与管理​​ ​​证书选择与格式​​ ​​证书类型​​&#xff1a;优先使用受信任CA机构颁发的DV/OV/EV证…

【前端】Twemoji(Twitter Emoji)

目录 注意使用Vue / React 项目 验证 Twemoji 的作用&#xff1a; Twemoji 会把你网页/应用中的 Emoji 字符&#xff08;如 &#x1f604;&#xff09;自动替换为 Twitter 风格的图片&#xff08;SVG/PNG&#xff09;&#xff1b; 它不依赖系统字体&#xff0c;因此在 Android、…

GCN图神经网络的光伏功率预测

一、GCN图神经网络的核心优势 图结构建模能力 GCN通过邻接矩阵&#xff08;表示节点间关系&#xff09;和节点特征矩阵&#xff08;如气象数据、历史功率&#xff09;进行特征传播&#xff0c;能够有效捕捉光伏电站间的空间相关性。其核心公式为&#xff1a; H ( l 1 ) σ (…

按照状态实现自定义排序的方法

方法一&#xff1a;使用 MyBatis-Plus 的 QueryWrapper 自定义排序 在查询时动态构建排序规则&#xff0c;通过 CASE WHEN 语句实现优先级排序&#xff1a; import com.baomidou.mybatisplus.core.conditions.query.QueryWrapper; import org.springframework.stereotype.Ser…

【计算机网络】IPv6和NAT网络地址转换

IPv6 IPv6协议使用由单/双冒号分隔一组数字和字母&#xff0c;例如2001:0db8:85a3:0000:0000:8a2e:0370:7334&#xff0c;分成8段。IPv6 使用 128 位互联网地址&#xff0c;有 2 128 2^{128} 2128个IP地址无状态地址自动配置&#xff0c;主机可以通过接口标识和网络前缀生成全…

【Redis】string

String 字符串 字符串类型是 Redis 最基础的数据类型&#xff0c;关于字符串需要特别注意&#xff1a; 首先 Redis 中所有的键的类型都是字符串类型&#xff0c;而且其他几种数据结构也都是在字符串的基础上构建的。字符串类型的值实际可以是字符串&#xff0c;包含一般格式的…

基于ELK的分布式日志实时分析与可视化系统设计

目录 一、ELK平台介绍 1.ELK概述 2.Elasticsearch 3.Logstash 4.Kibana 二、部署ES群集 1.资源清单 2.基本配置 3.安装Elasticsearch&#xff08;elk1上、elk2上、elk3上&#xff09; 4.安装logstash&#xff08;elk1上&#xff09; 5.Filebeat 6.安装Kibana&#x…

电机控制选 STM32 还是 DSP?技术选型背后的现实博弈

现在搞电机控制&#xff0c;圈里人都门儿清 —— 主流方案早就被 STM32 这些 Cortex-M 单片机给拿捏了。可要是撞上系统里的老甲方&#xff0c;技术认知还停留在诺基亚砸核桃的年代&#xff0c;非揪着 DSP 不放&#xff0c;咱也只能赔笑脸&#xff1a;“您老说的对&#xff0c;…

【案例分享】蓝牙红外线影音遥控键盘:瑞昱RTL8752CJF

蓝牙红外线影音遥控键盘 Remotec的无线控制键盘采用瑞昱蓝牙RTL8752CJF解决方案&#xff0c;透过蓝牙5.0与手机配对后&#xff0c;连线至 Remotec 红外 code server 取得对应影音视觉设备的红外 code后&#xff0c;即可控制多达2个以上的影音视觉设备&#xff0c;像是智能电视…

PostgreSQL如何更新和删除表数据

这节说下怎样更新和删除表数据&#xff0c;当然认识命令了&#xff0c;可以问AI帮忙写。 接上节先看下天气表weather的数据&#xff0c;增加了杭州和西安的数据&#xff1a; 一.UPDATE更新命令 用UPDATE命令更新现有的行。 假设所有 杭州 5月12日的温度低了两度&#xff0c;用…