TKernel模块–杂项
1.DEFINE_HARRAY1
#define DEFINE_HARRAY1(HClassName, _Array1Type_) \
class HClassName : public _Array1Type_, public Standard_Transient { \public: \DEFINE_STANDARD_ALLOC \DEFINE_NCOLLECTION_ALLOC \HClassName () : _Array1Type_ () {} \HClassName (const Standard_Integer theLower, \const Standard_Integer theUpper) : \_Array1Type_ (theLower,theUpper) {} \HClassName (const Standard_Integer theLower, \const Standard_Integer theUpper, \const _Array1Type_::value_type& theValue) : \_Array1Type_ (theLower,theUpper) { Init (theValue); } \explicit HClassName (const typename _Array1Type_::value_type& theBegin, \const Standard_Integer theLower, \const Standard_Integer theUpper, \const bool) : \_Array1Type_ (theBegin,theLower,theUpper) {} \HClassName (const _Array1Type_& theOther) : _Array1Type_(theOther) {} \const _Array1Type_& Array1 () const { return *this; } \_Array1Type_& ChangeArray1 () { return *this; } \DEFINE_STANDARD_RTTI_INLINE(HClassName,Standard_Transient) \
}; \
DEFINE_STANDARD_HANDLE (HClassName, Standard_Transient)#define IMPLEMENT_HARRAY1(HClassName)
看着是定义一个基于参数2的派生类,提供类似的功能。
2.DEFINE_HASHER
#define DEFINE_HASHER(HasherName, TheKeyType, HashFunctor, EqualFunctor) \
struct HasherName : protected HashFunctor, EqualFunctor \
{ \size_t operator()(const TheKeyType& theKey) const noexcept \{ \return HashFunctor::operator()(theKey); \} \\bool operator() (const TheKeyType& theK1, \const TheKeyType& theK2) const noexcept \{ \return EqualFunctor::operator()(theK1, theK2); \} \
};
集成取哈希值,键比较功能
3.DEFINE_HSEQUENCE
#define DEFINE_HSEQUENCE(HClassName, _SequenceType_) \
class HClassName : public _SequenceType_, public Standard_Transient { \public: \DEFINE_STANDARD_ALLOC \DEFINE_NCOLLECTION_ALLOC \HClassName () {} \HClassName (const _SequenceType_& theOther) : _SequenceType_(theOther) {} \const _SequenceType_& Sequence () const { return *this; } \void Append (const _SequenceType_::value_type& theItem) { \_SequenceType_::Append (theItem); \} \void Append (_SequenceType_& theSequence) { \_SequenceType_::Append (theSequence); \} \_SequenceType_& ChangeSequence () { return *this; } \template <class T> \void Append (const Handle(T)& theOther, \typename opencascade::std::enable_if<opencascade::std::is_base_of<HClassName, T>::value>::type * = 0) { \_SequenceType_::Append (theOther->ChangeSequence()); \} \DEFINE_STANDARD_RTTI_INLINE(HClassName,Standard_Transient) \
}; \
DEFINE_STANDARD_HANDLE (HClassName, Standard_Transient) #define IMPLEMENT_HSEQUENCE(HClassName)
为参数2提供派生类,提供类似功能
4.NCollection_Handle
template <class T>
class NCollection_Handle : public opencascade::handle<Standard_Transient> {
private:class Ptr : public Standard_Transient {public:Ptr (T* theObj) : myPtr (theObj) {}~Ptr () { if ( myPtr ) delete myPtr; myPtr = 0; }protected:Ptr(const Ptr&);Ptr& operator=(const Ptr&);public:T* myPtr; };NCollection_Handle (Ptr* thePtr, int) : opencascade::handle<Standard_Transient> (thePtr) {}public:typedef T element_type;NCollection_Handle () {}NCollection_Handle (T* theObject) : opencascade::handle<Standard_Transient> (theObject ? new Ptr (theObject) : 0) {}T* get () { return ((Ptr*)opencascade::handle<Standard_Transient>::get())->myPtr; }const T* get () const { return ((Ptr*)opencascade::handle<Standard_Transient>::get())->myPtr; }T* operator -> () { return get(); }const T* operator -> () const { return get(); }T& operator * () { return *get(); }const T& operator * () const { return *get(); }static NCollection_Handle<T> DownCast (const opencascade::handle<Standard_Transient>& theOther) {return NCollection_Handle<T>(dynamic_cast<Ptr*>(theOther.get()), 0);}
};
做的还是为原始指针做包装。opencascade::handle<Standard_Transient>已经是一层包装,为原始指针加引用计数管理。这里本质还是在包装。
5.NCollection_Shared
template <class T, typename = typename opencascade::std::enable_if<! opencascade::std::is_base_of<Standard_Transient, T>::value>::type>
class NCollection_Shared : public Standard_Transient, public T {
public:DEFINE_STANDARD_ALLOCDEFINE_NCOLLECTION_ALLOCNCollection_Shared () {}template<typename T1> NCollection_Shared (const T1& arg1) : T(arg1) {}template<typename T1> NCollection_Shared (T1& arg1) : T(arg1) {}template<typename T1, typename T2> NCollection_Shared (const T1& arg1, const T2& arg2) : T(arg1, arg2) {}template<typename T1, typename T2> NCollection_Shared (T1& arg1, const T2& arg2) : T(arg1, arg2) {}template<typename T1, typename T2> NCollection_Shared (const T1& arg1, T2& arg2) : T(arg1, arg2) {}template<typename T1, typename T2> NCollection_Shared (T1& arg1, T2& arg2) : T(arg1, arg2) {}
};
NCollection_Shared
是 OpenCASCADE (OCCT) 中的一个模板类,它提供了一种将非继承自 Standard_Transient
的类包装成可共享对象的方式。
这个类的主要目的是让那些原本不继承 Standard_Transient
的类能够获得引用计数和自动内存管理的功能。这在需要共享对象所有权的情况下非常有用。
6.Standard_MMgrRoot
class Standard_MMgrRoot {
public:Standard_EXPORT virtual ~Standard_MMgrRoot(){}Standard_EXPORT virtual Standard_Address Allocate (const Standard_Size theSize)=0;Standard_EXPORT virtual Standard_Address Reallocate (Standard_Address thePtr, const Standard_Size theSize)=0;Standard_EXPORT virtual void Free(Standard_Address thePtr)=0;Standard_EXPORT virtual Standard_Integer Purge(Standard_Boolean isDestroyed=Standard_False){return 0;}
};
7.Standard_MMgrOpt
if defined(__linux__)#define MMAP_BASE_ADDRESS 0x20000000#define MMAP_FLAGS (MAP_PRIVATE)
end
// 将给定的尺寸向上对齐到页面尺寸倍数
#define PAGE_ALIGN(size,thePageSize) \(((size) + (thePageSize) - 1) & ~((thePageSize) - 1))
// 将给定的尺寸向上对齐到16的倍数
#define ROUNDUP16(size) (((size) + 0xf) & ~(Standard_Size)0xf)
// 将给定的尺寸向上对齐到8的倍数
#define ROUNDUP8(size) (((size) + 0x7) & ~(Standard_Size)0x7)
// 将给定的尺寸向上对齐到4的倍数
#define ROUNDUP4(size) (((size) + 0x3) & ~(Standard_Size)0x3)
// 将给定的尺寸向下对齐到8的倍数
#define ROUNDDOWN8(size) ((size) & ~(Standard_Size)0x7)
// 将给定的尺寸向上对齐到8的倍数
#define ROUNDUP_CELL(size) ROUNDUP8(size)
// 将给定的尺寸向下对齐到8的倍数
#define ROUNDDOWN_CELL(size) ROUNDDOWN8(size)
// 给定尺寸,计算其被8所除的结果整数部分
#define INDEX_CELL(rsize) ((rsize) >> 3)#define BLOCK_SHIFT 1
// 前进一个Standard_Size大小,从块地址得到可用内存地址
#define GET_USER(block) (((Standard_Size*)(block)) + BLOCK_SHIFT)
// 后退一个Standard_Size大小,从可用内存地址得到块地址
#define GET_BLOCK(storage) (((Standard_Size*)(storage))-BLOCK_SHIFT)
class Standard_MMgrOpt : public Standard_MMgrRoot {protected:Standard_Boolean myClear; Standard_Size myFreeListMax; Standard_Size ** myFreeList; Standard_Size myCellSize; Standard_Integer myNbPages; Standard_Size myPageSize; Standard_Size * myAllocList; Standard_Size * myNextAddr; Standard_Size * myEndBlock; Standard_Integer myMMap; Standard_Size myThreshold; Standard_Mutex myMutex; Standard_Mutex myMutexPools;
public:Standard_EXPORT Standard_MMgrOpt(const Standard_Boolean aClear = Standard_True,const Standard_Boolean aMMap = Standard_True, const Standard_Size aCellSize = 200,const Standard_Integer aNbPages = 10000, const Standard_Size aThreshold = 40000){Standard_STATIC_ASSERT(sizeof(Standard_Size) == sizeof(Standard_Address));myFreeListMax = 0;myFreeList = NULL;myPageSize = 0;myAllocList = NULL;myNextAddr = NULL;myEndBlock = NULL;myClear = aClear;myMMap = (Standard_Integer)aMMap;myCellSize = aCellSize;myNbPages = aNbPages;myThreshold = aThreshold;Initialize(); }
protected:Standard_EXPORT void Initialize(){if ( myNbPages < 100 ) myNbPages = 1000;#ifndef _WIN32myPageSize = getpagesize();if ( ! myPageSize )myMMap = 0;#elseSYSTEM_INFO SystemInfo;GetSystemInfo (&SystemInfo);myPageSize = SystemInfo.dwPageSize;#endifif(myMMap) {myMMap = -1;}myFreeListMax = INDEX_CELL(ROUNDUP_CELL(myThreshold-BLOCK_SHIFT)); // all blocks less than myThreshold are to be recycled// 每个链表负责维护固定尺寸内存块分配和回收?// 链表负责的内存块尺寸以8为刻度递增myFreeList = (Standard_Size **) calloc (myFreeListMax+1, sizeof(Standard_Size *));myCellSize = ROUNDUP16(myCellSize);}
public:Standard_EXPORT virtual Standard_Integer Purge(Standard_Boolean isDestroyed){Standard_Mutex::Sentry aSentry (myMutex);Standard_Integer nbFreed = 0;// 快速定位到myCellSize尺寸最低可分配的链表索引Standard_Size i = INDEX_CELL(ROUNDUP_CELL(myCellSize+BLOCK_SHIFT));// 从该链表到后续各个链表内所有块依次释放for (; i <= myFreeListMax; i++ ) {// 获得链表首个块地址Standard_Size * aFree = myFreeList[i]; while(aFree) {// 保存当前块地址Standard_Size * anOther = aFree;// 移动到下一个块。能如此的原因:每个内存块首个位置存放下一个块的地址。aFree = * (Standard_Size **) aFree;// 释放块free(anOther); nbFreed++;}// 释放后链表置空myFreeList[i] = NULL;}Standard_Mutex::Sentry aSentry1 (myMutexPools);#ifndef _WIN32const Standard_Size PoolSize = myPageSize * myNbPages;#else// 内存池大小const Standard_Size PoolSize = PAGE_ALIGN(myPageSize * myNbPages + sizeof(HANDLE), myPageSize) - sizeof(HANDLE);#endif// 向下规整const Standard_Size RPoolSize = ROUNDDOWN_CELL(PoolSize);// 一个池可容纳的Standard_Size对象个数const Standard_Size PoolSizeN = RPoolSize / sizeof(Standard_Size);static const Standard_Integer NB_POOLS_WIN = 512;static Standard_Size* aPools[NB_POOLS_WIN];static Standard_Size aFreeSize[NB_POOLS_WIN];static Standard_Integer aFreePools[NB_POOLS_WIN];Standard_Size * aNextPool = myAllocList;Standard_Size * aPrevPool = NULL;// 给定尺寸得到此尺寸的索引const Standard_Size nCells = INDEX_CELL(myCellSize);Standard_Integer nPool = 0, nPoolFreed = 0;// 每个内存块作为一个Pool?while (aNextPool) {Standard_Integer iPool;for (iPool = 0; aNextPool && iPool < NB_POOLS_WIN; iPool++) {aPools[iPool] = aNextPool;aFreeSize[iPool] = 0;aNextPool = * (Standard_Size **) aNextPool; // get next pool}const Standard_Integer iLast = iPool - 1;(void )nPool; // unused but set for debugnPool += iPool;// 块的个数// 完成小块链表释放for (i = 0; i <= nCells; i++ ) {// 负责小块内存分配的块列表Standard_Size * aFree = myFreeList[i];Standard_Size aSize = BLOCK_SHIFT * sizeof(Standard_Size) + ROUNDUP_CELL(1) * i;while(aFree) {for (iPool = 0; iPool <= iLast; iPool++) {// 若是此个地址块落在内存池块内if (aFree >= aPools[iPool] && aFree < aPools[iPool] + PoolSizeN) {aFreeSize[iPool] += aSize;// 此内存池块内可分配内存增加break;}}aFree = * (Standard_Size **) aFree; // 继续前进到链表下一个小块}}Standard_Integer iLastFree = -1;for (iPool = 0; iPool <= iLast; iPool++) {// 可分配尺寸向上对齐aFreeSize[iPool] = ROUNDUP_CELL(aFreeSize[iPool]);if (aFreeSize[iPool] == RPoolSize)aFreePools[++iLastFree] = iPool;// 得到一个完全空闲的快池}if (iLastFree == -1) {// 无法得到一个完全空闲的块池aPrevPool = aPools[iLast];continue;}Standard_Integer j;for (i = 0; i <= nCells; i++ ) {Standard_Size * aFree = myFreeList[i];Standard_Size * aPrevFree = NULL;while(aFree) {// 若小块落在完全空闲块池for (j = 0; j <= iLastFree; j++) {iPool = aFreePools[j];if (aFree >= aPools[iPool] && aFree < aPools[iPool] + PoolSizeN)break;}if (j <= iLastFree) {// 表示小块落在完全空闲块池// 将此小块从链表移除aFree = * (Standard_Size **) aFree;if (aPrevFree)* (Standard_Size **) aPrevFree = aFree; elsemyFreeList[i] = aFree;nbFreed++;}else {// 表示小块未落在完全空闲块池aPrevFree = aFree;// 取得小块地址aFree = * (Standard_Size **) aFree;// 继续分析下一个小块}}}Standard_Size * aPrev = (aFreePools[0] == 0 ? aPrevPool : aPools[aFreePools[0] - 1]);for (j = 0; j <= iLastFree; j++) {iPool = aFreePools[j];if (j > 0) {if (iPool - aFreePools[j - 1] > 1)aPrev = aPools[iPool - 1];}if (j == iLastFree || aFreePools[j + 1] - iPool > 1) {Standard_Size * aNext = (j == iLastFree && aFreePools[j] == iLast) ? aNextPool : aPools[iPool + 1];if (aPrev)* (Standard_Size **) aPrev = aNext;elsemyAllocList = aNext;}FreeMemory(aPools[iPool], PoolSize);}aPrevPool = (aFreePools[iLastFree] == iLast ? aPrev : aPools[iLast]);(void )nPoolFreed; // unused but set for debugnPoolFreed += iLastFree + 1;}return nbFreed;}void FreeMemory (Standard_Address aPtr, const Standard_Size aSize){if ( myMMap ) {#ifndef _WIN32const Standard_Size AlignedSize = PAGE_ALIGN(aSize, myPageSize);munmap((char*)aBlock, AlignedSize);#elseconst HANDLE * aMBlock = (const HANDLE *)aBlock;HANDLE hMap = *(--aMBlock);UnmapViewOfFile((LPCVOID)aMBlock);CloseHandle (hMap);#endif}elsefree(aBlock);}void FreePools(){Standard_Mutex::Sentry aSentry (myMutexPools);Standard_Size * aFree = myAllocList;myAllocList = 0;while (aFree) {Standard_Size * aBlock = aFree;aFree = * (Standard_Size **) aFree;FreeMemory ( aBlock, myPageSize * myNbPages );}}Standard_EXPORT virtual ~Standard_MMgrOpt(){Purge(Standard_True);free(myFreeList);FreePools();}public:// 分析内存分配实现策略Standard_EXPORT virtual Standard_Address Allocate(const Standard_Size aSize){Standard_Size * aStorage = NULL;// 尺寸向上对齐到倍数volatile Standard_Size RoundSize = ROUNDUP_CELL(aSize);// 可以满足此尺寸的最小索引const Standard_Size Index = INDEX_CELL(RoundSize);// 这里弄了个myFreeListMax这个概念。多级链表,由不同尺寸内存块构成的链表。// myFreeListMax这个概念用于实现小块内存的回收复用。从而避免小块内存分配时执行系统调用malloc/free,提升性能// 系统调用涉及内核态用户态转换,上下文恢复较纯应用层调用耗时会更多if ( Index <= myFreeListMax ) {// 对齐后尺寸能容纳的Standard_Size对象个数const Standard_Size RoundSizeN = RoundSize / sizeof(Standard_Size);// 核心分配过程做了互斥保护myMutex.Lock();// 定位到的链表是否有元素if ( myFreeList[Index] ) {// 取得链表首个元素地址Standard_Size* aBlock = myFreeList[Index];// 将首个元素分配出去,更新链表首个元素地址myFreeList[Index] = *(Standard_Size**)aBlock;myMutex.Unlock();// 基类分配到的内存块尺寸aBlock[0] = RoundSize;// 从块地址得到可用内存地址aStorage = GET_USER(aBlock);if (myClear)memset (aStorage, 0, RoundSize);// 内存部分需要清理}// 对应的小块链表为孔,且对齐后尺寸不超过myCellSizeelse if ( RoundSize <= myCellSize ) {myMutex.Unlock();// 这里使用多个锁,实现细粒度的互斥保护,有利于提升并发性能。Standard_Mutex::Sentry aSentry (myMutexPools);// myNextAddr,myEndBlock机制// 在多级小块内存复用链表机制外,对于较小尺寸内存的分配额外引用直接分配机制。// 提供一个较大块,当较小块分配时,定位到其复用块链表为空时,尝试从此较大块直接分配出一个小块。Standard_Size *aBlock = myNextAddr;// 当大块剩余部分不足完成本次分配if ( &aBlock[ BLOCK_SHIFT+RoundSizeN] > myEndBlock ) {// 进入到这里是发现此较大块剩余部分不足完成本次分配。// 采取的策略是重新分配一个较大块Standard_Size Size = myPageSize * myNbPages;aBlock = AllocMemory(Size);// 若当前较大块剩余部分尚有内存空间可供分配if (myEndBlock > myNextAddr) {// 剩余部分中可用内存尺寸const Standard_Size aPSize = (myEndBlock - GET_USER(myNextAddr)) * sizeof(Standard_Size);// 内存尺寸向下对齐const Standard_Size aRPSize = ROUNDDOWN_CELL(aPSize);// 内存尺寸对应的多级小块链表索引const Standard_Size aPIndex = INDEX_CELL(aRPSize);// 若此索引属于合法索引范围if ( aPIndex > 0 && aPIndex <= myFreeListMax ) {myMutex.Lock();// 头插法加入到对应小块链表// 这里的一个灵活多变。// 大尺寸块可分分割为多个小尺寸块。// 大尺寸块的结构是:// 4字节下一个大尺寸块地址+多个小尺寸块// 小尺寸块结构是:// 头4字节+可用内存区域// 在小尺寸块位于回收链表时,其头4字节指向链表下一个小尺寸块的地址// 在小尺寸块被分配出去时,其头4字节存储了此块内已经分配内存尺寸。*(Standard_Size**)myNextAddr = myFreeList[aPIndex];myFreeList[aPIndex] = myNextAddr;myMutex.Unlock();}}// 计算新块的结束位置myEndBlock = aBlock + Size / sizeof(Standard_Size);// 将新的较大块加入myAllocList链表// myAllocList机制:由较大块构成的分配链表。*(Standard_Size**)aBlock = myAllocList;myAllocList = aBlock;// 原始块的布局:// 4字节为下一个块的地址+4字节为本块已经分配出去内存尺寸+可用内存区域aBlock+=BLOCK_SHIFT;}// 记录本块内已经分配内存尺寸aBlock[0] = RoundSize;// 从块得到可用内存区域地址aStorage = GET_USER(aBlock);// 下一个可供分配的地址myNextAddr = &aStorage[RoundSizeN];}// 对应的小块链表为孔,且对齐后尺寸超过myCellSize。// myCellSize属于中尺寸和大尺寸分界线。else {myMutex.Unlock();// 这里相当于处理大尺寸块的分配// 直接通过系统api完成分配Standard_Size *aBlock = (Standard_Size*) (myClear ? calloc( RoundSizeN+BLOCK_SHIFT, sizeof(Standard_Size)) : malloc((RoundSizeN+BLOCK_SHIFT) * sizeof(Standard_Size)) );// 直到无法完成分配时,才执行清理,释放多余空闲内存。// 清理的时机有点晚了。if ( ! aBlock ) {if ( Purge (Standard_False) )aBlock = (Standard_Size*)calloc(RoundSizeN+BLOCK_SHIFT, sizeof(Standard_Size));if ( ! aBlock )throw Standard_OutOfMemory("Standard_MMgrOpt::Allocate(): malloc failed");}// 直接分配的大尺寸块的结构:// 4字节存储块中已经分配内存尺寸+可用内存区域aBlock[0] = RoundSize;// 可用内存区域指针aStorage = GET_USER(aBlock);}}// 索引直接超过了myFreeListMax,属于超大块了。// myFreeListMax构成了大块和超大块的分水岭。else {Standard_Size AllocSize = RoundSize + sizeof(Standard_Size);// 通过AllocMemory完成超大快的分配Standard_Size* aBlock = AllocMemory(AllocSize);aBlock[0] = RoundSize;aStorage = GET_USER(aBlock);}// 每次分配成功都触发一次回调。参数3是对齐后尺寸,参数4是原始尺寸。callBack(Standard_True, aStorage, RoundSize, aSize);return aStorage;}// 释放+重新分配Standard_EXPORT virtual Standard_Address Reallocate (Standard_Address theStorage, const Standard_Size theNewSize){if (!theStorage) {return Allocate(theNewSize);}// 得到块起始地址Standard_Size * aBlock = GET_BLOCK(theStorage);Standard_Address newStorage = NULL;// 块内已经使用内存尺寸Standard_Size OldSize = aBlock[0];if (theNewSize <= OldSize) {// 复用newStorage = theStorage;}else {newStorage = Allocate(theNewSize);memcpy (newStorage, theStorage, OldSize);Free( theStorage );if ( myClear )memset(((char*)newStorage) + OldSize, 0, theNewSize-OldSize);}return newStorage;}Standard_EXPORT virtual void Free (Standard_Address thePtr){if ( ! theStorage )return;Standard_Size* aBlock = GET_BLOCK(theStorage);Standard_Size RoundSize = aBlock[0];// 释放时也触发回调callBack(Standard_False, theStorage, RoundSize, 0);const Standard_Size Index = INDEX_CELL(RoundSize);if ( Index <= myFreeListMax ) {myMutex.Lock();// 头插法加入链表*(Standard_Size**)aBlock = myFreeList[Index];myFreeList[Index] = aBlock;myMutex.Unlock();}else FreeMemory (aBlock, RoundSize);// 直接释放}typedef void (*TPCallBackFunc)(const Standard_Boolean theIsAlloc, const Standard_Address theStorage, const Standard_Size theRoundSize, const Standard_Size theSize);Standard_EXPORT static void SetCallBackFunction(TPCallBackFunc pFunc);// 内存分配Standard_Size* AllocMemory (Standard_Size &aSize){retry:Standard_Size * aBlock = NULL;// 使用内存映射完成分配if (myMMap) {#ifndef _WIN32const Standard_Size AlignedSize = PAGE_ALIGN(Size, myPageSize);aBlock = (Standard_Size * )mmap((char*)MMAP_BASE_ADDRESS, AlignedSize, PROT_READ | PROT_WRITE, MMAP_FLAGS, myMMap, 0);if (aBlock == MAP_FAILED /* -1 */) {int errcode = errno;if ( Purge(Standard_False) )goto retry;throw Standard_OutOfMemory(strerror(errcode));}Size = AlignedSize;#else /* _WIN32 */const Standard_Size AlignedSize = PAGE_ALIGN(Size+sizeof(HANDLE), myPageSize);// 内存映射得到内存HANDLE hMap = CreateFileMapping(INVALID_HANDLE_VALUE, NULL, PAGE_READWRITE, DWORD(AlignedSize / 0x80000000), DWORD(AlignedSize % 0x80000000), NULL); // 获得句柄HANDLE * aMBlock = (hMap && GetLastError() != ERROR_ALREADY_EXISTS ? (HANDLE*)MapViewOfFile(hMap,FILE_MAP_WRITE,0,0,0) : NULL);if ( ! aMBlock ) {if ( hMap ) CloseHandle(hMap); hMap = 0;// 无法完成分配时先清理再次尝试if ( Purge(Standard_False) )goto retry;const int BUFSIZE=1024;wchar_t message[BUFSIZE];if ( FormatMessageW (FORMAT_MESSAGE_FROM_SYSTEM, 0, GetLastError(), 0, message, BUFSIZE-1, 0) <=0 )StringCchCopyW(message, _countof(message), L"Standard_MMgrOpt::AllocMemory() failed to mmap");char messageA[BUFSIZE];WideCharToMultiByte(CP_UTF8, 0, message, -1, messageA, sizeof(messageA), NULL, NULL);throw Standard_OutOfMemory(messageA);}// 一开始存储hMapaMBlock[0] = hMap;// 块有效区域aBlock = (Standard_Size*)(aMBlock+1);// 有效区域尺寸Size = AlignedSize - sizeof(HANDLE);#endif }else {// 使用api完成分配aBlock = (Standard_Size *) (myClear ? calloc(Size,sizeof(char)) : malloc(Size));if ( ! aBlock ) {if ( Purge(Standard_False) )goto retry;throw Standard_OutOfMemory("Standard_MMgrOpt::Allocate(): malloc failed");}}if (myClear)memset (aBlock, 0, Size);return aBlock;}
};// 源文件
static Standard_MMgrOpt::TPCallBackFunc MyPCallBackFunc = NULL;
Standard_EXPORT void Standard_MMgrOpt::SetCallBackFunction(TPCallBackFunc pFunc) {MyPCallBackFunc = pFunc;
}
inline void callBack(const Standard_Boolean isAlloc,const Standard_Address aStorage, const Standard_Size aRoundSize, const Standard_Size aSize) {if (MyPCallBackFunc)(*MyPCallBackFunc)(isAlloc, aStorage, aRoundSize, aSize);
}
8.Standard_Persistent
class Standard_Persistent : public Standard_Transient {
public:DEFINE_STANDARD_ALLOCStandard_Persistent() : _typenum(0), _refnum(0) {}DEFINE_STANDARD_RTTIEXT(Standard_Persistent,Standard_Transient)Standard_Integer& TypeNum() { return _typenum; }
private:Standard_Integer _typenum;Standard_Integer _refnum;friend class Storage_Schema;
};
9.Standard_Type
class Standard_Type : public Standard_Transient {
public:Standard_CString SystemName() const { return myInfo.name(); }Standard_CString Name() const { return myName; }Standard_Size Size() const { return mySize; }const Handle(Standard_Type)& Parent () const { return myParent; }Standard_EXPORT Standard_Boolean SubType (const Handle(Standard_Type)& theOther) const{return ! theOther.IsNull() && (theOther == this || (! myParent.IsNull() && myParent->SubType (theOther)));}Standard_EXPORT Standard_Boolean SubType (const Standard_CString theOther) const{return theName != 0 && (IsEqual (myName, theName) || (! myParent.IsNull() && myParent->SubType (theName)));}Standard_EXPORT void Print (Standard_OStream& AStream) const{AStream << std::hex << (Standard_Address)this << " : " << std::dec << myName ;}template <class T>static const Handle(Standard_Type)& Instance() {return opencascade::type_instance<T>::get();}Standard_EXPORT static Standard_Type* Register (const std::type_info& theInfo, const char* theName, Standard_Size theSize, const Handle(Standard_Type)& theParent){static Standard_Mutex theMutex;Standard_Mutex::Sentry aSentry (theMutex);registry_type& aRegistry = GetRegistry();Standard_Type* aType = 0;auto anIter = aRegistry.find(theInfo);if (anIter != aRegistry.end())return anIter->second;aType = new Standard_Type (theInfo, theName, theSize, theParent);aRegistry.emplace(theInfo, aType);return aType;}Standard_EXPORT ~Standard_Type (){registry_type& aRegistry = GetRegistry();Standard_ASSERT(aRegistry.erase(myInfo) > 0, "Standard_Type::~Standard_Type() cannot find itself in registry",);}DEFINE_STANDARD_RTTIEXT(Standard_Type,Standard_Transient)
private:Standard_Type (const std::type_info& theInfo, const char* theName, Standard_Size theSize, const Handle(Standard_Type)& theParent);
private:std::type_index myInfo; //!< Object to store system name of the classStandard_CString myName; //!< Given name of the classStandard_Size mySize; //!< Size of the class instance, in bytesHandle(Standard_Type) myParent; //!< Type descriptor of parent class
};
RTTI识别系统识别类型所需的信息。