打卡day41

知识回顾

  1. 数据增强
  2. 卷积神经网络定义的写法
  3. batch归一化:调整一个批次的分布,常用与图像数据
  4. 特征图:只有卷积操作输出的才叫特征图
  5. 调度器:直接修改基础学习率

卷积操作常见流程如下:

1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层

  1. Flatten -> Dense (with Dropout,可选) -> Dense (Output)

作业:尝试手动修改下不同的调度器和CNN的结构,观察训练的差异。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 1. 数据预处理
# 训练集:使用多种数据增强方法提高模型泛化能力
train_transform = transforms.Compose([# 随机裁剪图像,从原图中随机截取32x32大小的区域transforms.RandomCrop(32, padding=4),# 随机水平翻转图像(概率0.5)transforms.RandomHorizontalFlip(),# 随机颜色抖动:亮度、对比度、饱和度和色调随机变化transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),# 随机旋转图像(最大角度15度)transforms.RandomRotation(15),# 将PIL图像或numpy数组转换为张量transforms.ToTensor(),# 标准化处理:每个通道的均值和标准差,使数据分布更合理transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 测试集:仅进行必要的标准化,保持数据原始特性,标准化不损失数据信息,可还原
test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=train_transform  # 使用增强后的预处理
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=test_transform  # 测试集不使用增强
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 4. 定义CNN模型的定义(替代原MLP)
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()  # 继承父类初始化# ---------------------- 第一个卷积块 ----------------------# 卷积层1:输入3通道(RGB),输出32个特征图,卷积核3x3,边缘填充1像素self.conv1 = nn.Conv2d(in_channels=3,       # 输入通道数(图像的RGB通道)out_channels=32,     # 输出通道数(生成32个新特征图)kernel_size=3,       # 卷积核尺寸(3x3像素)padding=1            # 边缘填充1像素,保持输出尺寸与输入相同)# 批量归一化层:对32个输出通道进行归一化,加速训练self.bn1 = nn.BatchNorm2d(num_features=32)# ReLU激活函数:引入非线性,公式:max(0, x)self.relu1 = nn.ReLU()# 最大池化层:窗口2x2,步长2,特征图尺寸减半(32x32→16x16)self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  # stride默认等于kernel_size# ---------------------- 第二个卷积块 ----------------------# 卷积层2:输入32通道(来自conv1的输出),输出64通道self.conv2 = nn.Conv2d(in_channels=32,      # 输入通道数(前一层的输出通道数)out_channels=64,     # 输出通道数(特征图数量翻倍)kernel_size=3,       # 卷积核尺寸不变padding=1            # 保持尺寸:16x16→16x16(卷积后)→8x8(池化后))self.bn2 = nn.BatchNorm2d(num_features=64)self.relu2 = nn.ReLU()self.pool2 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:16x16→8x8# ---------------------- 第三个卷积块 ----------------------# 卷积层3:输入64通道,输出128通道self.conv3 = nn.Conv2d(in_channels=64,      # 输入通道数(前一层的输出通道数)out_channels=128,    # 输出通道数(特征图数量再次翻倍)kernel_size=3,padding=1            # 保持尺寸:8x8→8x8(卷积后)→4x4(池化后))self.bn3 = nn.BatchNorm2d(num_features=128)self.relu3 = nn.ReLU()  # 复用激活函数对象(节省内存)self.pool3 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:8x8→4x4# ---------------------- 全连接层(分类器) ----------------------# 计算展平后的特征维度:128通道 × 4x4尺寸 = 128×16=2048维self.fc1 = nn.Linear(in_features=128 * 4 * 4,  # 输入维度(卷积层输出的特征数)out_features=512          # 输出维度(隐藏层神经元数))# Dropout层:训练时随机丢弃50%神经元,防止过拟合self.dropout = nn.Dropout(p=0.5)# 输出层:将512维特征映射到10个类别(CIFAR-10的类别数)self.fc2 = nn.Linear(in_features=512, out_features=10)def forward(self, x):# 输入尺寸:[batch_size, 3, 32, 32](batch_size=批量大小,3=通道数,32x32=图像尺寸)# ---------- 卷积块1处理 ----------x = self.conv1(x)       # 卷积后尺寸:[batch_size, 32, 32, 32](padding=1保持尺寸)x = self.bn1(x)         # 批量归一化,不改变尺寸x = self.relu1(x)       # 激活函数,不改变尺寸x = self.pool1(x)       # 池化后尺寸:[batch_size, 32, 16, 16](32→16是因为池化窗口2x2)# ---------- 卷积块2处理 ----------x = self.conv2(x)       # 卷积后尺寸:[batch_size, 64, 16, 16](padding=1保持尺寸)x = self.bn2(x)x = self.relu2(x)x = self.pool2(x)       # 池化后尺寸:[batch_size, 64, 8, 8]# ---------- 卷积块3处理 ----------x = self.conv3(x)       # 卷积后尺寸:[batch_size, 128, 8, 8](padding=1保持尺寸)x = self.bn3(x)x = self.relu3(x)x = self.pool3(x)       # 池化后尺寸:[batch_size, 128, 4, 4]# ---------- 展平与全连接层 ----------# 将多维特征图展平为一维向量:[batch_size, 128*4*4] = [batch_size, 2048]x = x.view(-1, 128 * 4 * 4)  # -1自动计算批量维度,保持批量大小不变x = self.fc1(x)           # 全连接层:2048→512,尺寸变为[batch_size, 512]x = self.relu3(x)         # 激活函数(复用relu3,与卷积块3共用)x = self.dropout(x)       # Dropout随机丢弃神经元,不改变尺寸x = self.fc2(x)           # 全连接层:512→10,尺寸变为[batch_size, 10](未激活,直接输出logits)return x  # 输出未经过Softmax的logits,适用于交叉熵损失函数# 初始化模型
model = CNN()
#model = model.to(device)  # 将模型移至GPU(如果可用)
# 5. 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数,适用于多分类任务
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器,学习率0.001
# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,        # 指定要控制的优化器(这里是Adam)mode='min',       # 监测的指标是"最小化"(如损失函数)patience=3,       # 如果连续3个epoch指标没有改善,才降低LRfactor=0.5        # 降低LR的比例(新LR = 旧LR × 0.5)
)
# scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)  
# # 每5个epoch,LR = LR × 0.1  # scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[10, 20, 30], gamma=0.5)  
# # 当epoch=10、20、30时,LR = LR × 0.5  # scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10, eta_min=0.0001)  
# # LR在[0.0001, LR_initial]之间按余弦曲线变化,周期为2×T_max  
# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):model.train()  # 设置为训练模式# 记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号# 记录每个 epoch 的准确率和损失train_acc_history = []test_acc_history = []train_loss_history = []test_loss_history = []for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)  # 移至GPUoptimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计准确率和损失running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次打印一次训练信息if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 计算当前epoch的平均训练损失和准确率epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totaltrain_acc_history.append(epoch_train_acc)train_loss_history.append(epoch_train_loss)# 测试阶段model.eval()  # 设置为评估模式test_loss = 0correct_test = 0total_test = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testtest_acc_history.append(epoch_test_acc)test_loss_history.append(epoch_test_loss)# 更新学习率调度器scheduler.step(epoch_test_loss)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)# 绘制每个 epoch 的准确率和损失曲线plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc  # 返回最终测试准确率# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 7. 绘制每个 epoch 的准确率和损失曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 4))# 绘制准确率曲线plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('训练和测试准确率')plt.legend()plt.grid(True)# 绘制损失曲线plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('训练和测试损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 8. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始使用CNN训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# # 保存模型
# torch.save(model.state_dict(), 'cifar10_cnn_model.pth')
# print("模型已保存为: cifar10_cnn_model.pth")

 @浙大疏锦行

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/bicheng/83210.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL高级查询技巧:分组、聚合、子查询与分页【MySQL系列】

本文将深入探讨 MySQL 高级查询技巧,重点讲解 GROUP BY、HAVING、各种聚合函数、子查询以及分页查询(LIMIT 语法)的使用。文章内容涵盖实际应用中最常见的报表需求和分页实现技巧,适合有一定 SQL 基础的开发者进一步提升技能。 一…

现代 CSS 高阶技巧:实现平滑内凹圆角的工程化实践

通过 数学计算 CSS mask 复合遮罩 实现的真正几何内凹效果: 背景是一张图片,用来证明中间的凹陷是透明的。 完整代码: app.js import FormPage from "./pages/formPage"; import "./App.css"; const App () > {re…

Qt不同布局添加不同控件

对于这种 不同布局添加不同控件 的情况,可以采用以下几种简化方法: 方法 1:使用 std::pair 或 std::tuple 配对(C++17 推荐) for (auto [layout, widget] : {std::pair{m_layoutMistakeCalibrate,

MySQL 事务解析

1. 事务简介 事务(Transaction) 是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。 经典案例&#xff1…

PyTorch中 torch.utils.data.DataLoader 的详细解析和读取点云数据示例

一、DataLoader 是什么? torch.utils.data.DataLoader 是 PyTorch 中用于加载数据的核心接口,它支持: 批量读取(batch)数据打乱(shuffle)多线程并行加载(num_workers)自…

在MDK中自动部署LVGL,在stm32f407ZGT6移植LVGL-8.4,运行demo,显示label

在MDK中自动部署LVGL,在stm32f407ZGT6移植LVGL-8.4 一、硬件平台二、实现功能三、移植步骤1、下载LVGL-8.42、MDK中安装LVGL-8.43、配置RTE4、配置头文件 lv_conf_cmsis.h5、配置lv_port_disp_template 四、添加心跳相关文件1、在STM32CubeMX中配置TIM7的参数2、使能…

德思特新闻 | 德思特与es:saar正式建立合作伙伴关系

德思特新闻 2025年5月9日,德思特科技有限公司(以下简称“德思特”)与德国嵌入式系统专家es:saar GmbH正式达成合作伙伴关系。此次合作旨在将 es:saar 的先进嵌入式开发与测试工具引入中国及亚太市场,助力本地客户提升产品开发效率…

fork函数小解

学了好久终于搞懂fork函数的一些作用 1. fork函数作用:用于创建新的子进程 这是fork最根本的功能,在父进程里创建新的子进程、 但是创建新的子进程之后呢? 子进程和父进程的关系是什么样的? 为什么fork得到的子进程返回值为0&am…

opencv(C++) 变换图像与形态学操作

文章目录 使用腐蚀和膨胀图像形态滤波器实现案例使用形态学滤波器对图像进行开运算和闭运算实现案例在灰度图像上应用形态学操作算子形态学梯度(Morphological Gradient)黑帽变换(Black-hat Transform)使用分水岭算法进行图像分割使用 MSER 提取显著区域MSER 检测与可视化使…

测试工程师学LangChain之promptTemplate 实战笔记

一、引言:大模型时代的测试自动化革命 2025 年,随着大模型(如 DeepSeek)在自动化测试领域的广泛应用,Prompt 编写已成为测试工程师的核心技能之一。 为什么? 大模型输出的质量 90% 取决于输入的 PromptLangChain 的 PromptTemplate 提供了参数化 Prompt 的标准化方案Ope…

CP2K 软件介绍与使用指南

CP2K 软件介绍与使用指南 一、CP2K简介 CP2K是一款开源的量子化学和固态物理模拟软件包,主要用于原子尺度模拟,特别擅长以下领域: 第一性原理计算:基于密度泛函理论(DFT)的电子结构计算分子动力学(MD):包括从头算分…

npm、pnpm、yarn使用以及区别

npm 使用 安装包&#xff1a;在项目目录下&#xff0c;npm install <包名> 用于本地安装包到 node_modules 目录&#xff0c;并添加到 package.json 的 dependencies 中&#xff1b;npm install -g <包名> 用于全局安装&#xff0c;适用于命令行工具等。初始化项目…

2025年北京市职工职业技能大赛第六届信息通信行业网络安全技能大赛复赛CTF部分WP-哥斯拉流量分析

2025年北京市职工职业技能大赛第六届信息通信行业网络安全技能大赛复赛CTF部分WP-哥斯拉流量分析 一、流量分析 题目没有任何提示,附件gzl.pcap 解题哥斯拉流量300多KB包很多,没啥经验只能挨个看回来之后又狠狠得撸了一把哥斯拉流量分析我这里用的是哥斯拉4.0.1 测试链接…

GitLab 18.0 正式发布,15.0 将不再受技术支持,须升级【六】

GitLab 是一个全球知名的一体化 DevOps 平台&#xff0c;很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab 是 GitLab 在中国的发行版&#xff0c;专门为中国程序员服务。可以一键式部署极狐GitLab。 学习极狐GitLab 的相关资料&#xff1a; 极狐GitLab 官网极狐…

React 项目中封装 Excel 导入导出组件:技术分享与实践

文章目录 前言一、为什么需要封装 Excel 组件&#xff1f;二、技术选型三、核心实现1. 安装依赖2. 封装Excel导出3. 封装导入组件 &#xff08;UploadExcel&#xff09; 总结 前言 在 React 项目中&#xff0c;处理 Excel 文件的导入和导出是常见的业务需求。无论是导出报表数…

RustDesk 搭建自建服务器并设置服务自启动

目录 0. 介绍 1. 事前准备 1.1 有公网 ip 的云服务器一台 1.2 服务端部署包 1.3 客户端安装包 2. 部署 2.1 服务器环境准备 2.2 上传服务端部署包 2.3 运行 pm2 3. 客户端使用 3.1 安装 3.2 配置 3.2.1 解锁网络设置 3.2.2 ID / 中级服务器 3.3 启动效果 > …

基于Qt封装数据库基本增删改查操作,支持多线程,并实现SQLite数据库单例访问

抽出来的&#xff0c;直接用就行 头文件CPP文件使用示例 头文件 #ifndef DATABASECOMMON_H #define DATABASECOMMON_H/** 单例封装SQLite通用操作&#xff0c;支持多线程调用&#xff1b;可扩展兼容其他数据库&#xff0c;照着SysRunDatabase写&#xff0c;并且重载openDataba…

AI笔记 - 网络模型 - mobileNet

网络模型 mobileNet mobileNet V1网络结构深度可分离卷积空间可分![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/aff06377feac40b787cfc882be7c6e5d.png) 参考 mobileNet V1 网络结构 MobileNetV1可以理解为VGG中的标准卷积层换成深度可分离卷积 可分离卷积主要有…

第十五篇:MySQL 高级实战项目:构建高可用、可观测、性能优化一体化数据库平台

本篇聚焦于如何基于 MySQL 构建一个真正面向生产环境的数据库平台&#xff0c;集成高可用、可观测与性能调优三大核心能力&#xff0c;助力稳定、可扩展的系统运行。 一、项目背景与目标 在实际生产环境中&#xff0c;数据库系统需要应对以下挑战&#xff1a; 业务高速增长带来…

华为OD机试真题——文件目录大小(2025 A卷:100分)Java/python/JavaScript/C++/C语言/GO六种语言最佳实现

2025 A卷 100分 题型 本文涵盖详细的问题分析、解题思路、代码实现、代码详解、测试用例以及综合分析; 并提供Java、python、JavaScript、C++、C语言、GO六种语言的最佳实现方式! 2025华为OD真题目录+全流程解析/备考攻略/经验分享 华为OD机试真题《文件目录大小》: 目录 题…