4.RV1126-OPENCV 图像轮廓识别

一.图像识别API

1.图像识别作用

        它常用于视觉任务、目标检测、图像分割等等。在 OPENCV 中通常使用 Canny
函数、findContours 函数、drawContours 函数
结合在一起去做轮廓的形检测。

2.常用的API 

  • findContours 函数:用于寻找图片的轮廓,并把所有的数据存储在向量里面                    

        CV_EXPORTS_W void findContours( InputOutputArray image, OutputArrayOfArrays contours,OutputArray hierarchy, int mode,int method, Point offset = Point());

    第一个参数:image 输入的二值图像,这个图像通常是用在边缘检测、阈值处理等等
    第二个参数:contours 输出的轮廓集合,每一个轮廓都是由点组成,通常用vector<vector<Point>>来表示

    第三个参数:hierarchy 输出的轮廓层次结构,这通常表示轮廓之间的父子关系,这个是可选参数,通常用 vector<Vec4i> hierarchy来表示。比方说,第 i 个轮廓,hierarchy[i][0]、hierarchy[i][1]、hierarchy[i][2]、hierarchy[i][3], 依次为第 i 个轮廓[Next、Pervious、First_Child,Parent], 这表示的是相同等级下的下一轮廓、前一轮廓,第一个子轮廓和父轮廓的索引号。若轮廓 i 没有下一个,前一个或者父级轮廓,则层次相应的元素是负数。如下图:

    第四个参数:mode 轮廓检索模式,通常有以下选项,分别是:RETR_EXTERNAL(只检测最外层轮廓)、RETR_LIST(检测所有轮廓,包括内围、外围轮廓,但都是同等级的)、RETR_CCOMP(检测所有轮廓,但是所有的轮廓只建立两个等级关系,一个外层,一个内层(不管内层有多少个,都属于内层))、RETR_TREE(检测所有轮廓并建立轮廓树,这个模式下外围轮廓包含内层轮廓,内层还可以继续嵌套)。

    第 五 个 参 数 : method 轮 廓 近 似 方 法 , 通 常 有 以 下 的 几 种 方 法 , 分 别 是 CHAIN_APPROX_NONE( 存 储 所 有 顶 点 ) 、CHAIN_APPROX_SIMPLE(仅存储轮廓的拐点信息,并把所有轮廓拐点处的点保存到向量里面)、CHAIN_APPROX_TC89_L1(使用TEH_CHAIN 近似算法)。
    第六个参数:offset 轮廓点偏移量,默认(0,0)

    • drawContours 函数:用于绘制图像的轮廓,配合findContours 函数使用,用findContours 函数获取轮廓,用drawContours 函数画轮廓。

             CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours,int contourIdx, const Scalar& color,int thickness = 1, int lineType = LINE_8,InputArray hierarchy = noArray(),int maxLevel = INT_MAX, Point offset = Point() );

    第一个参数:image 输出图像,即绘制轮廓后的图像
    第二个参数:contours 轮廓的集合,它是由一系列的点组成
    第三个参数:contourIdx、轮廓索引数组,指定要绘制哪些轮廓
    第四个参数:contourColor,轮廓颜色,使用 Scalar 类型表示
    第五个参数:thickness,轮廓线宽,默认 1
    第六个参数:lineType ,轮廓线类型,默认为 LINE_8

    第七个参数:hierarchy ,轮廓层次结构,用于绘制轮廓的父子关系。默认为 noArray()
    第八个参数:maxLevel ,表示绘制轮廓的最大层级数量。若 maxLevel 为 0,则只绘制指定的轮廓;若 maxLevel 为 1,则绘制轮廓极其所有嵌套轮廓;若 maxLevel 为 2,则绘制轮廓、所有嵌套轮廓、所有嵌套到嵌套的轮廓。
    第九个参数:轮廓点的偏移量,默认为(0,0) 

    • Canny 函数:用于边缘检测计算。效果如下:

             工作原理:就是一系类数学处理方法。高斯滤波(将图像转换为灰度图像,高斯滤波作用是平滑图像,让 Canny 检测的时候准确率更高)、梯度强度和方向的计算(计算图像中每个像素的强度和方向、强度表示像素点的边缘强度、梯度表示的是边缘方向这里的梯度需要用到 sobel 因子)、非极大抑制(经过 NMS 操作后,会除去一些不是边缘的像素点)、双阈值处理(给出一个阈值,若超过这个阈值的边缘则会被保留)、边缘链接(经过双阈值处理过后,强边缘则会留下来,弱边缘则会被抑制,并会把所有的强边缘全部连接起来)。

             工作原理白话文:把3通道图片(也就是彩色图片)转化成双通道图片(也就是灰色图像),然后用高斯滤波去除细小杂物让它更好识别轮廓;梯度强度和方向的计算,就是不同程度扫描轮廓,扫描很多轮廓;非极大抑制,去除边边角角不是边缘的像素点;双阈值处理,就是在之前扫描不同程度轮廓上设置两个阈值(Max,Min),大于Max值被认为是轮廓保留下来,小于Min被认为不是轮廓去除掉,在两值中间的是边缘保留,不是去掉;边缘链接,就是一个完整轮廓。

            CV_EXPORTS_W void Canny( InputArray image, OutputArray edges,double threshold1, double threshold2,int apertureSize = 3, bool L2gradient = false ); 

    第一个参数:image 输入的图像,这个图像一定要单通道灰度图
    第二个参数:edges 输出的边缘图像,这个图像也必须是单通道黑白图
    第三个参数:threshold1 第一个滞后性阈值,低阈值,小于低阈值则认为是弱边缘,就是需要抛弃的边缘。
    第四个参数:threshold2 第二个滞后性阈值,高阈值,大于高阈值被认为强边缘,需要保留的边缘
    第五个参数:apertureSize 指的是 Sobel 算子大小,这个值默认为 3,代表的是 3*3 的矩阵大小。
    第六个参数:L2gradient 是计算图像梯度幅度值的情况,这个值默认为 False;若选择 True,则使用更精确的 L2 范数进行计算

    二. 代码实战扫描物体轮廓

    1.扫描轮廓步骤

            分别是 imread 读取图片(这个图片默认是 3 通道)、利用 cvtColor 把 8VU3 的三通道图片转换成灰度图(8VU1)、调用 Canny 对灰度图像进行边缘检测、调用 findContours 去查找轮廓、循环轮廓数量然后调用 drawContours 进行画框操作。

    2.代码

    #include <opencv2/opencv.hpp>
    #include <opencv2/dnn.hpp>
    #include <opencv2/imgcodecs.hpp>
    #include <opencv2/imgproc.hpp>
    #include <iostream>using namespace cv;
    using namespace std;int main()
    {//读取图片Mat img = imread("zjl.jpg");//彩色图片转化灰度图片Mat imgGray;cvtColor(img, imgGray, COLOR_RGB2GRAY);//灰度图片边缘检测轮廓Mat imgCanny;Canny(imgGray, imgCanny, 25, 75); //Canny对图像进行边缘检测,弱阈值25,强阈值75//查询轮廓vector<vector<Point>> contours; //定义轮廓vector<Vec4i> hierarchy; //定义层次结构findContours(imgCanny, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_NONE); //查询轮廓,RETR_EXTERNAL表示只检测外部轮廓,CHAIN_APPROX_NONE表示存储所有的轮廓点//绘制轮廓Mat drawing = Mat::zeros(imgCanny.size(), CV_8UC3);//创建一个空白图像,用于绘制轮廓for (int i = 0; i < contours.size(); i++)   //遍历所有轮廓{Scalar color = Scalar(255, 255, 0); //随机生成颜色drawContours(drawing, contours, i, color, 1, 8, hierarchy); //对图像轮廓进行画框}//显示图像imwrite("zjl1.jpg", drawing);return 0;
    }

    3.效果

    本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/bicheng/83791.shtml

    如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

    相关文章

    Qt多线程访问同一个数据库源码分享(基于Sqlite实现)

    Qt多线程访问同一个数据库源码分享&#xff08;基于Sqlite实现&#xff09; 一、实现难点线程安全问题死锁风险连接管理问题数据一致性性能瓶颈跨线程信号槽最佳实践建议 二、源码分享三、测试1、新建一个多线程类2、开启多线程插入数据 一、实现难点 多线程环境下多个线程同时…

    双空间知识蒸馏用于大语言模型

    Dual-Space Knowledge Distillation for Large Language Models 发表&#xff1a;EMNLP 2024 机构&#xff1a;Beijing Key Lab of Traffic Data Analysis and Mining 连接&#xff1a;https://aclanthology.org/2024.emnlp-main.1010.pdf 代码&#xff1a;GitHub - songmz…

    贪心算法应用:多重背包启发式问题详解

    贪心算法应用&#xff1a;多重背包启发式问题详解 多重背包问题是经典的组合优化问题&#xff0c;也是贪心算法的重要应用场景。本文将全面深入地探讨Java中如何利用贪心算法解决多重背包问题。 多重背包问题定义 **多重背包问题(Multiple Knapsack Problem)**是背包问题的变…

    ES6 Promise 状态机

    状态机&#xff1a;抽象的计算模型&#xff0c;根据特定的条件或者信号切换不同的状态 一、Promise 是什么&#xff1f; 简单来说&#xff0c;Promise 就是一个“承诺对象”。在ES6 里&#xff0c;有些代码执行起来需要点时间&#xff0c;比如加载文件、等待网络请求或者设置…

    【Docker管理工具】部署Docker可视化管理面板Dpanel

    【Docker管理工具】部署Docker可视化管理面板Dpanel 一、Dpanel介绍1.1 DPanel 简介1.2 主要特点 二、本次实践规划2.1 本地环境规划2.2 本次实践介绍 三、本地环境检查3.1 检查Docker服务状态3.2 检查Docker版本3.3 检查docker compose 版本 四、下载Dpanel镜像五、部署Dpanel…

    最新研究揭示云端大语言模型防护机制的成效与缺陷

    一项全面新研究揭露了主流云端大语言模型&#xff08;LLM&#xff09;平台安全机制存在重大漏洞与不一致性&#xff0c;对当前人工智能安全基础设施现状敲响警钟。该研究评估了三大领先生成式AI平台的内容过滤和提示注入防御效果&#xff0c;揭示了安全措施在阻止有害内容生成与…

    docker中,容器时间和宿机主机时间不一致问题

    win11下的docker中有个mysql。今天发现插入数据的时间不正确。后来发现原来是docker容器中的时间不正确。于是尝试了各种修改&#xff0c;什么run -e TZ"${tzutil /g}"&#xff0c;TZ"Asia/Shanghai"&#xff0c;还有初始化时带--mysqld一类的&#xff0c;…

    uniapp实现的简约美观的星级评分组件

    采用 uniapp 实现的一款简约美观的星级评分模板&#xff0c;提供丝滑动画效果&#xff0c;用户可根据自身需求进行自定义修改、扩展&#xff0c;纯CSS、HTML实现&#xff0c;支持web、H5、微信小程序&#xff08;其他小程序请自行测试&#xff09; 可到插件市场下载尝试&#x…

    go语言的锁

    本篇文章主要讲锁&#xff0c;主要会涉及go的sync.Mutex和sync.RWMutex。 一.锁的概念和发展 1.1 锁的概念 所谓的加锁和解锁其实就是指一个数据是否被占用了&#xff0c;通过Mutex内的一个状态来表示。 例如&#xff0c;取 0 表示未加锁&#xff0c;1 表示已加锁&#xff…

    Ubuntu 服务器软件更新,以及常用软件安装 —— 一步一步配置 Ubuntu Server 的 NodeJS 服务器详细实录 3

    前言 前面&#xff0c;我们已经 安装好了 Ubuntu 服务器系统&#xff0c;并且 配置好了 ssh 免密登录服务器 &#xff0c;现在&#xff0c;我们要来进一步的设置服务器。 那么&#xff0c;本文&#xff0c;就是进行服务器的系统更新&#xff0c;以及常用软件的安装 调整 Ubu…

    如何从零开始建设一个网站?

    当你没有建站的基础和建站的知识&#xff0c;那么应该如何开展网站建设和网站管理。而今天的教程是不管你是为自己建站还是为他人建站都适合的。本教程会指导你如何进入建站&#xff0c;将建站的步骤给大家分解&#xff1a; 首先我们了解一下&#xff0c;建站需要那些步骤和流程…

    网络可靠性的定义与核心要素

    网络可靠性&#xff08;Network Reliability&#xff09;是指网络系统在特定时间范围内持续提供稳定、无中断、符合预期性能的服务能力。其核心目标是确保数据能够准确、完整、及时地传输&#xff0c;即使在部分故障或异常情况下仍能维持基本功能。 1. 网络可靠性的核心指标 衡…

    GpuGeek如何成为AI基础设施市场的中坚力量

    AI时代&#xff0c;算力基础设施已成为支撑技术创新和产业升级的关键要素。作为国内专注服务算法工程师群体的智算平台&#xff0c;GpuGeek通过持续创新的服务模式、精准的市场定位和系统化的生态建设&#xff0c;正快速成长为AI基础设施领域的中坚力量。本文将深入分析GpuGeek…

    【Qt】Bug:findChildren找不到控件

    使用正确的父对象调用 findChildren&#xff1a;不要在布局对象上调用 findChildren&#xff0c;而应该在布局所在的窗口或控件上调用。

    【Linux网络编程】传输层协议TCP,UDP

    目录 一&#xff0c;UDP协议 1&#xff0c;UDP协议的格式 2&#xff0c;UDP的特点 3&#xff0c;面向数据报 4&#xff0c;UDP的缓冲区 5&#xff0c;UDP使用注意事项 6&#xff0c;基于UDP的应用层协议 二&#xff0c;对于报文的理解 三&#xff0c;TCP协议 1&…

    Neo4j 数据可视化与洞察获取:原理、技术与实践指南

    在关系密集型数据的分析领域,Neo4j 凭借其强大的图数据模型脱颖而出。然而,将复杂的连接关系转化为直观见解,需要专业的数据可视化技术和分析方法。本文将深入探讨 Neo4j 数据可视化的核心原理、关键技术、实用技巧以及结合图数据科学库(GDS)获取深度洞察的最佳实践。 Ne…

    树莓派超全系列教程文档--(55)如何使用网络文件系统NFS

    如何使用网络文件系统NFS 网络文件系统 (NFS)设置基本 NFS 服务器Portmap 锁定&#xff08;可选&#xff09; 配置 NFS 客户端端口映射锁定&#xff08;可选&#xff09; 配置复杂的 NFS 服务器组权限DNS&#xff08;可选&#xff0c;仅在使用 DNS 时&#xff09;NIS&#xff0…

    无法运用pytorch环境、改环境路径、隔离环境

    一.未建虚拟环境时 1.创建新项目后&#xff0c;直接运行是这样的。 2.设置中Virtualenv找不到pytorch环境&#xff1f;因为此时没有创建新虚拟环境。 3.选择conda环境&#xff08;全局环境&#xff09;时&#xff0c;是可以下载环境的。 运行结果如下&#xff1a; 是全局环境…

    HTML5+CSS3+JS小实例:具有粘性重力的磨砂玻璃导航栏

    实例:具有粘性重力的磨砂玻璃导航栏 技术栈:HTML+CSS+JS 效果: 源码: 【HTML】 <!DOCTYPE html> <html lang="zh-CN"><head><meta charset="UTF-8"><meta name="viewport" content="width=device-width…

    NodeJS全栈WEB3面试题——P8项目实战类问题(偏全栈)

    &#x1f4e6; 8.1 请描述你做过的 Web3 项目&#xff0c;具体技术栈和你负责的模块&#xff1f; 我主导开发过一个基于 NFT 的数字纪念平台&#xff0c;用户可以上传照片并生成独特的纪念 NFT&#xff0c;结合 IPFS 和 ERC-721 实现永存上链。 &#x1f527; 技术栈&#xf…