navicat及SQLyog的下载和安装

navicat安装和使用

  • navicat下载和安装
    • navicat 下载
    • navicat 的安装
  • SQLyog下载和安装
    • SQLyog 的下载
    • SQLyog 的安装
    • 连接到MySQL数据库

navicat下载和安装

navicat 下载

navicat下载地址
在这里插入图片描述
这两个都是满足我们需求的,均可
这样我们就得到了一个双击可执行的exe文件

navicat 的安装

双击后一直下一步即可完成安装

SQLyog下载和安装

SQLyog 的下载

下载地址

SQLyog 的安装

同navicat一样,双击exe安装包,然后一直下一步即可

连接到MySQL数据库

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/bicheng/94403.shtml
繁体地址,请注明出处:http://hk.pswp.cn/bicheng/94403.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在TencentOS3上部署OpenTenBase:从入门到实战的完整指南

文章目录前言初识OpenTenBase:不只是又一个分布式数据库OpenTenBase的核心特性环境准备系统环境检查安装必要的依赖包用户环境配置:安全第一创建专用用户配置SSH免密登录(单机部署也需要)源码编译:从零开始构建获取源码…

flink常见问题之超出文件描述符限制

引言Apache Flink 是一个强大且流行的流处理框架,它支持高吞吐量和低延迟的数据处理。在处理大规模数据流时,Flink 用户可能会遇到各种性能瓶颈,其中之一就是文件描述符的限制。文件描述符是操作系统用来表示打开文件或其他输入/输出资源的一…

雅菲奥朗SRE知识墙分享(一):『SRE对智能运维领域所产生的深远影响』

一、SRE推动了运维与开发的融合1、增强协作:SRE模式鼓励运维与开发团队之间的紧密合作,共享知识、资源和责任,共同解决系统稳定性和性能问题。2、共同目标:通过共同设定系统可靠性和性能目标,运维和开发团队能够协同工…

【JVM内存结构系列】一、入门:先搞懂整体框架,再学细节——避免从一开始就混淆概念

在Java开发中,你是否遇到过这些困惑:明明代码没写错,却突然抛出OutOfMemoryError?调优GC参数时,不知道-Xms和-XX:MetaspaceSize分别影响哪块内存?面试时被问“JVM内存结构和Java内存模型有啥区别”,只能含糊其辞? 其实,这些问题的根源都指向同一个核心——没搞懂JVM的…

《Dual Prompt Personalized Federated Learning in Foundation Models》——论文阅读

面向大规模预训练模型(ViT、BERT)的千万级设备场景,用“双提示(Dual Prompt)”机制实现高效、可扩展的个性化联邦学习(PFL)1.研究背景传统联邦学习在客户端数据异构(非独立同分布&am…

深度剖析Lua Table的运作方式

前言&#xff1a;本篇基于Lua-5.3.6源码并配合《Lua 解释器构建&#xff1a;从虚拟机到编译器》一书进行Table的运作解读。一、Table数据结构typedef struct Table {CommonHeader;lu_byte flags; /* 1<<p means tagmethod(p) is not present */lu_byte lsizenode; /* l…

PETR/PETRv2

PE: position embedding 一、PETR算法动机回归 1.1 DETR 输入组成&#xff1a;包含2D位置编码和Object Query 核心流程&#xff1a;通过Object Query直接索引2D特征图&#xff0c;结合位置编码迭代更新Query 特点&#xff1a;整体流程简洁&#xff0c;每个Query代表一个潜在目标…

计算机大数据毕业设计推荐:基于Spark的气候疾病传播可视化分析系统【Hadoop、python、spark】

精彩专栏推荐订阅&#xff1a;在下方主页&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb; &#x1f496;&#x1f525;作者主页&#xff1a;计算机毕设木哥&#x1f525; &#x1f496; 文章目录 一、项目介绍二、…

英伟达显卡GPU驱动的本质

我们来深入、详细地探讨一下英伟达&#xff08;NVIDIA&#xff09;GPU驱动程序的本质。 普通用户眼中的驱动程序可能只是一个“让显卡工作的软件”&#xff0c;但它的本质远比这复杂和深刻。我们可以从几个层面来理解它。 核心比喻&#xff1a;翻译官、指挥官与优化大师 如果说…

算法 ---哈希表

一、哈希介绍 是什么 存储数据的容器 什么用 快速查找某个元素 什么时候用哈希表 频繁的查找某一个数的时候 怎么用哈希表 &#xff08;1&#xff09;容器&#xff08;哈希表&#xff09; &#xff08;2&#xff09;用数组模拟哈希表&#xff08;字符串的字符&#xf…

基于分布式环境的令牌桶与漏桶限流算法对比与实践指南

基于分布式环境的令牌桶与漏桶限流算法对比与实践指南 在高并发的分布式系统中&#xff0c;限流是保障服务可用性和稳定性的核心手段。本文聚焦于令牌桶算法与漏桶算法在分布式环境下的实现与优化&#xff0c;对多种解决方案进行横向对比&#xff0c;分析各自的优缺点&#xff…

WPF MVVM入门系列教程(TabControl绑定到列表并单独指定每一页内容)

在以前的开发过程中&#xff0c;对于TabControl控件&#xff0c;我一般是习惯直接定义TabItem&#xff0c;在TabItem下布局&#xff0c;并进行绑定。 类似这样 1 <TabControl ItemsSource"{Binding TabList}" SelectedIndex"0">2 <TabItem…

L2CAP 面向连接信道(CoC)在 BLE 中的应用:建立、流控与数据传输

在物联网(IoT)蓬勃发展的今天,低功耗蓝牙(BLE)技术因其高效节能、低成本等特性,成为短距离无线通信的首选方案。作为 BLE 协议栈的核心组件,逻辑链路控制与适配协议(L2CAP)的面向连接信道(CoC)承担着数据传输的关键任务。本文将深入解析 L2CAP CoC 在 BLE 中的应用,…

医疗AI与医院数据仓库的智能化升级:异构采集、精准评估与高效交互的融合方向(上)

摘要: 随着医疗信息化建设的深入,医院数据仓库(Data Warehouse, DW)作为医疗AI应用的核心数据底座,其效能直接决定智能化转型的深度与广度。本文聚焦医疗AI驱动下医院数据仓库的三大关键升级功能——异构采集支持数据库体检与智能SQL分析、评估引擎重构实现六大数据库精准…

2015-2018年咸海流域1km归一化植被指数8天合成数据集

数据集摘要数据集包含2015年-2018年咸海流域NDVI 8天均值数据。提取美国国家航空航天局中分辨率成像光谱仪MOD13A2产品第一波段作为归一化植被指数数据&#xff0c;乘以比例因子0.0001&#xff0c;叠加咸海流域边界数据&#xff0c;裁切后得到咸海流域范围内的NDVI月均值数据。…

Kafka消息持久化机制全解析:存储原理与实战场景

目录 引言​ 一、Kafka消息持久化的核心目标 二、底层存储机制深度剖析 1.【文件系统分层】——日志分组 日志段 核心结构 示例目录结构 2.【消息写入流程】——从内存到磁盘的旅程✈️ 3.【默认存储参数】——生产环境的黄金比例 三、典型应用场景与案例实战 案例1…

Python训练营打卡Day41-Grad-CAM与Hook函数

知识点回顾回调函数lambda函数hook函数的模块钩子和张量钩子Grad-CAM的示例 作业&#xff1a;理解下今天的代码即可 在深度学习中&#xff0c;我们经常需要查看或修改模型中间层的输出或梯度。然而&#xff0c;标准的前向传播和反向传播过程通常是一个黑盒&#xff0c;我们很难…

使用VBA宏批量修改Word中表格题注格式

目录&#x1f4c2; 使用步骤✅ 方式一&#xff1a;应用已有样式&#xff08;推荐&#xff09;代码实现说明✅ 方式二&#xff1a;手动设置字体格式&#xff08;无需预定义样式&#xff09;代码实现参数说明如何运行宏&#xff1f;补充建议总结在撰写论文、技术文档或报告时&…

Redis面试精讲 Day 27:Redis 7.0/8.0新特性深度解析

【Redis面试精讲 Day 27】Redis 7.0/8.0新特性深度解析 在“Redis面试精讲”系列的第27天&#xff0c;我们将聚焦Redis最新版本——7.0与8.0的核心新特性。随着Redis从内存数据库向云原生、高可用、高性能中间件持续演进&#xff0c;7.0和8.0版本引入了多项颠覆性改进&#xf…

使用自制的NTC测量模块测试Plecs的热仿真效果

之前构建的 NTC 温度测量模型是进行 PLECS 热仿真的完美起点和核心组成部分。 PLECS 的强大之处在于它能够进行多域仿真,特别是电-热联合仿真。您可以将电路仿真(包括您的 NTC 测量模型)与热仿真(散热器、热容、热阻等)无缝地结合起来。 电-热联合仿真原理 整个仿真闭环…