一、前言
在深度学习项目中,数据集的处理和模型的训练、测试、预测是关键环节。本文将为小白详细介绍从数据集搜集、清洗、划分到模型训练、测试、预测以及模型结构查看的全流程,附带代码和操作说明,让你轻松上手!
二、数据集
二、数据集获取
2.1 自建数据集 vs 公开数据集
- 自建数据集:适合本科毕设、大作业等小规模场景,可通过自己拍摄或爬虫爬取(如百度图片)构建。
- 公开数据集:适合专业研究,例如医学图像分割可从ISIC Archive获取。
2.2 百度图片爬虫实战(附代码)
代码文件:data_get.py
# -*- coding: utf-8 -*-
import requests
import re
import osheaders = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) Chrome/84.0.4147.125 Safari/537.36'}
name = input('请输入要爬取的图片类别:')
num = 0
num_1 = 0
num_2 = 0
x = input('请输入要爬取的图片数量?(1=60张,2=120张):')
list_1 = []for i in range(int(x)):name_1 = os.getcwd()name_2 = os.path.join(name_1, 'data/' + name)url = f'https://image.baidu.com/search/flip?tn=baiduimage&ie=utf-8&word={name}&pn={i*30}'res = requests.get(url, headers=headers)htlm_1 = res.content.decode()a = re.findall('"objURL":"(.*?)",', htlm_1)if not os.path.exists(name_2):os.makedirs(name_2)for b in a:try:b_2 = re.findall('https:(.*?)&', b)[0] # 提取图片URLif b_2 not in list_1:num += 1img = requests.get(b)save_path = os.path.join(name_1, 'data/' + name, f'{name}{num}.jpg')with open(save_path, 'ab') as f:f.write(img.content)print(f'---------正在下载第{num}张图片----------')list_1.append(b_2)else:num_1 += 1 # 统计重复图片except:print(f'---------第{num}张图片无法下载----------')num_2 += 1 # 统计失败图片print(f'下载完成!总共下载{num+num_1+num_2}张,成功{num}张,重复{num_1}张,失败{num_2}张')
使用步骤:
- 保存代码为
data_get.py
- 运行后输入图片类别(如 “向日葵”)和数量(1 或 2)
- 图片会自动保存到
data/类别名
目录下
三、数据集清洗(解决中文路径和坏图问题)
3.1 为什么需要清洗?
- OpenCV 对中文路径支持差,会导致读取错误
- 爬取的图片可能包含损坏文件(无法读取的坏图)
3.2 清洗代码(data_clean.py)
import shutil
import cv2
import os
import numpy as np
from tqdm import tqdmdef cv_imread(file_path, type=-1):"""支持中文路径读取图片"""img = cv2.imdecode(np.fromfile(file_path, dtype=np.uint8), -1)return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) if type==0 else imgdef cv_imwrite(file_path, cv_img, is_gray=True):"""支持中文路径保存图片"""if len(cv_img.shape)==3 and is_gray:cv_img = cv_img[:, :, 0]cv2.imencode(os.path.splitext(file_path)[1], cv_img)[1].tofile(file_path)def data_clean(src_folder, english_name):clean_folder = f{src_folder}_cleanedif os.path.isdir(clean_folder):shutil.rmtree(clean_folder) # 删除已存在目录os.mkdir(clean_folder)image_names = os.listdir(src_folder)with tqdm(total=len(image_names)) as pabr:for i, name in enumerate(image_names):path = os.path.join(src_folder, name)try:img = cv_imread(path)# 保存为英文名称的JPG图片save_name = f{english_name}_{i}.jpgsave_path = os.path.join(clean_folder, save_name)cv_imwrite(save_path, img, is_gray=False)except:print(f{name}是坏图)pabr.update(1)if __name__ == __main__:data_clean(src_folder=D:/数据集/向日葵, english_name=sunflowers) # 替换为你的路径
运行结果:
- 生成
原目录_cleaned
文件夹,存放清洗后的图片 - 自动跳过坏图,重命名为英文(如
sunflowers_0.jpg
)
四、数据集划分(6:2:2 比例)
4.1 适用场景
- 当数据集未区分训练集、验证集、测试集时使用
- 要求:图片按类别存放在子目录下(如
data/向日葵
,data/玫瑰
)
4.2 划分代码(data_split.py)
import os
import shutil
import random
from tqdm import tqdmdef split_data(src_dir, save_dir, ratios=[0.6, 0.2, 0.2]):os.makedirs(save_dir, exist_ok=True)categories = os.listdir(src_dir)for cate in categories:cate_path = os.path.join(src_dir, cate)imgs = os.listdir(cate_path)random.shuffle(imgs)total = len(imgs)# 计算划分索引train_idx = int(total * ratios[0])val_idx = train_idx + int(total * ratios[1])# 划分数据集for phase, start, end in zip(['train', 'val', 'test'], [0, train_idx, val_idx]):phase_dir = os.path.join(save_dir, phase, cate)os.makedirs(phase_dir, exist_ok=True)for img in tqdm(imgs[start:end], desc=fProcessing {phase} {cate}):src_img = os.path.join(cate_path, img)dest_img = os.path.join(phase_dir, img)shutil.copyfile(src_img, dest_img)if __name__ == __main__:src_dir = D:/数据集_cleaned # 清洗后的数据集路径save_dir = D:/数据集_split # 划分结果保存路径split_data(src_dir, save_dir)
关键操作:
- 修改
src_dir
为清洗后的数据集路径 - 运行后生成
save_dir/split
目录,包含train/val/test
子目录 - 比例可在
ratios
参数中调整(总和需为 1)
五、模型训练(以 ResNet50 为例)
5.1 准备工作
一开始执行之前会有一个会需要下载预训练模型到指定目录,由于众所周知的原因,大家需要提前先把模型下载下来放置到这个目录,这个大家自行探索。
右键直接运行train.py
就可以开始训练模型,代码首先会输出模型的基本信息(模型有几个卷积层、池化层、全连接层构成)和运行的记录。
- 下载预训练模型(如 ResNet50),放入指定目录(代码中标记
TODO
) - 确保数据集划分正确(训练集路径需对应)
5.2 开始训练
from torchutils import *
from torchvision import datasets, models, transforms
import os.path as osp
import os
if torch.cuda.is_available():device = torch.device('cuda:0')
else:device = torch.device('cpu')
print(f'Using device: {device}')
# 固定随机种子,保证实验结果是可以复现的
seed = 42
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
data_path = r"G:\code\2023_pytorch110_classification_42-master\flowers_5_split" # todo 数据集路径
# 注: 执行之前请先划分数据集
# 超参数设置
params = {# 'model': 'vit_tiny_patch16_224', # 选择预训练模型# 'model': 'resnet50d', # 选择预训练模型'model': 'efficientnet_b3a', # 选择预训练模型"img_size": 224, # 图片输入大小"train_dir": osp.join(data_path, "train"), # todo 训练集路径"val_dir": osp.join(data_path, "val"), # todo 验证集路径'device': device, # 设备'lr': 1e-3, # 学习率'batch_size': 4, # 批次大小'num_workers': 0, # 进程'epochs': 10, # 轮数"save_dir": "../checkpoints/", # todo 保存路径"pretrained": True,"num_classes": len(os.listdir(osp.join(data_path, "train"))), # 类别数目, 自适应获取类别数目'weight_decay': 1e-5 # 学习率衰减
}# 定义模型
class SELFMODEL(nn.Module):def __init__(self, model_name=params['model'], out_features=params['num_classes'],pretrained=True):super().__init__()self.model = timm.create_model(model_name, pretrained=pretrained) # 从预训练的库中加载模型# self.model = timm.create_model(model_name, pretrained=pretrained, checkpoint_path="pretrained/resnet50d_ra2-464e36ba.pth") # 从预训练的库中加载模型# classifierif model_name[:3] == "res":n_features = self.model.fc.in_features # 修改全连接层数目self.model.fc = nn.Linear(n_features, out_features) # 修改为本任务对应的类别数目elif model_name[:3] == "vit":n_features = self.model.head.in_features # 修改全连接层数目self.model.head = nn.Linear(n_features, out_features) # 修改为本任务对应的类别数目else:n_features = self.model.classifier.in_featuresself.model.classifier = nn.Linear(n_features, out_features)# resnet修改最后的全链接层print(self.model) # 返回模型def forward(self, x): # 前向传播x = self.model(x)return x# 定义训练流程
def train(train_loader, model, criterion, optimizer, epoch, params):metric_monitor = MetricMonitor() # 设置指标监视器model.train() # 模型设置为训练模型nBatch = len(train_loader)stream = tqdm(train_loader)for i, (images, target) in enumerate(stream, start=1): # 开始训练images = images.to(params['device'], non_blocking=True) # 加载数据target = target.to(params['device'], non_blocking=True) # 加载模型output = model(images) # 数据送入模型进行前向传播loss = criterion(output, target.long()) # 计算损失f1_macro = calculate_f1_macro(output, target) # 计算f1分数recall_macro = calculate_recall_macro(output, target) # 计算recall分数acc = accuracy(output, target) # 计算准确率分数metric_monitor.update('Loss', loss.item()) # 更新损失metric_monitor.update('F1', f1_macro) # 更新f1metric_monitor.update('Recall', recall_macro) # 更新recallmetric_monitor.update('Accuracy', acc) # 更新准确率optimizer.zero_grad() # 清空学习率loss.backward() # 损失反向传播optimizer.step() # 更新优化器lr = adjust_learning_rate(optimizer, epoch, params, i, nBatch) # 调整学习率stream.set_description( # 更新进度条"Epoch: {epoch}. Train. {metric_monitor}".format(epoch=epoch,metric_monitor=metric_monitor))return metric_monitor.metrics['Accuracy']["avg"], metric_monitor.metrics['Loss']["avg"] # 返回结果# 定义验证流程
def validate(val_loader, model, criterion, epoch, params):metric_monitor = MetricMonitor() # 验证流程model.eval() # 模型设置为验证格式stream = tqdm(val_loader) # 设置进度条with torch.no_grad(): # 开始推理for i, (images, target) in enumerate(stream, start=1):images = images.to(params['device'], non_blocking=True) # 读取图片target = target.to(params['device'], non_blocking=True) # 读取标签output = model(images) # 前向传播loss = criterion(output, target.long()) # 计算损失f1_macro = calculate_f1_macro(output, target) # 计算f1分数recall_macro = calculate_recall_macro(output, target) # 计算recall分数acc = accuracy(output, target) # 计算accmetric_monitor.update('Loss', loss.item()) # 后面基本都是更新进度条的操作metric_monitor.update('F1', f1_macro)metric_monitor.update("Recall", recall_macro)metric_monitor.update('Accuracy', acc)stream.set_description("Epoch: {epoch}. Validation. {metric_monitor}".format(epoch=epoch,metric_monitor=metric_monitor))return metric_monitor.metrics['Accuracy']["avg"], metric_monitor.metrics['Loss']["avg"]# 展示训练过程的曲线
def show_loss_acc(acc, loss, val_acc, val_loss, sava_dir):# 从history中提取模型训练集和验证集准确率信息和误差信息# 按照上下结构将图画输出plt.figure(figsize=(8, 8))plt.subplot(2, 1, 1)plt.plot(acc, label='Training Accuracy')plt.plot(val_acc, label='Validation Accuracy')plt.legend(loc='lower right')plt.ylabel('Accuracy')plt.ylim([min(plt.ylim()), 1])plt.title('Training and Validation Accuracy')plt.subplot(2, 1, 2)plt.plot(loss, label='Training Loss')plt.plot(val_loss, label='Validation Loss')plt.legend(loc='upper right')plt.ylabel('Cross Entropy')plt.title('Training and Validation Loss')plt.xlabel('epoch')# 保存在savedir目录下。save_path = osp.join(save_dir, "results.png")plt.savefig(save_path, dpi=100)if __name__ == '__main__':accs = []losss = []val_accs = []val_losss = []data_transforms = get_torch_transforms(img_size=params["img_size"]) # 获取图像预处理方式train_transforms = data_transforms['train'] # 训练集数据处理方式valid_transforms = data_transforms['val'] # 验证集数据集处理方式train_dataset = datasets.ImageFolder(params["train_dir"], train_transforms) # 加载训练集valid_dataset = datasets.ImageFolder(params["val_dir"], valid_transforms) # 加载验证集if params['pretrained'] == True:save_dir = osp.join(params['save_dir'], params['model']+"_pretrained_" + str(params["img_size"])) # 设置模型保存路径else:save_dir = osp.join(params['save_dir'], params['model'] + "_nopretrained_" + str(params["img_size"])) # 设置模型保存路径if not osp.isdir(save_dir): # 如果保存路径不存在的话就创建os.makedirs(save_dir) #print("save dir {} created".format(save_dir))train_loader = DataLoader( # 按照批次加载训练集train_dataset, batch_size=params['batch_size'], shuffle=True,num_workers=params['num_workers'], pin_memory=True,)val_loader = DataLoader( # 按照批次加载验证集valid_dataset, batch_size=params['batch_size'], shuffle=False,num_workers=params['num_workers'], pin_memory=True,)print(train_dataset.classes)model = SELFMODEL(model_name=params['model'], out_features=params['num_classes'],pretrained=params['pretrained']) # 加载模型# model = nn.DataParallel(model) # 模型并行化,提高模型的速度# resnet50d_1epochs_accuracy0.50424_weights.pthmodel = model.to(params['device']) # 模型部署到设备上criterion = nn.CrossEntropyLoss().to(params['device']) # 设置损失函数optimizer = torch.optim.AdamW(model.parameters(), lr=params['lr'], weight_decay=params['weight_decay']) # 设置优化器# 损失函数和优化器可以自行设置修改。# criterion = nn.CrossEntropyLoss().to(params['device']) # 设置损失函数# optimizer = torch.optim.AdamW(model.parameters(), lr=params['lr'], weight_decay=params['weight_decay']) # 设置优化器best_acc = 0.0 # 记录最好的准确率# 只保存最好的那个模型。for epoch in range(1, params['epochs'] + 1): # 开始训练acc, loss = train(train_loader, model, criterion, optimizer, epoch, params)val_acc, val_loss = validate(val_loader, model, criterion, epoch, params)accs.append(acc)losss.append(loss)val_accs.append(val_acc)val_losss.append(val_loss)if val_acc >= best_acc:# 保存的时候设置一个保存的间隔,或者就按照目前的情况,如果前面的比后面的效果好,就保存一下。# 按照间隔保存的话得不到最好的模型。save_path = osp.join(save_dir, f"{params['model']}_{epoch}epochs_accuracy{acc:.5f}_weights.pth")torch.save(model.state_dict(), save_path)best_acc = val_accshow_loss_acc(accs, losss, val_accs, val_losss, save_dir)print("训练已完成,模型和训练日志保存在: {}".format(save_dir))
运行结果:
- 输出模型结构(卷积层 / 池化层 / 全连接层)
- 保存训练曲线(
acc.png
和loss.png
) - 自动保存最优模型到指定目录
六、模型测试与预测
6.1 测试代码(test.py)
python
from torchutils import *
from torchvision import datasets, models, transforms
import os.path as osp
import os
from train import SELFMODELif torch.cuda.is_available():device = torch.device('cuda:0')
else:device = torch.device('cpu')
print(f'Using device: {device}')
# 固定随机种子,保证实验结果是可以复现的
seed = 42
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = Truedata_path = "../flowers_data_split" # todo 修改为数据集根目录
model_path = "../checkpoints/resnet50d_pretrained_224/resnet50d_10epochs_accuracy0.99501_weights.pth" # todo 模型地址
model_name = 'resnet50d' # todo 模型名称
img_size = 224 # todo 数据集训练时输入模型的大小
# 注: 执行之前请先划分数据集
# 超参数设置
params = {# 'model': 'vit_tiny_patch16_224', # 选择预训练模型# 'model': 'efficientnet_b3a', # 选择预训练模型'model': model_name, # 选择预训练模型"img_size": img_size, # 图片输入大小"test_dir": osp.join(data_path, "test"), # todo 测试集子目录'device': device, # 设备'batch_size': 4, # 批次大小'num_workers': 0, # 进程"num_classes": len(os.listdir(osp.join(data_path, "train"))), # 类别数目, 自适应获取类别数目
}def test(val_loader, model, params, class_names):metric_monitor = MetricMonitor() # 验证流程model.eval() # 模型设置为验证格式stream = tqdm(val_loader) # 设置进度条# 对模型分开进行推理test_real_labels = []test_pre_labels = []with torch.no_grad(): # 开始推理for i, (images, target) in enumerate(stream, start=1):images = images.to(params['device'], non_blocking=True) # 读取图片target = target.to(params['device'], non_blocking=True) # 读取标签output = model(images) # 前向传播# loss = criterion(output, target.long()) # 计算损失# print(output)target_numpy = target.cpu().numpy()y_pred = torch.softmax(output, dim=1)y_pred = torch.argmax(y_pred, dim=1).cpu().numpy()test_real_labels.extend(target_numpy)test_pre_labels.extend(y_pred)# print(target_numpy)# print(y_pred)f1_macro = calculate_f1_macro(output, target) # 计算f1分数recall_macro = calculate_recall_macro(output, target) # 计算recall分数acc = accuracy(output, target) # 计算acc# metric_monitor.update('Loss', loss.item()) # 后面基本都是更新进度条的操作metric_monitor.update('F1', f1_macro)metric_monitor.update("Recall", recall_macro)metric_monitor.update('Accuracy', acc)stream.set_description("mode: {epoch}. {metric_monitor}".format(epoch="test",metric_monitor=metric_monitor))class_names_length = len(class_names)heat_maps = np.zeros((class_names_length, class_names_length))for test_real_label, test_pre_label in zip(test_real_labels, test_pre_labels):heat_maps[test_real_label][test_pre_label] = heat_maps[test_real_label][test_pre_label] + 1# print(heat_maps)heat_maps_sum = np.sum(heat_maps, axis=1).reshape(-1, 1)# print(heat_maps_sum)# print()heat_maps_float = heat_maps / heat_maps_sum# print(heat_maps_float)# title, x_labels, y_labels, harvestshow_heatmaps(title="heatmap", x_labels=class_names, y_labels=class_names, harvest=heat_maps_float,save_name="record/heatmap_{}.png".format(model_name))# 加上模型名称return metric_monitor.metrics['Accuracy']["avg"], metric_monitor.metrics['F1']["avg"], \metric_monitor.metrics['Recall']["avg"]def show_heatmaps(title, x_labels, y_labels, harvest, save_name):# 这里是创建一个画布fig, ax = plt.subplots()# cmap https://blog.csdn.net/ztf312/article/details/102474190im = ax.imshow(harvest, cmap="OrRd")# 这里是修改标签# We want to show all ticks...ax.set_xticks(np.arange(len(y_labels)))ax.set_yticks(np.arange(len(x_labels)))# ... and label them with the respective list entriesax.set_xticklabels(y_labels)ax.set_yticklabels(x_labels)# 因为x轴的标签太长了,需要旋转一下,更加好看# Rotate the tick labels and set their alignment.plt.setp(ax.get_xticklabels(), rotation=45, ha="right",rotation_mode="anchor")# 添加每个热力块的具体数值# Loop over data dimensions and create text annotations.for i in range(len(x_labels)):for j in range(len(y_labels)):text = ax.text(j, i, round(harvest[i, j], 2),ha="center", va="center", color="black")ax.set_xlabel("Predict label")ax.set_ylabel("Actual label")ax.set_title(title)fig.tight_layout()plt.colorbar(im)plt.savefig(save_name, dpi=100)# plt.show()if __name__ == '__main__':data_transforms = get_torch_transforms(img_size=params["img_size"]) # 获取图像预处理方式# train_transforms = data_transforms['train'] # 训练集数据处理方式valid_transforms = data_transforms['val'] # 验证集数据集处理方式# valid_dataset = datasets.ImageFolder(params["val_dir"], valid_transforms) # 加载验证集# print(valid_dataset)test_dataset = datasets.ImageFolder(params["test_dir"], valid_transforms)class_names = test_dataset.classesprint(class_names)# valid_dataset = datasets.ImageFolder(params["val_dir"], valid_transforms) # 加载验证集test_loader = DataLoader( # 按照批次加载训练集test_dataset, batch_size=params['batch_size'], shuffle=True,num_workers=params['num_workers'], pin_memory=True,)# 加载模型model = SELFMODEL(model_name=params['model'], out_features=params['num_classes'],pretrained=False) # 加载模型结构,加载模型结构过程中pretrained设置为False即可。weights = torch.load(model_path)model.load_state_dict(weights)model.eval()model.to(device)# 指标上的测试结果包含三个方面,分别是acc f1 和 recall, 除此之外,应该还有相应的热力图输出,整体会比较好看一些。acc, f1, recall = test(test_loader, model, params, class_names)print("测试结果:")print(f"acc: {acc}, F1: {f1}, recall: {recall}")print("测试完成,heatmap保存在{}下".format("record"))
6.2 图片预测(predict.py)
import torch
# from train_resnet import SelfNet
from train import SELFMODEL
import os
import os.path as osp
import shutil
import torch.nn as nn
from PIL import Image
from torchutils import get_torch_transformsif torch.cuda.is_available():device = torch.device('cuda')
else:device = torch.device('cpu')model_path = "../checkpoints/resnet50d_pretrained_224/resnet50d_10epochs_accuracy0.99501_weights.pth" # todo 模型路径
classes_names = ['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips'] # todo 类名
img_size = 224 # todo 图片大小
model_name = "resnet50d" # todo 模型名称
num_classes = len(classes_names) # todo 类别数目def predict_batch(model_path, target_dir, save_dir):data_transforms = get_torch_transforms(img_size=img_size)valid_transforms = data_transforms['val']# 加载网络model = SELFMODEL(model_name=model_name, out_features=num_classes, pretrained=False)# model = nn.DataParallel(model)weights = torch.load(model_path)model.load_state_dict(weights)model.eval()model.to(device)# 读取图片image_names = os.listdir(target_dir)for i, image_name in enumerate(image_names):image_path = osp.join(target_dir, image_name)img = Image.open(image_path)img = valid_transforms(img)img = img.unsqueeze(0)img = img.to(device)output = model(img)label_id = torch.argmax(output).item()predict_name = classes_names[label_id]save_path = osp.join(save_dir, predict_name)if not osp.isdir(save_path):os.makedirs(save_path)shutil.copy(image_path, save_path)print(f"{i + 1}: {image_name} result {predict_name}")def predict_single(model_path, image_path):data_transforms = get_torch_transforms(img_size=img_size)# train_transforms = data_transforms['train']valid_transforms = data_transforms['val']# 加载网络model = SELFMODEL(model_name=model_name, out_features=num_classes, pretrained=False)# model = nn.DataParallel(model)weights = torch.load(model_path)model.load_state_dict(weights)model.eval()model.to(device)# 读取图片img = Image.open(image_path)img = valid_transforms(img)img = img.unsqueeze(0)img = img.to(device)output = model(img)label_id = torch.argmax(output).item()predict_name = classes_names[label_id]print(f"{image_path}'s result is {predict_name}")if __name__ == '__main__':# 批量预测函数predict_batch(model_path=model_path,target_dir="D:/upppppppppp/cls/cls_torch_tem/images/test_imgs/mini",save_dir="D:/upppppppppp/cls/cls_torch_tem/images/test_imgs/mini_result")# 单张图片预测函数# predict_single(model_path=model_path, image_path="images/test_imgs/506659320_6fac46551e.jpg")
七、模型结构与参数量查看
7.1 查看模型结构(Netron 工具)
- 将模型转换为 ONNX 格式(代码
utils/export_onnx.py
):
import numpy as np
import onnxruntime
from PIL import Imageclass_names = {'0': '雏菊', '1': '蒲公英', '2': '玫瑰', '3': '向日葵', '4': '郁金香'}# transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])#均值,标准差
# 预测图片
session = onnxruntime.InferenceSession(r"C:\Users\nongc\Desktop\ImageClassifier.onnx")def process_image(image_path):# 读取测试数据img = Image.open(image_path)# Resize,thumbnail方法只能进行缩小,所以进行了判断if img.size[0] > img.size[1]:img.thumbnail((10000, 256))else:img.thumbnail((256, 10000))# Crop操作left_margin = (img.width - 224) / 2bottom_margin = (img.height - 224) / 2right_margin = left_margin + 224top_margin = bottom_margin + 224img = img.crop((left_margin, bottom_margin, right_margin,top_margin))# img.save('thumb.jpg')# 相同的预处理方法img = np.array(img) / 255mean = np.array([0.485, 0.456, 0.406]) # provided meanstd = np.array([0.229, 0.224, 0.225]) # provided stdimg = (img - mean) / std# 注意颜色通道应该放在第一个位置img = img.transpose((2, 0, 1))return imgimage_path = r"C:\Users\nongc\Desktop\百度云下载\2023_pytorch110_classification_42-master\2023_pytorch110_classification_42-master\flowers_5\roses\99383371_37a5ac12a3_n.jpg" # '1':
img = process_image(image_path)
img = np.expand_dims(img, 0)outputs = session.run([], {"modelInput": img.astype('float32')})
result_index = int(np.argmax(np.squeeze(outputs)))
result = class_names['%d' % result_index] # 获得对应的名称print(np.squeeze(outputs), '\n', img.shape)
print(f"预测种类为: {result} 对应索引为:{np.argmax(np.squeeze(outputs))}")
# print(np.min(outputs),np.argmin(np.squeeze(outputs)),np.max(outputs))
打开Netron 官网,拖入resnet50.onnx
即可可视化模型结构。
7.2 计算参数量(get_flops.py)
import torch
from torchstat import stat
from train import SELFMODELif torch.cuda.is_available():device = torch.device('cuda')
else:device = torch.device('cpu')
model_name = "resnet50d" # todo 模型名称
num_classes = 5 # todo 类别数目
model_path = "../../checkpoints/resnet50d_pretrained_224/resnet50d_10epochs_accuracy0.99501_weights.pth" # todo 模型地址
model = SELFMODEL(model_name=model_name, out_features=num_classes, pretrained=False)
weights = torch.load(model_path)
model.load_state_dict(weights)
model.eval()
stat(model, (3, 224, 224)) # 后面的224表示模型的输入大小
八、总结
本文覆盖了深度学习项目的核心流程:数据获取→清洗→划分→训练→测试→预测,并提供了可直接运行的代码和详细操作说明。对于小白来说,建议先从简单数据集(如花卉分类)入手,逐步熟悉每个环节,遇到问题可参考代码中的TODO
注释和报错信息排查。