C++——volatile

C++volatile关键字

volatile是C++中的一个关键字,用于修饰变量,表示该变量的值可能会在程序的控制之外被改变。它主要告诉编译器不要对这个变量进行优化,确保每次访问变量时都从实际存储位置读取最新值,而不是依赖寄存器中的缓存值。


1. volatile的用途

(1)硬件寄存器

当程序访问硬件设备的寄存器时,这些寄存器的值可能被硬件随时修改。例如,嵌入式系统中的硬件状态寄存器:

volatile int hardware_register;  // 声明为volatile,防止编译器优化读取操作

(2)中断服务例程(ISR)

在中断服务例程中,变量可能被中断和主程序同时访问,需声明为volatile以避免优化:

volatile bool interrupt_flag = false;  // 中断标志

(3)多线程环境

虽然不能替代同步机制,但在简单场景下可防止编译器优化标志变量:

volatile bool thread_flag = false;  // 线程间通信的标志

2. volatile的限制

(1)线程安全

volatile不能保证线程安全。多线程环境下对变量的并发读写仍需互斥锁等同步机制:

// 错误:volatile不保证线程安全
volatile int counter = 0;
counter++;  // 多线程下仍可能产生数据竞争

(2)原子操作

volatile不保证操作的原子性。例如,volatile int的自增操作可能被拆分为多个步骤:

volatile int x = 0;
x++;  // 非原子操作(读取→修改→写入)

3. 示例代码

以下示例演示volatile在多线程中的简单使用:

#include <iostream>
#include <thread>
#include <chrono>volatile bool running = true;  // 声明为volatilevoid worker_thread() {while (running) {  // 每次循环读取实际内存值std::this_thread::sleep_for(std::chrono::milliseconds(100));}std::cout << "Worker thread exiting." << std::endl;
}int main() {std::thread worker(worker_thread);std::this_thread::sleep_for(std::chrono::seconds(2));running = false;  // 修改标志变量worker.join();std::cout << "Main thread exiting." << std::endl;return 0;
}

4. 总结

  • 核心作用
    • 防止编译器优化,确保变量访问直接作用于内存。
    • 适用于硬件寄存器、中断服务例程和简单的多线程标志场景。
  • 局限性
    • 不提供线程安全性,需结合互斥锁或std::atomic
    • 不保证操作的原子性,复杂操作需原子类型(如std::atomic<int>)。
  • 替代方案
    • 多线程数据共享优先使用std::atomic或互斥锁。
    • 硬件交互场景需结合内存屏障(如std::atomic_thread_fence)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/diannao/84401.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

搭建自己的语音对话系统:开源 S2S 流水线深度解析与实战

网罗开发 &#xff08;小红书、快手、视频号同名&#xff09; 大家好&#xff0c;我是 展菲&#xff0c;目前在上市企业从事人工智能项目研发管理工作&#xff0c;平时热衷于分享各种编程领域的软硬技能知识以及前沿技术&#xff0c;包括iOS、前端、Harmony OS、Java、Python等…

qt浏览文件支持惯性

#include <QApplication> #include <QListWidget> #include <QScroller> #include <QScrollerProperties>int main(int argc, char *argv[]) {QApplication app(argc, argv);// 创建列表控件并添加示例项QListWidget listWidget;for (int i 0; i <…

路径规划算法BFS/Astar/HybridAstar简单实现

借鉴本文所述代码简单实现一下BFS&#xff0c;Astar和HybridAstar路径规划算法&#xff0c;用于辅助理解算法原理。 代码在这里&#xff0c;画图用到了matplotlibcpp库&#xff0c;需要先装一下&#xff0c;然后直接在文件目录下执行如下代码即可运行&#xff1a; mkdir build…

get_the_category() 和 get_the_terms() 的区别

get_the_category() 和 get_the_terms() 是WordPress中用于获取文章分类的两个函数&#xff0c;但它们之间存在一些关键差异&#xff1a; get_the_category() 特定于分类&#xff1a;get_the_category() 函数专门用于获取文章的分类(category)。它返回一个包含所有分类对象的…

RocketMq的消息类型及代码案例

RocketMQ 提供了多种消息类型&#xff0c;以满足不同业务场景对 顺序性、事务性、时效性 的要求。其核心设计思想是通过解耦 “消息传递模式” 与 “业务逻辑”&#xff0c;实现高性能、高可靠的分布式通信。 一、主要类型包括 普通消息&#xff08;基础类型&#xff09;顺序…

maxkey单点登录系统

github地址 https://github.com/MaxKeyTop/MaxKey/blob/master/README_zh.md 1、官方镜像 https://hub.docker.com/u/maxkeytop 2、MaxKey:Docker快速部署 参考地址&#xff1a; Docker部署 | MaxKey单点登录认证系统 拉取docker脚本MaxKey: Dromara &#x1f5dd;️MaxK…

基于AI生成测试用例的处理过程

基于AI生成测试用例的处理过程是一个结合机器学习、自然语言处理&#xff08;NLP&#xff09;和领域知识的系统性流程。以下是其核心步骤和关键技术细节&#xff0c;以帮助理解如何利用AI自动化生成高效、覆盖全面的测试用例。 1. 输入分析与需求建模 目标 将用户需求、系统文…

《Java vs Go vs C++ vs C:四门编程语言的深度对比》

引言​​ 从底层硬件操作到云端分布式系统&#xff0c;Java、Go、C 和 C 四门语言各自占据不同生态位。本文从​​设计哲学​​、​​语法范式​​、​​性能特性​​、​​应用场景​​等维度进行对比&#xff0c;为开发者提供技术选型参考。 一、​​设计哲学与历史定位​​…

无损提速黑科技:YOLOv8+OREPA卷积优化方案解析(原理推导/代码实现/调参技巧三合一)

文章目录 一、OREPA核心思想与创新突破1.1 传统重参数化的局限性1.2 OREPA的核心创新二、OREPA实现原理与数学推导2.1 卷积核分解策略2.2 动态融合公式三、YOLOv8集成实战(完整代码实现)3.1 OREPA卷积模块定义3.2 YOLOv8模型集成3.3 训练与推理配置四、性能对比与实验分析4.1…

RestTemplate 发送的字段第二个大写字母变成小写的问题探究

在使用RestTemplate 发送http 请求的时候&#xff0c;发现nDecisonVar 转换成了ndecisonVar ,但是打印日志用fastjson 打印的没有问题&#xff0c;换成jackson 打印就有问题。因为RestTemplate 默认使用的jackson 作为json 序列化方式&#xff0c;导致的问题&#xff0c;但是为…

C#核心概念解析:析构函数、readonly与this关键字

&#x1f50d; 析构函数&#xff1a;资源清理的最后防线 核心作用 析构函数&#xff08;~ClassName&#xff09;在对象销毁前执行&#xff0c;专用于释放非托管资源&#xff08;如文件句柄、非托管内存&#xff09;。托管资源&#xff08;如.NET对象&#xff09;由GC自动回收…

FFmpeg中使用Android Content协议打开文件设备

引言 随着Android 10引入的Scoped Storage&#xff08;分区存储&#xff09;机制&#xff0c;传统的文件访问方式发生了重大变化。FFmpeg作为强大的多媒体处理工具&#xff0c;也在不断适应Android平台的演进。本文将介绍如何在FFmpeg 7.0版本中使用Android content协议直接访…

vue——v-pre的使用

&#x1f530; 基础理解 ✅ 什么是 v-pre&#xff1f; v-pre 是一个跳过编译的 Vue 指令。 它告诉 Vue&#xff1a;“这个元素和其子元素中的内容不要被编译处理&#xff0c;按原样输出。” ✅ 使用场景&#xff1a; 展示原始的 Mustache 插值语法&#xff08;{{ xxx }}&a…

PyTorch中TensorBoardX模块与torch.utils.tensorboard模块的对比分析

文章目录 说明1. 模块起源与开发背景2. 功能特性对比3. 安装与依赖关系4. 性能与使用体验5. 迁移与兼容性策略6. 最佳实践与建议7. 未来展望8. 结论实际相关信息推荐资源 说明 TensorBoard&#xff1a;独立工具&#xff0c;只需安装tensorboard。TensorFlow&#xff1a;非必需…

单片机中断系统工作原理及定时器中断应用

文件目录 main.c #include <REGX52.H> #include "TIMER0.H" #include "KEY.H" #include "DELAY.H"//void Timer0_Init() { // TMOD 0x01; // TL0 64536 % 256; // TH0 64536 / 256; // ET0 1; // EA 1; // TR0 1; //}unsigned char…

Python爬虫实战:研究Portia框架相关技术

1. 引言 1.1 研究背景与意义 在大数据时代,网络数据已成为企业决策、学术研究和社会分析的重要资源。据 Statista 统计,2025 年全球数据总量将达到 175ZB,其中 80% 以上来自非结构化网络内容。如何高效获取并结构化这些数据,成为数据科学领域的关键挑战。 传统爬虫开发需…

【机器学习基础】机器学习与深度学习概述 算法入门指南

机器学习与深度学习概述 算法入门指南 一、引言&#xff1a;机器学习与深度学习&#xff08;一&#xff09;定义与区别&#xff08;二&#xff09;发展历程&#xff08;三&#xff09;应用场景 二、机器学习基础&#xff08;一&#xff09;监督学习&#xff08;二&#xff09;无…

[C语言初阶]扫雷小游戏

目录 一、原理及问题分析二、代码实现2.1 分文件结构设计2.2 棋盘初始化与打印2.3 布置雷与排查雷2.4 游戏主流程实现 三、后期优化方向 在上一篇文章中&#xff0c;我们实现了我们的第二个游戏——三子棋小游戏。这次我们继续结合我们之前所学的所有内容&#xff0c;制作出我们…

ROS云课三分钟-破壁篇GCompris-一小部分支持Edu应用列表-2025

开启蓝桥云课ROS ROS 机器人操作系统初级教程_ROS - 蓝桥云课 安装和使用GCompris 终端输入&#xff1a;sudo apt install gcompris sudo apt install gcompris ok&#xff0c;完成即可。 sudo apt install gcompris 如果是平板&#xff0c;秒变儿童学习机。 启动 流畅运…

Linux系统基础——是什么、适用在哪里、如何选

一、Linux是什么 Linux最初是由林纳斯托瓦兹&#xff08;Linus Torvalds&#xff09;基于个人兴趣爱好开发的个人项目&#xff0c;他编写了最核心的内核&#xff1b;后面为了发展壮大Linux系统他将整个项目开源到GitHub上&#xff0c;可以让全世界的人都参与到项目的开发维护中…