python学习DAY46打卡

DAY 46 通道注意力(SE注意力)

内容:

  1. 不同CNN层的特征图:不同通道的特征图
  2. 什么是注意力:注意力家族,类似于动物园,都是不同的模块,好不好试了才知道。
  3. 通道注意力:模型的定义和插入的位置
  4. 通道注意力后的特征图和热力图

一、什么是注意力

注意力机制(Attention Mechanism)是深度学习中的一种重要技术,最初应用于自然语言处理(NLP),后来扩展到计算机视觉、语音识别等多个领域。它的核心思想是让模型能够动态地关注输入数据中最相关的部分,从而提高模型的性能和解释性。

1. 核心思想
  • 选择性关注:模仿人类注意力机制,在处理信息时对不同部分赋予不同的权重,忽略无关信息,聚焦关键部分。
  • 动态权重:权重不是固定的,而是根据输入数据的内容动态计算。
2. 基本原理

注意力机制通过以下步骤实现:

  1. 计算注意力分数:衡量输入中每个部分与当前任务的相关性。       常用方法:点积(Dot-Product)、加性(Additive)、缩放点积(Scaled Dot-Product)等。
  2. 生成注意力权重:对分数进行归一化(如Softmax),得到权重分布。
  3. 加权求和:用权重对输入进行加权融合,得到上下文向量(Context Vector)。

其中注意力机制是一种让模型学会「选择性关注重要信息」的特征提取器,就像人类视觉会自动忽略背景,聚焦于图片中的主体(如猫、汽车)。

transformer中的叫做自注意力机制,他是一种自己学习自己的机制,他可以自动学习到图片中的主体,并忽略背景。我们现在说的很多模块,比如通道注意力、空间注意力、通道注意力等等,都是基于自注意力机制的。

从数学角度看,注意力机制是对输入特征进行加权求和,输出=∑(输入特征×注意力权重),其中注意力权重是学习到的。所以他和卷积很像,因为卷积也是一种加权求和。但是卷积是 “固定权重” 的特征提取(如 3x3 卷积核)--训练完了就结束了,注意力是 “动态权重” 的特征提取(权重随输入数据变化)---输入数据不同权重不同。

问:为什么需要多种注意力模块?

答:因为不同场景下的关键信息分布不同。例如,识别鸟类和飞机时,需关注 “羽毛纹理”“金属光泽” 等特定通道的特征,通道注意力可强化关键通道;而物体位置不确定时(如猫出现在图像不同位置),空间注意力能聚焦物体所在区域,忽略背景。复杂场景中,可能需要同时关注通道和空间(如混合注意力模块 CBAM),或处理长距离依赖(如全局注意力模块 Non-local)。

问:为什么不设计一个‘万能’注意力模块?

答:主要受效率和灵活性限制。专用模块针对特定需求优化计算,成本更低(如通道注意力仅需处理通道维度,无需全局位置计算);不同任务的核心需求差异大(如医学图像侧重空间定位,自然语言处理侧重语义长距离依赖),通用模块可能冗余或低效。每个模块新增的权重会增加模型参数量,若训练数据不足或优化不当,可能引发过拟合。因此实际应用中需结合轻量化设计(如减少全连接层参数)、正则化(如 Dropout)或结构约束(如共享注意力权重)来平衡性能与复杂度。

通道注意力(Channel Attention)属于注意力机制(Attention Mechanism)的变体,而非自注意力(Self-Attention)的直接变体。可以理解为注意力是一个动物园算法,里面很多个物种,自注意力只是一个分支,因为开创了transformer所以备受瞩目。我们今天的内容用通道注意力举例

  • CNN普通卷积:像一个人无差别地听所有音乐频道。
  • 通道注意力:像用遥控器调音量——放大流行音乐,调低新闻频道。
常见的注意力模块
注意力模块所属类别核心功能
自注意力(Self-Attention)自注意力变体建模同一输入内部元素的依赖关系(如序列中的词与词、图像中的区块之间)。
通道注意力(Channel Attention)普通注意力变体(全局上下文)动态评估特征图各通道的重要性,通过全局池化压缩空间信息,强化关键特征通道。
空间注意力(Spatial Attention)普通注意力变体(全局上下文)聚焦特征图的空间关键区域(如图像中物体的位置),回答“哪里更重要”。
多头注意力(Multi-Head Attention)自注意力/普通注意力的增强版将输入投影到多个子空间并行计算注意力,捕捉不同维度的依赖关系(如局部和全局特征)。
编码器-解码器注意力(Encoder-Decoder Attention)普通注意力变体(交叉注意力)建立编码器输出与解码器输入的跨模态对齐(如机器翻译中源语言与目标语言的词对应)。

二、特征图的提取

2.1 简单CNN的训练

先看看之前原始的CNN

 
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 1. 数据预处理
# 训练集:使用多种数据增强方法提高模型泛化能力
train_transform = transforms.Compose([# 随机裁剪图像,从原图中随机截取32x32大小的区域transforms.RandomCrop(32, padding=4),# 随机水平翻转图像(概率0.5)transforms.RandomHorizontalFlip(),# 随机颜色抖动:亮度、对比度、饱和度和色调随机变化transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),# 随机旋转图像(最大角度15度)transforms.RandomRotation(15),# 将PIL图像或numpy数组转换为张量transforms.ToTensor(),# 标准化处理:每个通道的均值和标准差,使数据分布更合理transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 测试集:仅进行必要的标准化,保持数据原始特性,标准化不损失数据信息,可还原
test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=train_transform  # 使用增强后的预处理
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=test_transform  # 测试集不使用增强
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 4. 定义CNN模型的定义(替代原MLP)
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()  # 继承父类初始化# ---------------------- 第一个卷积块 ----------------------# 卷积层1:输入3通道(RGB),输出32个特征图,卷积核3x3,边缘填充1像素self.conv1 = nn.Conv2d(in_channels=3,       # 输入通道数(图像的RGB通道)out_channels=32,     # 输出通道数(生成32个新特征图)kernel_size=3,       # 卷积核尺寸(3x3像素)padding=1            # 边缘填充1像素,保持输出尺寸与输入相同)# 批量归一化层:对32个输出通道进行归一化,加速训练self.bn1 = nn.BatchNorm2d(num_features=32)# ReLU激活函数:引入非线性,公式:max(0, x)self.relu1 = nn.ReLU()# 最大池化层:窗口2x2,步长2,特征图尺寸减半(32x32→16x16)self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  # stride默认等于kernel_size# ---------------------- 第二个卷积块 ----------------------# 卷积层2:输入32通道(来自conv1的输出),输出64通道self.conv2 = nn.Conv2d(in_channels=32,      # 输入通道数(前一层的输出通道数)out_channels=64,     # 输出通道数(特征图数量翻倍)kernel_size=3,       # 卷积核尺寸不变padding=1            # 保持尺寸:16x16→16x16(卷积后)→8x8(池化后))self.bn2 = nn.BatchNorm2d(num_features=64)self.relu2 = nn.ReLU()self.pool2 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:16x16→8x8# ---------------------- 第三个卷积块 ----------------------# 卷积层3:输入64通道,输出128通道self.conv3 = nn.Conv2d(in_channels=64,      # 输入通道数(前一层的输出通道数)out_channels=128,    # 输出通道数(特征图数量再次翻倍)kernel_size=3,padding=1            # 保持尺寸:8x8→8x8(卷积后)→4x4(池化后))self.bn3 = nn.BatchNorm2d(num_features=128)self.relu3 = nn.ReLU()  # 复用激活函数对象(节省内存)self.pool3 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:8x8→4x4# ---------------------- 全连接层(分类器) ----------------------# 计算展平后的特征维度:128通道 × 4x4尺寸 = 128×16=2048维self.fc1 = nn.Linear(in_features=128 * 4 * 4,  # 输入维度(卷积层输出的特征数)out_features=512          # 输出维度(隐藏层神经元数))# Dropout层:训练时随机丢弃50%神经元,防止过拟合self.dropout = nn.Dropout(p=0.5)# 输出层:将512维特征映射到10个类别(CIFAR-10的类别数)self.fc2 = nn.Linear(in_features=512, out_features=10)def forward(self, x):# 输入尺寸:[batch_size, 3, 32, 32](batch_size=批量大小,3=通道数,32x32=图像尺寸)# ---------- 卷积块1处理 ----------x = self.conv1(x)       # 卷积后尺寸:[batch_size, 32, 32, 32](padding=1保持尺寸)x = self.bn1(x)         # 批量归一化,不改变尺寸x = self.relu1(x)       # 激活函数,不改变尺寸x = self.pool1(x)       # 池化后尺寸:[batch_size, 32, 16, 16](32→16是因为池化窗口2x2)# ---------- 卷积块2处理 ----------x = self.conv2(x)       # 卷积后尺寸:[batch_size, 64, 16, 16](padding=1保持尺寸)x = self.bn2(x)x = self.relu2(x)x = self.pool2(x)       # 池化后尺寸:[batch_size, 64, 8, 8]# ---------- 卷积块3处理 ----------x = self.conv3(x)       # 卷积后尺寸:[batch_size, 128, 8, 8](padding=1保持尺寸)x = self.bn3(x)x = self.relu3(x)x = self.pool3(x)       # 池化后尺寸:[batch_size, 128, 4, 4]# ---------- 展平与全连接层 ----------# 将多维特征图展平为一维向量:[batch_size, 128*4*4] = [batch_size, 2048]x = x.view(-1, 128 * 4 * 4)  # -1自动计算批量维度,保持批量大小不变x = self.fc1(x)           # 全连接层:2048→512,尺寸变为[batch_size, 512]x = self.relu3(x)         # 激活函数(复用relu3,与卷积块3共用)x = self.dropout(x)       # Dropout随机丢弃神经元,不改变尺寸x = self.fc2(x)           # 全连接层:512→10,尺寸变为[batch_size, 10](未激活,直接输出logits)return x  # 输出未经过Softmax的logits,适用于交叉熵损失函数# 初始化模型
model = CNN()
model = model.to(device)  # 将模型移至GPU(如果可用)criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,        # 指定要控制的优化器(这里是Adam)mode='min',       # 监测的指标是"最小化"(如损失函数)patience=3,       # 如果连续3个epoch指标没有改善,才降低LRfactor=0.5        # 降低LR的比例(新LR = 旧LR × 0.5)
)
# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):model.train()  # 设置为训练模式# 记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号# 记录每个 epoch 的准确率和损失train_acc_history = []test_acc_history = []train_loss_history = []test_loss_history = []for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)  # 移至GPUoptimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计准确率和损失running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次打印一次训练信息if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 计算当前epoch的平均训练损失和准确率epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totaltrain_acc_history.append(epoch_train_acc)train_loss_history.append(epoch_train_loss)# 测试阶段model.eval()  # 设置为评估模式test_loss = 0correct_test = 0total_test = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testtest_acc_history.append(epoch_test_acc)test_loss_history.append(epoch_test_loss)# 更新学习率调度器scheduler.step(epoch_test_loss)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)# 绘制每个 epoch 的准确率和损失曲线plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc  # 返回最终测试准确率# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 7. 绘制每个 epoch 的准确率和损失曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 4))# 绘制准确率曲线plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('训练和测试准确率')plt.legend()plt.grid(True)# 绘制损失曲线plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('训练和测试损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 8. 执行训练和测试
epochs = 50  # 增加训练轮次为了确保收敛
print("开始使用CNN训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# # 保存模型
# torch.save(model.state_dict(), 'cifar10_cnn_model.pth')
# print("模型已保存为: cifar10_cnn_model.pth")

可以看到测试集一定程度上收敛了,在85%左右(还可以继续训练的),我们后续和加了通道注意力的该模型作对比,这也意味着我们进入到了消融实验的部分了。

过去我们都是在同一个数据集上对比不同的模型的差异,或者同一个模型不同参数下的差异,这种实验叫做对比实验。
在同一个数据集上,对同一个模型进行模块的增加和减少,这种实验我们称之为消融实验。通过消融实验,研究者能更清晰地理解模型各部分的作用,而对比实验则用于评估模型的整体竞争力。两者常结合使用,以全面验证模型设计的合理性。


2.2 特征图可视化

为了方便观察,我们先尝试提取下特征图。特征图本质就是不同的卷积核的输出,浅层指的是离输入图近的卷积层,浅层卷积层的特征图通常较大,而深层特征图会经过多次下采样,尺寸显著缩小,尺寸差异过大时,小尺寸特征图在视觉上会显得模糊或丢失细节。

步骤逻辑如下:
1.初始化设置:

  • 将模型设为评估模式,准备类别名称列表(如飞机、汽车等)。

2.数据加载与处理:

  • 从测试数据加载器中获取图像和标签。
  • 仅处理前 `num_images` 张图像(如2张)。

3.注册钩子捕获特征图:

  • 为指定层(如 `conv1`, `conv2`, `conv3`)注册前向钩子。
  • 钩子函数将这些层的输出(特征图)保存到字典中。

4.前向传播与特征提取:

  • 模型处理图像,触发钩子函数,获取并保存特征图。
  • 移除钩子,避免后续干扰。

5.可视化特征图:

对每张图像:

  • 恢复原始像素值并显示。
  • 为每个目标层创建子图,展示前 `num_channels` 个通道的特征图(如9个通道)。
  • 每个通道的特征图以网格形式排列,显示通道编号。

关键细节
特征图布局:原始图像在左侧,各层特征图按顺序排列在右侧。
通道选择:默认显示前9个通道(按重要性或索引排序)。
显示优化:

  • 使用 `inset_axes` 在大图中嵌入小网格,清晰展示每个通道。
  • 层标题与通道标题分开,避免重叠。
  • 反标准化处理恢复图像原始色彩。
def visualize_feature_maps(model, test_loader, device, layer_names, num_images=3, num_channels=9):"""可视化指定层的特征图(修复循环冗余问题)参数:model: 模型test_loader: 测试数据加载器layer_names: 要可视化的层名称(如['conv1', 'conv2', 'conv3'])num_images: 可视化的图像总数num_channels: 每个图像显示的通道数(取前num_channels个通道)"""model.eval()  # 设置为评估模式class_names = ['飞机', '汽车', '鸟', '猫', '鹿', '狗', '青蛙', '马', '船', '卡车']# 从测试集加载器中提取指定数量的图像(避免嵌套循环)images_list, labels_list = [], []for images, labels in test_loader:images_list.append(images)labels_list.append(labels)if len(images_list) * test_loader.batch_size >= num_images:break# 拼接并截取到目标数量images = torch.cat(images_list, dim=0)[:num_images].to(device)labels = torch.cat(labels_list, dim=0)[:num_images].to(device)with torch.no_grad():# 存储各层特征图feature_maps = {}# 保存钩子句柄hooks = []# 定义钩子函数,捕获指定层的输出def hook(module, input, output, name):feature_maps[name] = output.cpu()  # 保存特征图到字典# 为每个目标层注册钩子,并保存钩子句柄for name in layer_names:module = getattr(model, name)hook_handle = module.register_forward_hook(lambda m, i, o, n=name: hook(m, i, o, n))hooks.append(hook_handle)# 前向传播触发钩子_ = model(images)# 正确移除钩子for hook_handle in hooks:hook_handle.remove()# 可视化每个图像的各层特征图(仅一层循环)for img_idx in range(num_images):img = images[img_idx].cpu().permute(1, 2, 0).numpy()# 反标准化处理(恢复原始像素值)img = img * np.array([0.2023, 0.1994, 0.2010]).reshape(1, 1, 3) + np.array([0.4914, 0.4822, 0.4465]).reshape(1, 1, 3)img = np.clip(img, 0, 1)  # 确保像素值在[0,1]范围内# 创建子图num_layers = len(layer_names)fig, axes = plt.subplots(1, num_layers + 1, figsize=(4 * (num_layers + 1), 4))# 显示原始图像axes[0].imshow(img)axes[0].set_title(f'原始图像\n类别: {class_names[labels[img_idx]]}')axes[0].axis('off')# 显示各层特征图for layer_idx, layer_name in enumerate(layer_names):fm = feature_maps[layer_name][img_idx]  # 取第img_idx张图像的特征图fm = fm[:num_channels]  # 仅取前num_channels个通道num_rows = int(np.sqrt(num_channels))num_cols = num_channels // num_rows if num_rows != 0 else 1# 创建子图网格layer_ax = axes[layer_idx + 1]layer_ax.set_title(f'{layer_name}特征图 \n')# 加个换行让文字分离上去layer_ax.axis('off')  # 关闭大子图的坐标轴# 在大子图内创建小网格for ch_idx, channel in enumerate(fm):ax = layer_ax.inset_axes([ch_idx % num_cols / num_cols, (num_rows - 1 - ch_idx // num_cols) / num_rows, 1/num_cols, 1/num_rows])ax.imshow(channel.numpy(), cmap='viridis')ax.set_title(f'通道 {ch_idx + 1}')ax.axis('off')plt.tight_layout()plt.show()# 调用示例(按需修改参数)
layer_names = ['conv1', 'conv2', 'conv3']
visualize_feature_maps(model=model,test_loader=test_loader,device=device,layer_names=layer_names,num_images=5,  # 可视化5张测试图像 → 输出5张大图num_channels=9   # 每张图像显示前9个通道的特征图
)

上面的图为提取CNN不同卷积层输出的特征图,我们以第五张图片-青蛙 进行解读。

由于经过了不断的下采样,特征变得越来越抽象,人类已经无法理解。

核心作用
通过可视化特征图,可直观观察:

  • 浅层卷积层(如 `conv1`)如何捕获边缘、纹理等低级特征。
  • 深层卷积层(如 `conv3`)如何组合低级特征形成语义概念(如物体部件)。
  • 模型对不同类别的关注区域差异(如鸟类的羽毛纹理 vs. 飞机的金属光泽)。

conv1 特征图(浅层卷积)
特点:

  • 保留较多原始图像的细节纹理(如植物叶片、青蛙身体的边缘轮廓)。
  • 通道间差异相对小,每个通道都能看到类似原始图像的基础结构(如通道 1 - 9 都能识别边缘、纹理)。

意义:

  • 提取低级特征(边缘、颜色块、简单纹理),是后续高层特征的“原材料”。
  • 类似人眼初步识别图像的轮廓和基础结构。

conv2 特征图(中层卷积)
特点:

  • 空间尺寸(高、宽)比 conv1 更小(因卷积/池化下采样),但语义信息更抽象。
  • 通道间差异更明显:部分通道开始聚焦局部关键特征(如通道 5、8 中黄色高亮区域,可能对应青蛙身体或植物的关键纹理)。

意义:

  • 对 conv1 的低级特征进行组合与筛选,提取中级特征(如局部形状、纹理组合)。
  • 类似人眼从“边缘轮廓”过渡到“识别局部结构”(如青蛙的身体块、植物的叶片簇)。

conv3 特征图(深层卷积)
特点:

  • 空间尺寸进一步缩小,抽象程度最高,肉眼难直接对应原始图像细节。
  • 通道间差异极大,部分通道聚焦全局语义特征(如通道 4、7 中黄色区域,可能对应模型判断“青蛙”类别的关键特征)。

意义:

  • 对 conv2 的中级特征进行全局整合,提取高级语义特征(如物体类别相关的抽象模式)。
  • 类似人眼最终“识别出这是青蛙”的关键依据,模型通过这些特征判断类别。

逐层对比总结

特征逐层抽象:从“看得见的细节”(conv1)→ “局部结构”(conv2)→ “类别相关的抽象模式”(conv3),模型通过这种方式实现从“看图像”到“理解语义”的跨越。
通道分工明确:不同通道在各层聚焦不同特征(如有的通道负责边缘,有的负责颜色,有的负责全局语义),共同协作完成分类任务。
下采样的作用:通过缩小空间尺寸,换取更高的语义抽象能力(“牺牲细节,换取理解”)。

三、通道注意力

现在引入通道注意力,来观察精度是否有变化,并且进一步可视化。

想要把通道注意力插入到模型中,关键步骤如下:

  1. 定义注意力模块
  2. 重写之前的模型定义部分,确定好模块插入的位置
3.1 通道注意力的定义
# ===================== 新增:通道注意力模块(SE模块) =====================
class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_ratio=16):"""参数:in_channels: 输入特征图的通道数reduction_ratio: 降维比例,用于减少参数量"""super(ChannelAttention, self).__init__()# 全局平均池化 - 将空间维度压缩为1x1,保留通道信息self.avg_pool = nn.AdaptiveAvgPool2d(1)# 全连接层 + 激活函数,用于学习通道间的依赖关系self.fc = nn.Sequential(# 降维:压缩通道数,减少计算量nn.Linear(in_channels, in_channels // reduction_ratio, bias=False),nn.ReLU(inplace=True),# 升维:恢复原始通道数nn.Linear(in_channels // reduction_ratio, in_channels, bias=False),# Sigmoid将输出值归一化到[0,1],表示通道重要性权重nn.Sigmoid())def forward(self, x):"""参数:x: 输入特征图,形状为 [batch_size, channels, height, width]返回:加权后的特征图,形状不变"""batch_size, channels, height, width = x.size()# 1. 全局平均池化:[batch_size, channels, height, width] → [batch_size, channels, 1, 1]avg_pool_output = self.avg_pool(x)# 2. 展平为一维向量:[batch_size, channels, 1, 1] → [batch_size, channels]avg_pool_output = avg_pool_output.view(batch_size, channels)# 3. 通过全连接层学习通道权重:[batch_size, channels] → [batch_size, channels]channel_weights = self.fc(avg_pool_output)# 4. 重塑为二维张量:[batch_size, channels] → [batch_size, channels, 1, 1]channel_weights = channel_weights.view(batch_size, channels, 1, 1)# 5. 将权重应用到原始特征图上(逐通道相乘)return x * channel_weights  # 输出形状:[batch_size, channels, height, width]

通道注意力模块的核心原理
1. Squeeze(压缩):

  • 通过全局平均池化将每个通道的二维特征图(H×W)压缩为一个标量,保留通道的全局信息。
  • 物理意义:计算每个通道在整个图像中的 “平均响应强度”,例如,“边缘检测通道” 在有物体边缘的图像中响应值会更高。

2. Excitation(激发):

  • 通过全连接层 + Sigmoid 激活,学习通道间的依赖关系,输出 0-1 之间的权重值。
  • 物理意义:让模型自动判断哪些通道更重要(权重接近 1),哪些通道可忽略(权重接近 0)。

3. Reweight(重加权):

  • 将学习到的通道权重与原始特征图逐通道相乘,增强重要通道,抑制不重要通道。
  • 物理意义:类似人类视觉系统聚焦于关键特征(如猫的轮廓),忽略无关特征(如背景颜色)

通道注意力插入后,参数量略微提高,增加了特征提取能力

3.2 模型的重新定义(通道注意力的插入)
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()  # ---------------------- 第一个卷积块 ----------------------self.conv1 = nn.Conv2d(3, 32, 3, padding=1)self.bn1 = nn.BatchNorm2d(32)self.relu1 = nn.ReLU()# 新增:插入通道注意力模块(SE模块)self.ca1 = ChannelAttention(in_channels=32, reduction_ratio=16)  self.pool1 = nn.MaxPool2d(2, 2)  # ---------------------- 第二个卷积块 ----------------------self.conv2 = nn.Conv2d(32, 64, 3, padding=1)self.bn2 = nn.BatchNorm2d(64)self.relu2 = nn.ReLU()# 新增:插入通道注意力模块(SE模块)self.ca2 = ChannelAttention(in_channels=64, reduction_ratio=16)  self.pool2 = nn.MaxPool2d(2)  # ---------------------- 第三个卷积块 ----------------------self.conv3 = nn.Conv2d(64, 128, 3, padding=1)self.bn3 = nn.BatchNorm2d(128)self.relu3 = nn.ReLU()# 新增:插入通道注意力模块(SE模块)self.ca3 = ChannelAttention(in_channels=128, reduction_ratio=16)  self.pool3 = nn.MaxPool2d(2)  # ---------------------- 全连接层(分类器) ----------------------self.fc1 = nn.Linear(128 * 4 * 4, 512)self.dropout = nn.Dropout(p=0.5)self.fc2 = nn.Linear(512, 10)def forward(self, x):# ---------- 卷积块1处理 ----------x = self.conv1(x)       x = self.bn1(x)         x = self.relu1(x)       x = self.ca1(x)  # 应用通道注意力x = self.pool1(x)       # ---------- 卷积块2处理 ----------x = self.conv2(x)       x = self.bn2(x)         x = self.relu2(x)       x = self.ca2(x)  # 应用通道注意力x = self.pool2(x)       # ---------- 卷积块3处理 ----------x = self.conv3(x)       x = self.bn3(x)         x = self.relu3(x)       x = self.ca3(x)  # 应用通道注意力x = self.pool3(x)       # ---------- 展平与全连接层 ----------x = x.view(-1, 128 * 4 * 4)  x = self.fc1(x)           x = self.relu3(x)         x = self.dropout(x)       x = self.fc2(x)           return x  # 重新初始化模型,包含通道注意力模块
model = CNN()
model = model.to(device)  # 将模型移至GPU(如果可用)criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,        # 指定要控制的优化器(这里是Adam)mode='min',       # 监测的指标是"最小化"(如损失函数)patience=3,       # 如果连续3个epoch指标没有改善,才降低LRfactor=0.5        # 降低LR的比例(新LR = 旧LR × 0.5)
)# 训练模型(复用原有的train函数)
print("开始训练带通道注意力的CNN模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs=50)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

在同样50个epoch后精度略有提升

我们关注的不只是精度的差异,还包含了同精度下训练时长的差异等,在大规模数据集上推理时长、训练时长都非常重要。因为资源是有限的。

可视化部分同理,在训练完成后通过钩子函数取出权重or梯度,即可进行特征图的可视化、Grad-CAM可视化、注意力热图可视化

@浙大疏锦行

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/diannao/96143.shtml
繁体地址,请注明出处:http://hk.pswp.cn/diannao/96143.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ansible 中的文件包含与导入机制

Ansible 中的文件包含与导入机制本文介绍了在 Ansible 中如何通过模块化方式管理复杂的 Playbook,包括使用 include 和 import 系列语句来拆分和重用代码。概述 当 Playbook 变得冗长或复杂时,可以将其拆分为多个小文件以提高可管理性。Ansible 提供了模…

OpenCV-循环读取视频帧,对每一帧进行处理

原型代码 内存模型: 核心变量:frame,Numpy ndarray,每次会被覆盖,大小保持恒定import cv2video_path your_video.mp4cap cv2.VideoCapture(video_path)if not cap.isOpened():print("Cant open Video")exi…

决策树的学习(二)

一、整体框架本 PPT 聚焦机器学习中的决策树算法,围绕 “核心算法(ID3、C4.5、CART)→ 特殊问题(连续值处理)→ 优化策略(剪枝)→ 代码实现→ 课堂练习” 展开,系统补充决策树的进阶…

粗粮厂的基于spark的通用olap之间的同步工具项目

粗粮厂的基于spark的通用olap之间的同步工具项目1 项目背景2 项目实现2.1 实现原理2.2 细节要点3 抽样说明4 项目运行状态4.1 运行速度4.2 项目吞吐4.3 稳定性说的比较简单,有需要的可以留言,我不断补充完善1 项目背景 我们公司内部的需要一款&#xff…

C# 时间戳

在C#中,获取当前时间的毫秒级时间戳可以通过多种方式实现。以下是几种常见的方法:方法1:使用DateTime和DateTimeOffsetlong timestamp (long)(DateTimeOffset.Now.ToUnixTimeMilliseconds()); Console.WriteLine(timestamp);方法2&#xff1…

【牛客刷题】REAL792 小O的平面画圆

文章目录 一、题目介绍 1.1 输入描述 1.2 输出描述 1.3 示例 二、算法设计思路 2.1 核心问题分析 2.2 图解两个圆的位置关系 2.2.1. 相离 (Separate) 2.2.2. 外切 (Externally Tangent) 2.2.3. 相交 (Intersecting) 2.2.4. 内切 (Internally Tangent) 2.2.5. 包含 (Containing)…

uniapp:微信小程序使用Canvas 和Canvas 2D绘制图形

一、Canvas 画布 canvas 组件 提供了绘制界面,可以在之上进行任意绘制 功能描述 Canvas 画布。2.9.0 起支持一套新 Canvas 2D 接口(需指定 type 属性),同时支持同层渲染,原有接口不再维护。 二、Canvas 和Canvas 2D 区…

word如何转换为pdf

pip install pywin32import os import win32com.client import pythoncom # 新增:用于处理COM线程 import sysdef docx_to_pdf(docx_path, pdf_pathNone):"""将Word文档转换为PDF格式,修复退出时的COM错误"""if not os.p…

服务器Linux防火墙怎样实现访问控制

在互联网世界里,Linux服务器就像一座城池,而防火墙便是城池的守卫者。没有防火墙,外部的任何流量都能毫无阻拦地进入服务器;而有了防火墙,就可以像设关卡一样,对进出城门的人进行盘查和控制。对企业运维人员来说&#…

【原创理论】Stochastic Coupled Dyadic System (SCDS):一个用于两性关系动力学建模的随机耦合系统框架

【原创理论】Stochastic Coupled Dyadic System (SCDS):一个用于两性关系动力学建模的随机耦合系统框架 作者:[望月,GPT5,GPT-O3,Gemini2.5pro] 分类: 人工智能 理论模型 交叉学科 系统科学 人性 爱情 标签: 关系动力…

星图云开发者平台新功能速递 | 微服务管理器:无缝整合异构服务,释放云原生开发潜能

在构建现代数字化应用的过程中,开发者常常面临一个关键挑战:如何高效、安全地集成和复用既有的复杂服务或自有业务系统?这些服务可能是核心算法引擎、遗留业务逻辑模块,或是特定的SaaS能力。传统方式下,将它们融入新的…

数据结构:构建 (create) 一个二叉树

目录 问题的本质——什么信息才能唯一确定一棵树? 推导“最佳拍档”——哪两种遍历序列能行? 递归思想——如何构建一棵树? 第1步:确定整棵树的根节点 第2步:划分左右子树的成员 第3步:递归构建左右子…

【STM32】HAL库中的实现(五):ADC (模数转换)

什么是 ADC(模数转换器) ADC(Analog to Digital Converter)是将 模拟信号(电压)转换成数字信号(数值) 的器件。 在 STM32 中,ADC 通常具有以下特性:特性描述分…

智慧校园中IPTV融合对讲:构建高效沟通新生态

在智慧校园的建设浪潮里,IPTV融合对讲系统宛如一颗璀璨的新星,以其独特的功能和强大的优势,为校园的沟通与管理带来了全新的变革,构建起一个高效、便捷、智能的沟通新生态。从日常沟通层面来看,IPTV融合对讲系统打破了…

智能合约里的 “拒绝服务“ 攻击:让你的合约变成 “死机的手机“

你有没有遇到过手机突然卡死,点什么都没反应的情况?在区块链世界里,智能合约也可能遭遇类似的 "罢工"—— 这就是 "拒绝服务攻击"(Denial of Service,简称 DoS)。今天用大白话讲讲合约…

安全设计-防止非法移机

前言我们的设备在实际使用过程中,在我们的巡查机制粒度下,发现依然有设备被非法移动到其他非计划点位。因此,我们需要设计一套及时预警,但是对客户无感,不影响业务办理的防范机制。1.方案设计交互图2.方案说明 2.1方案…

OpenHarmony之三方库适配深度实践:从移植到合规的全链路指南

1. 为什么要做三方库适配?——更深层的价值分析 维度 现状痛点 预期收益 深度价值 生态 成熟开源库无法直接运行 复用 10+ 年开源沉淀,提升功能覆盖率 避免生态碎片化:通过标准化适配流程,确保不同厂商对同一库的实现一致 性能 JS 层重实现耗 CPU 原生 C/C++ 加速 3~10 倍 …

2025年09月计算机二级MySQL选择题每日一练——第一期

计算机二级中选择题是非常重要的,所以开始写一个每日一题的专栏。 答案及解析将在末尾公布! 今日主题:MySQL 基础概念 1、以下关于数据库的特点中,描述正确的是( ) A. 数据无冗余 B. 数据不可共享&#xff…

JAVA字符串操作——在蓝桥杯的基本应用

我们来系统地梳理一下 Java 中的字符串操作。Java 的字符串操作非常丰富,主要涉及到 String、StringBuilder 和 StringBuffer 这三个核心类。 目录 一、核心类简介 二、String 类的常用操作 1. 创建字符串 2. 获取基本信息 3. 比较字符串 4. 查找与判断 5. 转…

【深度学习基础】PyTorch Tensor生成方式及复制方法详解

目录PyTorch Tensor生成方式及复制方法详解一、Tensor的生成方式(一)从Python列表/元组创建(二)从NumPy数组创建(三)特殊初始化方法(四)从现有Tensor创建(五)…