基于FPGA的二叉决策树cart算法verilog实现,训练环节采用MATLAB仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

MATLAB训练结果

上述决策树判决条件:

分类的决策树1  if x21<17191.5 then node 2 elseif x21>=17191.5 then node 3 else 12  if x28<162.5 then node 4 elseif x28>=162.5 then node 5 else 13  if x2<16480.5 then node 6 elseif x2>=16480.5 then node 7 else 24  if x4<712264 then node 8 elseif x4>=712264 then node 9 else 15  if x22<25170.5 then node 10 elseif x22>=25170.5 then node 11 else 26  if x5<108.5 then node 12 elseif x5>=108.5 then node 13 else 17  class = 28  if x28<138 then node 14 elseif x28>=138 then node 15 else 19  class = 2
10  class = 1
11  class = 2
12  class = 1
13  class = 2
14  if x11<658 then node 16 elseif x11>=658 then node 17 else 1
15  if x2<21877 then node 18 elseif x2>=21877 then node 19 else 1
16  if x15<3.5 then node 20 elseif x15>=3.5 then node 21 else 1
17  class = 1
18  if x19<12.5 then node 22 elseif x19>=12.5 then node 23 else 1
19  class = 2
20  class = 1
21  if x22<34117.5 then node 24 elseif x22>=34117.5 then node 25 else 1
22  class = 2
23  class = 1
24  class = 1
25  if x22<34332 then node 26 elseif x22>=34332 then node 27 else 1
26  class = 2
27  class = 1

FPGA测试结果:

2.算法运行软件版本

matlab2024b

vivado2022.2

3.部分核心程序

(完整版代码包含详细中文注释和操作步骤视频)

...................................................// 统计分类错误数if(o_reallabel == 2'd1 & o_prelabel == 2'd2)r_err1 <= r_err1 + 16'd1;elser_err1 <= r_err1;if(o_reallabel == 2'd2 & o_prelabel == 2'd1)r_err2 <= r_err2 + 16'd1;elser_err2 <= r_err2;// 保持输出为0(数据收集阶段)o_err1 <= 16'd0;o_err2 <= 16'd0;o_cnt1 <= 16'd0;o_cnt2 <= 16'd0;end// 阶段2:输出统计结果(TEST_NUM+1到TEST_NUM+500个周期)else if(o_cntall <= TEST_NUM + 500)begino_err1 <= r_err1;      // 输出类别1的错误数o_err2 <= r_err2;      // 输出类别2的错误数o_cnt1 <= r_cnt1;      // 输出类别1的样本总数o_cnt2 <= r_cnt2;      // 输出类别2的样本总数end// 阶段3:重置计数器(超过TEST_NUM+500后)else beginr_err1 <= 16'd0;       // 重置中间计数器r_err2 <= 16'd0;r_cnt1 <= 16'd0;r_cnt2 <= 16'd0;// 保持输出结果不变o_err1 <= o_err1;o_err2 <= o_err2;o_cnt1 <= o_cnt1;o_cnt2 <= o_cnt2;endend  
end // 总计数器和使能信号控制
always @(posedge i_clk or posedge i_rst)
beginif(i_rst)begino_cntall <= 16'd0;         // 复位总计数器enable <= 1'd0;            // 禁用数据生成器endelse begin// 循环计数:达到最大值后归零if(o_cntall == TEST_NUM + 500)o_cntall <= 16'd0;elseo_cntall <= o_cntall + 16'd1;// 在测试阶段(前TEST_NUM个样本)启用数据生成器if(o_cntall <= TEST_NUM)enable <= 1'd1;elseenable <= 1'd0;end
end endmodule
05_0137m

4.算法理论概述

        分类与回归树(Classification and Regression Tree, CART)是一种典型的二叉决策树算法,由Breiman等人于1984年提出。它既可以用于分类问题(输出离散值),也可以用于回归问题(输出连续值)。CART通过递归划分特征空间,构建二叉树结构,其核心思想是基于最小化不纯度(分类)或最小化平方误差(回归)来选择最优分裂特征和阈值,最终形成一棵二叉树。

1.CART算法实现步骤:

输入:训练数据集D,特征集A,停止条件(如最小样本数、最大深度) 输出:CART决策树 1. 若当前节点样本数小于最小样本数或达到最大深度,标记为叶子节点,返回类别/均值。

2. 对每个特征a∈A,遍历所有可能的分裂阈值t,计算分裂后的不纯度(分类)或平方误差(回归)。

3. 选择使不纯度/平方误差最小的特征a和阈值t,生成左右子树。

4. 对左右子树递归调用步骤1-3,直至满足停止条件。

5. 对生成的树进行剪枝处理。

2.特征选择与分裂阈值搜索

       对于每个特征a,将样本按特征值排序,遍历所有可能的分裂点(通常取相邻样本的中间值),计算每个分裂点的不纯度或平方误差,选择最优分裂条件。

3.递归分裂与停止条件

递归分裂直至满足以下条件之一:

节点样本数小于预设最小值(如 10)。

所有样本属于同一类别(分类问题)或方差小于阈值(回归问题)。

树的深度达到预设最大值(如 10 层)。

4. 叶子节点赋值

分类树:叶子节点的类别为该节点样本的多数类。

回归树:叶子节点的值为该节点样本的均值。

5.剪枝处理

预剪枝:在分裂时提前限制树的生长,如设置最小样本分裂数、最大深度等。

后剪枝:先生成完整树,再自底向上删除贡献度低的节点。常用方法包括代价复杂度剪枝(Cost-Complexity Pruning),通过最小化损失函数:

Cα​(T)=C(T)+α∣T∣

其中,C(T)为训练误差,∣T∣为叶子节点数,α为正则化参数。

       CART算法通过递归分裂和剪枝策略,在分类和回归问题中实现了高效的决策建模。MATLAB 训练流程直观易实现,而 FPGA 测试则利用硬件并行性提升预测速度,适用于实时性要求高的场景。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/news/907748.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【RAG】RAG综述|一文了解RAG|从零开始(下)

文章目录 5. RAG的架构5.1 Naive RAG5.2 Advanced RAG5.2.1 检索前处理和数据索引技术5.2.2 知识分片技术5.2.3 分层索引5.2.4 检索技术5.2.4.1 优化用户查询5.2.4.2 通过假想文档嵌入修复查询和文档不对称5.2.4.3 Routing5.2.4.5 自查询检索5.2.4.6 混合搜索5.2.4.7 图检索5.2…

山东大学软件学院项目实训-基于大模型的模拟面试系统-面试官和面试记录的分享功能(2)

本文记录在发布文章时&#xff0c;可以添加自己创建的面试官和面试记录到文章中这一功能的实现。 前端 首先是在原本的界面的底部添加了两个多选框&#xff08;后期需要美化调整&#xff09; 实现的代码&#xff1a; <el-col style"margin-top: 1rem;"><e…

FPGA纯verilog实现MIPI-DSI视频编码输出,提供工程源码和技术支持

目录 1、前言工程概述免责声明 2、相关方案推荐我已有的所有工程源码总目录----方便你快速找到自己喜欢的项目我这里已有的 MIPI 编解码方案 3、设计思路框架工程设计原理框图FPGA内部彩条RGB数据位宽转换RGB数据缓存MIPI-DSI协议层编码MIPI-DPHY物理层串化MIPI-LVDS显示屏工程…

LXQt修改开始菜单高亮

开始菜单红色高亮很难看 mkdir -p ~/.local/share/lxqt/palettes/ mkdir -p ~/.local/share/lxqt/themes/ cp /usr/share/lxqt/palettes/Dark ~/.local/share/lxqt/palettes/Darker cp -p /usr/share/lxqt/themes/dark ~/.local/share/lxqt/themes/darker lxqt-panel.qss L…

DeepSeek-R1-0528-Qwen3-8B 本地ollama离线运行使用和llamafactory lora微调

参考: https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B 量化版本: https://huggingface.co/unsloth/DeepSeek-R1-0528-Qwen3-8B-GGUF https://docs.unsloth.ai/basics/deepseek-r1-0528-how-to-run-locally 1、ollama运行 升级ollama版本到0.9.0 支持直接…

vue3 + WebSocket + Node 搭建前后端分离项目 开箱即用

[TOC](vue3 WebSocket Node 搭建前后端分离项目) 开箱即用 前言 top1&#xff1a;vue3.5搭建前端H5 top2&#xff1a;Node.js koa搭建后端服务接口 top3&#xff1a;WebSocket 长连接实现用户在线聊天 top4&#xff1a;接口实现模块化 Mysql 自定义 top5&#xff1a;文件上…

Vue 前端代码规范实战:ESLint v9、Prettier 与 Stylelint 集成指南与最佳实践

&#x1f680; 作者主页&#xff1a; 有来技术 &#x1f525; 开源项目&#xff1a; youlai-mall ︱vue3-element-admin︱youlai-boot︱vue-uniapp-template &#x1f33a; 仓库主页&#xff1a; GitCode︱ Gitee ︱ Github &#x1f496; 欢迎点赞 &#x1f44d; 收藏 ⭐评论 …

docker docker-ce docker.io

Ubuntu安装 ​​更新软件包列表​​ 首先确保软件包列表是最新的&#xff1a; sudo apt-get update 使用正确的卸载命令​​ 替换 docker-engine 为 docker-ce 或 docker.io&#xff1a; sudo apt-get remove docker docker-ce docker.io containerd runc ​​检查已安装的 Do…

C++ 初阶 | 类和对象易错知识点(下)

目录 0.引言 1.初始化列表 2.static 静态成员变量&#xff1a; 静态成员函数&#xff1a; 3.友元函数 4.内部类 定义&#xff1a; 特点&#xff1a; 应用&#xff1a; 5.优化写法 6.例题 求和12...n (不能用for/while/if/else等关键字) 7.总结 0.引言 今天&…

使用yocto搭建qemuarm64环境

环境 yocto下载 # 源码下载 git clone git://git.yoctoproject.org/poky git reset --hard b223b6d533a6d617134c1c5bec8ed31657dd1268 构建 # 编译镜像 export MACHINE"qemuarm64" . oe-init-build-env bitbake core-image-full-cmdline 运行 # 跑虚拟机 export …

AWS WebRTC:获取ICE服务地址(part 3):STUN服务和TURN服务的作用

STUN服务和TURN服务的作用&#xff1a; 服务全称作用是否中继流量适用场景STUNSession Traversal Utilities for NAT 协助设备发现自己的公网地址&#xff08;srflx candidate&#xff09; ❌ 不中继&#xff0c;仅辅助NAT 穿透成功时使用TURNTraversal Using Relays around N…

分析XSSstrike源码

#用于学习web安全自动化工具# 我能收获什么&#xff1f; 1.XSS漏洞检测机制 学习如何构造和发送XSS payload如何识别响应中的回显&#xff0c;WAF&#xff0c;过滤规则等如何使用词典&#xff0c;编码策略&#xff0c;上下文探测等绕过过滤器 2.Python安全工具开发技巧 使…

npm run build 报错:Some chunks are larger than 500 KB after minification

当我们的 Vue 项目太大&#xff0c;使用 npm run build 打包项目的时候&#xff0c;就有可能会遇到以下报错&#xff1a; (!) Some chunks are larger than 500 kB after minification. Consider: - Using dynamic import() to code-split the application - Use build.rollup…

【LLM相关知识点】关于LLM项目实施流程的简单整理(一)

【LLM相关知识点】关于LLM项目实施流程的简单整理&#xff08;一&#xff09; 文章目录 【LLM相关知识点】关于LLM项目实施流程的简单整理&#xff08;一&#xff09;零、学习计划梳理&#xff1a;结合ChatGPT从零开始学习LLM & 多模态大模型一、大模型相关应用场景和头部企…

海上石油钻井平台人员安全管控解决方案

一、行业挑战与需求分析 海上钻井平台面临复杂环境风险&#xff08;如易燃易爆、金属干扰、极端气象&#xff09;和人员管理难题&#xff08;如定位模糊、应急响应延迟&#xff09;。传统RFID或蓝牙定位技术存在精度不足&#xff08;1-5米&#xff09;、抗干扰能力差等问题&am…

@Docker Compose 部署 Pushgateway

文章目录 Docker Compose 部署 Pushgateway1. 目的2. 适用范围3. 先决条件4. 部署步骤4.1 创建项目目录4.2 创建 docker-compose.yml 文件4.3 启动 Pushgateway 服务4.4 验证服务运行状态4.5 测试 Pushgateway 访问 5. 配置 Prometheus 采集 Pushgateway 数据6. 日常维护6.1 查…

项目 react+taro 编写的微信 小程序,什么命令,可以减少console的显示

在 Taro 项目中&#xff0c;为了减少 console 的显示&#xff08;例如 console.log、console.info 等&#xff09;&#xff0c;可以通过配置 terser-webpack-plugin 来移除生产环境中的 console 调用。 配置步骤&#xff1a; 修改 index.js 文件 在 mini.webpackChain 中添加 …

Java开发中常见的数值处理陷阱与规避方法

八进制字面量的误用问题 历史背景与语法特性 由于历史原因,Java保留了八进制字面量的支持。八进制字面量以数字0开头,例如037表示十进制数31(计算方式:38 + 7 = 31)。这种表示法在现代编程中极少使用,唯一合理的应用场景是表示Unix文件权限(如0644表示用户可读写,组和…

Lua5.4.2常用API整理记录

一、基础函数 1.type(value)​​ 返回值的类型&#xff08;如 "nil", "number", "string", "table", "function" 等&#xff09;。 代码测试&#xff1a; a 0 print(type(a)) a nil print(type(a)) a "aaaaaaaa&…

2025.5.29 学习日记 docker概念以及基本指令

Docker&#xff1a; Docker 是一种开源的容器化平台&#xff0c;用于快速部署应用程序&#xff0c;实现开发、测试和生产环境的一致性。 一、Docker 核心概念 镜像&#xff08;Image&#xff09; 只读的模板文件&#xff0c;用于创建容器&#xff0c;类似虚拟机的镜像&#x…