浏览器工作原理06 [#]渲染流程(下):HTML、CSS和JavaScript是如何变成页面的

引用

浏览器工作原理与实践

简单回顾下上节前三个阶段的主要内容:在HTML页面内容被提交给渲染引擎之后,渲染引擎首先将HTML解析为浏览器可以理解的DOM;然后根据CSS样式表,计算出DOM树所有节点的样式;接着又计算每个元素的几何坐标位置,并将这些信息保存在布局树中

一、分层

现在我们有了布局树,而且每个元素的具体位置信息都计算出来了,那么接下来是不是就要开始着手绘制页面了?

答案依然是否定的。

因为页面中有很多复杂的效果,如一些复杂的3D变换、页面滚动,或者使用z-indexing做z轴排序等,为了更加方便地实现这些效果,渲染引擎还需要为特定的节点生成专用的图层,并生成一棵对应的图层树(LayerTree)。如果你熟悉PS,相信你会很容易理解图层的概念,正是这些图层叠加在一起构成了最终的页面图像。

要想直观地理解什么是图层,你可以打开Chrome的“开发者工具”,选择“Layers”标签,就可以可视化页面的分层情况,如下图所示

从上图可以看出,渲染引擎给页面分了很多图层,这些图层按照一定顺序叠加在一起,就形成了最终的页面,你可以参考下图

现在你知道了浏览器的页面实际上被分成了很多图层,这些图层叠加后合成了最终的页面。下面我们再来看看这些图层和布局树节点之间的关系,如文中图所示:

通常情况下,并不是布局树的每个节点都包含一个图层,如果一个节点没有对应的层,那么这个节点就从属于父节点的图层。如上图中的span标签没有专属图层,那么它们就从属于它们的父节点图层。但不管怎样,最终每一个节点都会直接或者间接地从属于一个层。

那么需要满足什么条件,渲染引擎才会为特定的节点创建新的层呢?通常满足下面两点中任意一点的元素就可以被提升为单独的一个图层。

第一点,拥有层叠上下文属性的元素会被提升为单独的一层。

页面是个二维平面,但是层叠上下文能够让HTML元素具有三维概念,这些HTML元素按照自身属性的优先级分布在垂直于这个二维平面的z轴上。你可以结合下图来直观感受下:

从图中可以看出,明确定位属性的元素、定义透明属性的元素、使用CSS滤镜的元素等,都拥有层叠上下文属性。

第二点,需要剪裁(clip)的地方也会被创建为图层。

不过首先你需要了解什么是剪裁,结合下面的HTML代码:

<style>div {width: 200;height: 200;overflow:auto;background: gray;} 
</style>
<body><div ><p>所以元素有了层叠上下文的属性或者需要被剪裁,那么就会被提升成为单独一层,你可以参看下图:</p><p>从上图我们可以看到,document层上有A和B层,而B层之上又有两个图层。这些图层组织在一起也是一颗树状结构。</p><p>图层树是基于布局树来创建的,为了找出哪些元素需要在哪些层中,渲染引擎会遍历布局树来创建层树(Update LayerTree)。</p> </div>
</body>

在这里我们把div的大小限定为200 * 200像素,而div里面的文字内容比较多,文字所显示的区域肯定会超出200 * 200的面积,这时候就产生了剪裁,渲染引擎会把裁剪文字内容的一部分用于显示在div区域,下图是运行时的执行结果

出现这种裁剪情况的时候,渲染引擎会为文字部分单独创建一个层,如果出现滚动条,滚动条也会被提升为单独的层。你可以参考下图:

所以说,元素有了层叠上下文的属性或者需要被剪裁,满足这任意一点,就会被提升成为单独一层。

二、 图层绘制

在完成图层树的构建之后,渲染引擎会对图层树中的每个图层进行绘制,那么接下来我们看看渲染引擎是怎么实现图层绘制的?

试想一下,如果给你一张纸,让你先把纸的背景涂成蓝色,然后在中间位置画一个红色的圆,最后再在圆上画个绿色三角形。你会怎么操作呢?

通常,你会把你的绘制操作分解为三步

  • 制蓝色背景;
  • 在中间绘制一个红色的圆;
  • 再在圆上绘制绿色三角形

渲染引擎实现图层的绘制与之类似,会把一个图层的绘制拆分成很多小的绘制指令,然后再把这些指令按照顺序组成一个待绘制列表,如下图所示:

从图中可以看出,绘制列表中的指令其实非常简单,就是让其执行一个简单的绘制操作,比如绘制粉色矩形或者黑色的线等。而绘制一个元素通常需要好几条绘制指令,因为每个元素的背景、前景、边框都需要单独的指令去绘制。所以在图层绘制阶段,输出的内容就是这些待绘制列表。

你也可以打开“开发者工具”的“Layers”标签,选择“document”层,来实际体验下绘制列表,如下图所示:

在该图中,区域1就是document的绘制列表,拖动区域2中的进度条可以重现列表的绘制过程。

# 栅格化(raster)操作

绘制列表只是用来记录绘制顺序和绘制指令的列表,而实际上绘制操作是由渲染引擎中的合成线程来完成的。你可以结合下图来看下渲染主线程和合成线程之间的关系:

如上图所示,当图层的绘制列表准备好之后,主线程会把该绘制列表提交(commit)给合成线程,那么接下来合成线程是怎么工作的呢?

那我们得先来看看什么是视口,你可以参看下图:

通常一个页面可能很大,但是用户只能看到其中的一部分,我们把用户可以看到的这个部分叫做视口(viewport)。

在有些情况下,有的图层可以很大,比如有的页面你使用滚动条要滚动好久才能滚动到底部,但是通过视口,用户只能看到页面的很小一部分,所以在这种情况下,要绘制出所有图层内容的话,就会产生太大的开销,而且也没有必要。

基于这个原因,合成线程会将图层划分为图块(tile),这些图块的大小通常是256x256或者512x512,如下图所示:

然后合成线程会按照视口附近的图块来优先生成位图,实际生成位图的操作是由栅格化来执行的。所谓栅格化,是指将图块转换为位图。而图块是栅格化执行的最小单位。渲染进程维护了一个栅格化的线程池,所有的图块栅格化都是在线程池内执行的,运行方式如下图所示:

通常,栅格化过程都会使用GPU来加速生成,使用GPU生成位图的过程叫快速栅格化,或者GPU栅格化,生成的位图被保存在GPU内存中。

相信你还记得,GPU操作是运行在GPU进程中,如果栅格化操作使用了GPU,那么最终生成位图的操作是在GPU中完成的,这就涉及到了跨进程操作。具体形式你可以参考下图:

从图中可以看出,渲染进程把生成图块的指令发送给GPU,然后在GPU中执行生成图块的位图,并保存在GPU的内存中。

三、合成和显示

一旦所有图块都被光栅化,合成线程就会生成一个绘制图块的命令——“DrawQuad”,然后将该命令提交给浏览器进程。

浏览器进程里面有一个叫viz的组件,用来接收合成线程发过来的DrawQuad命令,然后根据DrawQuad命令,将其页面内容绘制到内存中,最后再将内存显示在屏幕上。

到这里,经过这一系列的阶段,编写好的HTML、CSS、JavaScript等文件,经过浏览器就会显示出漂亮的页面了。

四、渲染流水线大总结

好了,我们现在已经分析完了整个渲染流程,从HTML到DOM、样式计算、布局、图层、绘制、光栅化、合成和显示。下面我用一张图来总结下这整个渲染流程:

结合上图,一个完整的渲染流程大致可总结为如下

  • 渲染进程将HTML内容转换为能够读懂的DOM树结构。
  • 渲染引擎将CSS样式表转化为浏览器可以理解的styleSheets,计算出DOM节点的样式。
  • 创建布局树,并计算元素的布局信息。
  • 对布局树进行分层,并生成分层树。
  • 为每个图层生成绘制列表,并将其提交到合成线程。
  • 合成线程将图层分成图块,并在光栅化线程池中将图块转换成位图。
  • 合成线程发送绘制图块命令DrawQuad给浏览器进程。
  • 浏览器进程根据DrawQuad消息生成页面,并显示到显示器上

# 相关概念

有了上面介绍渲染流水线的基础,我们再来看看三个和渲染流水线相关的概念——“重排”“重绘”和“合成”。理解了这三个概念对于你后续Web的性能优化会有很大帮助。

# 1. 更新了元素的几何属性(重排)

从上图可以看出,如果你通过JavaScript或者CSS修改元素的几何位置属性,例如改变元素的宽度、高度等,那么浏览器会触发重新布局,解析之后的一系列子阶段,这个过程就叫重排。无疑,重排需要更新完整的渲染流水线,所以开销也是最大的

# 2. 更新元素的绘制属性(重绘)

接下来,我们再来看看重绘,比如通过JavaScript更改某些元素的背景颜色,渲染流水线会怎样调整呢?你可以参考下图:

从图中可以看出,如果修改了元素的背景颜色,那么布局阶段将不会被执行,因为并没有引起几何位置的变换,所以就直接进入了绘制阶段,然后执行之后的一系列子阶段,这个过程就叫重绘。相较于重排操作,重绘省去了布局和分层阶段,所以执行效率会比重排操作要高一些

# 3. 直接合成阶段

那如果你更改一个既不要布局也不要绘制的属性,会发生什么变化呢?渲染引擎将跳过布局和绘制,只执行后续的合成操作,我们把这个过程叫做合成。具体流程参考下图

在上图中,我们使用了CSS的transform来实现动画效果,这可以避开重排和重绘阶段,直接在非主线程上执行合成动画操作。这样的效率是最高的,因为是在非主线程上合成,并没有占用主线程的资源,另外也避开了布局和绘制两个子阶段,所以相对于重绘和重排,合成能大大提升绘制效率。

至于如何用这些概念去优化页面,我们会在后面相关章节做详细讲解的,这里你只需要先结合“渲染流水线”弄明白这三个概念及原理就行

五、总结

Chrome的渲染流水线还是相当复杂晦涩,且难以理解,不过Chrome团队在不断添加新功能的同时,也在不断地重构一些子阶段,目的就是让整体渲染架构变得更加简单和高效,正所谓大道至简。

六、思考时间

在优化Web性能的方法中,减少重绘、重排是一种很好的优化方式,那么结合文中的分析,你能总结出来为什么减少重绘、重排能优化Web性能吗?那又有那些具体的实践方法能减少重绘、重排呢?

  • 触发repaint reflow的操作尽量放在一起,比如改变dom高度和设置margin分开写,可能会出发两次重排
  • 通过虚拟dom层计算出操作总得差异,一起提交给浏览器。之前还用过createdocumentfragment来汇总append的dom,来减少触发重排重绘次数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/news/908423.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI书签管理工具开发全记录(十三):TUI基本框架搭建

文章目录 AI书签管理工具开发全记录&#xff08;十三&#xff09;&#xff1a;TUI基本框架搭建前言 &#x1f4dd;1.TUI介绍 &#x1f50d;2. 框架选择 ⚙️3. 功能梳理 &#x1f3af;4. 基础框架搭建⚙️4.1 安装4.2 参数设计4.3 绘制ui4.3.1 设计结构体4.3.2 创建头部4.3.3 创…

CC7利用链深度解析

CommonsCollections7&#xff08;CC7&#xff09;是CC反序列化利用链中的重要成员&#xff0c;由Matthias Kaiser在2016年发现。本文将从底层原理到实战利用&#xff0c;全面剖析这条独特而强大的利用链。 一、CC7链技术定位 1.1 核心价值 无第三方依赖&#xff1a;仅需JDK原…

openvino使用教程

OpenVINO使用教程 本专栏内容支持平台章节计划 本专栏内容 OpenVINO 是一款开源工具包&#xff0c;用于在云端、本地和边缘部署高性能 AI 解决方案。我们可以使用来自最热门模型框架的生成式和传统 AI 模型来开发应用程序。充分利用英特尔 硬件的潜力&#xff0c;使用openvino…

ESP8266(NodeMcu)+GPS模块+TFT屏幕实现GPS码表

前言 去年写过一篇关于使用esp8266(nodemcu)gps模块oled屏幕diy的gps定位器的文章.点击回顾 .无奈OLED屏幕太小了,最近刚好有时间又折腾使用TFT屏幕diy了一款gps码表 效果如图 材料准备 依旧是请出我们的两位老演员 nocdmcu一块. GPS定位模块(我买的大夏龙雀的DX-GP10-GP…

解决获取视频第一帧黑屏问题

文章目录 解决获取视频第一帧黑屏问题核心代码 解决获取视频第一帧黑屏问题 废话不多说&#xff0c;直接上代码&#xff1a; <script setup> const status ref(请点击“添加视频”按钮添加视频) const videoElement ref(document.createElement(video)) const curren…

通过BUG(prvIdleTask、pxTasksWaitingTerminatio不断跳转问题)了解空闲函数(prvIdleTask)和TCB

一、前言与问题 在基于 FreeRTOS 的嵌入式系统中&#xff0c;我使用 STM32F1 开发一个 MQTT 客户端应用&#xff0c;涉及两个主要任务&#xff1a; ATRecvParser&#xff1a;负责解析 Wi-Fi 模块的 AT 命令响应&#xff08;如 OK、ERROR 和 IPD 数据&#xff09;。MQTT_Clien…

继MySQL之后的技术-JDBC-从浅到深-02

目录 概念 编程六部曲 SQL注入和statement 工具类的封装 JDBC事务 模糊查询 批处理 数据库连接池 Apache-DBUtils BasicDao 概念 JDBC为访问不同的数据库提供了统一的接口&#xff0c;为使用者屏蔽了细节问题。 Java程序员使用JDBC&#xff0c;可以连接任何提供了JD…

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…

浅谈python如何做接口自动化

工具与环境准备 开发工具 PyCharm专业版&#xff1a;支持项目视图、代码导航、调试功能和主流框架开发官方资源&#xff1a;JetBrains PyCharm 数据库操作 使用mysqlclient库操作MySQL&#xff08;Django官方推荐&#xff09;安装命令&#xff1a;pip install mysqlclient1.3.…

知识图谱技术概述

一、概述 知识图谱&#xff08;Knowledge Graph&#xff09; 是一种基于图结构的语义网络&#xff0c;用于表示实体及其之间的关系&#xff0c;旨在实现更智能的知识表示和推理。它通过将现实世界中的各类信息抽象为 “实体-关系-实体” 的三元组结构&#xff0c;构建出复杂的知…

NodeJS Koa 后端用户会话管理,JWT, Session,长短Token,本文一次性讲明白

前言 前几天&#xff0c;我写了一篇文章&#xff0c;《我设计的一个安全的 web 系统用户密码管理流程》。其中着重点是讲的如何利用非对称加密进行安全的设计&#xff0c;并在讲述了原理之后&#xff0c;又写了 《node 后端和浏览器前端&#xff0c;有关 RSA 非对称加密的完整…

0.5S 级精度背后:DJSF1352-RN-6 如何让储能电站的每 1kWh 都「有迹可循」?

1、背景 在能源转型的时代洪流里&#xff0c;大型储能电站作为保障电网稳定运行、平衡能源供需的核心基础设施&#xff0c;其战略价值愈发凸显。而储能电站的高效运转&#xff0c;始终离不开精准的电能计量体系支撑。今日为您重点推介一款针对 1500V 储能系统研发的专业电能表…

Linux运维笔记:服务器安全加固

文章目录 背景加固措施1. 修改用户密码2. 使用公钥认证替代密码登录3. 强化系统安全4. 扫描与清理残留威胁5. 规范软件管理&#xff08;重点&#xff09; 注意事项总结 提示&#xff1a;本文总结了大学实验室 Linux 电脑感染挖矿病毒后的安全加固措施&#xff0c;重点介绍用户密…

Pycharm 配置解释器

今天更新了一版pycharm&#xff0c;因为很久没有配置解释器了&#xff0c;发现一直失败。经过来回试了几次终于成功了&#xff0c;记录一下过程。 Step 1 Step 2 这里第二步一定要注意类型要选择python 而不是conda。 虽然我的解释器是conda 里面建立的一个环境。挺有意思的

【Linux】awk 命令详解及使用示例:结构化文本数据处理工具

【Linux】awk 命令详解及使用示例&#xff1a;结构化文本数据处理工具 引言 awk 是一种强大的文本处理工具和编程语言&#xff0c;专为处理结构化文本数据而设计。它的名称来源于其三位创始人的姓氏首字母&#xff1a;Alfred Aho、Peter Weinberger 和 Brian Kernighan。 基…

MS1023/MS1224——10MHz 到 80MHz、10:1 LVDS 并串转换器(串化器)/串并转换器(解串器)

产品简述 MS1023 串化器和 MS1224 解串器是一对 10bit 并串 / 串并转 换芯片&#xff0c;用于在 LVDS 差分底板上传输和接收 10MHz 至 80MHz 的并行字速率的串行数据。起始 / 停止位加载后&#xff0c;转换为负载编 码输出&#xff0c;串行数据速率介于 120Mbps…

跟我学c++中级篇——理解类型推导和C++不同版本的支持

一、类型推导 在前面反复分析过类型推导&#xff08;包括前面提到的类模板参数推导CTAD&#xff09;&#xff0c;类型推导其实就是满足C语言这种强类型语言的要求即编译期必须确定对象的数据类型。换一句话说&#xff0c;理论上如果编译器中能够自动推导所有的相关数据类型&am…

vue3+TS+eslint9配置

记录eslint升级到9.x的版本之后遇到的坑 在 ESLint 9 中&#xff0c;配置方式发生了变化。Flat Config 格式&#xff08;eslint.config.js 或 .ts&#xff09;不再支持 extensions 选项。所以vscode编辑器中的 extensions 需要注释掉&#xff0c;要不然保存的时候不会格式化。…

书籍推荐 --- 《筚路维艰:中国经济社会主义路径的五次选择》

萧冬连.筚路维艰:中国社会主义路径的五次选择[M]. 前不久看完的这本书&#xff0c;还是蛮受震撼的。 这本书比较细致地(引用了很多的史料)、从中央高层的视角讲解了从新中国成立一直到改革开放初期这30多年里(1949---1980年代)发生在我国的几次重大事件(三大改造、第一个五年计…

C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)

名人说&#xff1a;路漫漫其修远兮&#xff0c;吾将上下而求索。—— 屈原《离骚》 创作者&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 专栏介绍&#xff1a;《编程项目实战》 目录 一、为什么要开发一个日历程序&#xff…