使用Python进行函数作画

前言

因为之前通过deepseek绘制一下卡通的人物根本就不像,又想起来之前又大佬通过函数绘制了一些图像,想着能不能用Python来实现,结果发现可以,不过一些细节还是需要自己调整,deepseek整体的框架是没有问题,只有线条的颜色以及部分函数实现失败了,需要自己理解一下再调整绘制。

WalkingStar的个人空间-WalkingStar个人主页-哔哩哔哩视频

芙莉莲&勇者 | Desmos

数学魔法!!980个初等函数画芙莉莲&勇者_哔哩哔哩_bilibili

阿梓喵 | Desmos

函数阿梓喵_哔哩哔哩_bilibili

篮球 | Desmos

鸡函数_哔哩哔哩_bilibili

鸡函数

先来个简单的吧,这个确实非常的耗时间,这个是我按照UP主视频一个个敲的,很考验耐心,更别说UP主是先导入图片,然后根据线条一点一点拟合图形,整个过程纯手工拟合,没用任何外置插件以及内置几何工具,后续的图形就是在UP主公开的图形中进行修改。

整个代码的制作步骤,因为deepseek无法识别链接,使用我是通过记事本粘贴网站中所有的函数,然后用deepseek生成Python代码,整个过程一个是颜色会有问题,还有就是有些函数无法显示,需要通过结合desmos网站进行对比调整。

函数

\frac{x^{2}}{16}+\frac{y^{2}}{4}=1
\frac{x^{2}}{16}+y^{2}=1\left\{y\le0\right\}
\left(x-3\right)^{2}+\left(y-4.6\right)^{2}=9
\left(x+3\right)^{2}+\left(y-4.6\right)^{2}=9
\left(x-4\right)^{2}+\left(y-5\right)^{2}\le0.5
\left(x+2\right)^{2}+\left(y-5\right)^{2}\le0.5
\frac{\left(x+2.5\right)^{2}}{140}+\frac{\left(y-3\right)^{2}}{81}=1\left\{y\ge3\right\}
\frac{\left(0.174\left(x-7\right)+0.985y\right)^{2}}{4.5}+\frac{\left(0.174y-0.985\left(x-7\right)\right)^{2}}{2}\le1
\frac{\left(0.707\left(x+9\right)+0.702\left(y-1\right)\right)^{2}}{6.5}+\frac{\left(0.707\left(y-1\right)-0.707\left(x+9\right)\right)^{2}}{8.5}\le1
y+2.8=0.5\sin0.3\left(x+11.36\right)\left\{-14\le x\le9\right\}
y=-1.5\left(x+14\right)-3.156\left\{-14\le x\le-12.5\right\}
x-9.25=0.6\sin\left(y+3.1\right)\left\{-6.5\le x\le-2.5\right\}
y=-5.7\left\{-12\le x\le8\right\}
\left(y+10\right)^{2}=80\left(x+12.8\right)\left\{-10\le y\le-5.36\right\}
\left(y+10\right)^{2}=-50\left(x-9.7\right)\left\{-10\le y\le-6.5\right\}
y+1=-0.15x\left\{7.259\le x\le9.6\right\}
y=6.5\left(x+15\right)\left\{-14.286\le x\le-13.5\right\}
y-7.5=0.2x\left\{-14.286\le x\le-10.68\right\}
y=6.5\left(x+11.5\right)\left\{-10.849\le x\le-9.964\right\}
y-6.4=0.2x\left\{-10.85\le x\le-7.2\right\}
y=6.5\left(x+8\right)\left\{-7.238\le x\le-6.9\right\}
y-8.5=0.2x\left\{-6.905\le x\le-5\right\}
y=-1.5x\left\{-5.3\le x\le-4\right\}
\left(y-6\right)^{2}=60\left(x+4\right)\left\{6\le y\le13.5\right\}
y-11.5=0.05x\left\{-3.528\le x\le1.5\right\}
y-11.425=2\left(x+1.5\right)\left\{-1.5\le x\le-0.3\right\}
y-13.825=-0.4\left(x+0.8\right)^{2}\left\{-0.342\le x\le3.4\right\}
y-7=-0.1x\left\{3.4\le x\le6.5\right\}
y=-2.5\left(x-9.3\right)\left\{5.427\le x\le6.9\right\}
y-10.8=-0.7x\left\{6.9\le x\le8.5\right\}
y=3\left(x-7\right)\left\{8.6\le x\le9.5\right\}
y=-1.7\left(x-14\right)\left\{7.5\le x\le9.5\right\}
y-5=-0.1x\left\{-16\le x\le-14\right\}
y=4\left(x+17.5\right)\left\{-15.854\le x\le-15\right\}
y-16=-0.025x^{2}\left\{-15.5\le x\le-5\right\}
y-13.6=-0.35\left\{-5\le x\le-2\right\}
y=x+16\left\{-1.8\le x\le0\right\}
y-16.4=-0.05\left(x+2.7\right)^{2}\left\{0\le x\le7.7\right\}
y+7.5=0.2x\left\{0.455\le x\le8\right\}
y+8.3=-0.2x\left\{-12\le x\le-1\right\}
y+7.35=-0.13x\left\{-12\le x\le0.455\right\}
y+8.45=0.3x\left\{0.6\le x\le8\right\}
y+7.6=0.5x\left\{-2\le x\le-1\right\}
x=-2\left\{-10.5\le x\le-8.6\right\}
y=-10.5\left\{-2\le x\le0.75\right\}
y+7.8=-\left(x+0.2\right)^{2}\left\{0.5\le x\le0.83\right\}
x=0.83\left\{-10.5\le y\le-8.861\right\}
\left(0.5\left(x+18\right)+0.866\left(y+3\right)\right)^{2}+\left(0.5\left(y+3\right)-0.866\left(x+18\right)\right)^{2}=64\left\{0.5\left(y+3\right)-0.866\left(x+18\right)\ge0\right\}
0.423\left(y+16\right)-0.906\left(x+10\right)=\frac{200}{0.423\left(x+10\right)+0.906\left(y+16\right)}\left\{0.423\left(x+10\right)+0.906\left(y+16\right)>0\right\}\left\{-24.5\le x\le-14\right\}
0.866\left(y-30\right)-0.5\left(x+4\right)=\frac{600}{0.866\left(x+4\right)+0.5\left(y-30\right)}\left\{0.866\left(x+4\right)+0.5\left(y-30\right)\le0\right\}\left\{-26\le x\le-14\right\}
y+5.1=-0.04\left(x+25.7\right)^{2}\left\{-25.7\le x\le-14.8\right\}
y=\frac{70}{x}\left\{-12.15\le x\le-6\right\}
y=\frac{50}{x+4}\left\{-12.3\le x\le-8.2\right\}
y=-\frac{70}{x+3.3}\left\{2.5\le x\le8.15\right\}
y=-\frac{50}{x}\left\{4\le x\le8.15\right\}

代码 

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Circle# 设置图形大小
plt.figure(figsize=(16, 12))
ax = plt.gca()# 设置坐标轴范围
ax.set_xlim(-30, 20)
ax.set_ylim(-15, 30)
ax.spines['bottom'].set_position(('data', 0))  # 强制x轴显示在y=0位置
ax.spines['left'].set_position(('data', 0))  # 强制y轴显示在x=0位置
ax.set_aspect('equal')
ax.grid(True, linestyle='--', alpha=0.7)
plt.title('Chicken function', fontsize=18, pad=12, weight='bold')  # 加粗标题# 1. 椭圆: x²/16 + y²/4 = 1
theta = np.linspace(0, 2 * np.pi, 500)
x1 = 4 * np.cos(theta)
y1 = 2 * np.sin(theta)
plt.plot(x1, y1, 'b-', linewidth=1.5)# 2. 半椭圆: x²/16 + y² = 1 (y ≤ 0)
y2 = -np.sqrt(1 - x1 ** 2 / 16)
plt.plot(x1, y2, 'b-', linewidth=1.5)# 3-4. 两个圆: (x±3)² + (y-4.6)² = 9
circle1 = Circle((3, 4.6), 3, fill=False, edgecolor='b', linewidth=1.5)
circle2 = Circle((-3, 4.6), 3, fill=False, edgecolor='b', linewidth=1.5)
ax.add_patch(circle1)
ax.add_patch(circle2)# 5-6. 实心圆: (x-4)² + (y-5)² ≤ 0.5 和 (x+2)² + (y-5)² ≤ 0.5
solid_circle1 = Circle((4, 5), np.sqrt(0.5), color='r', alpha=0.5)
solid_circle2 = Circle((-2, 5), np.sqrt(0.5), color='r', alpha=0.5)
ax.add_patch(solid_circle1)
ax.add_patch(solid_circle2)# 7. 椭圆弧: (x+2.5)²/140 + (y-3)²/81 = 1 (y ≥ 3)
x7 = np.linspace(-2.5 - 11.8, -2.5 + 11.8, 500)
y7_upper = 3 + 9 * np.sqrt(1 - (x7 + 2.5) ** 2 / 140)
# 'g-' → 'b-':将颜色标识符从绿色(green)改为蓝色(blue)
plt.plot(x7, y7_upper, 'b-', linewidth=1.5)# 8. 旋转椭圆区域: (0.174(x-7)+0.985y)²/4.5 + (0.174y-0.985(x-7))²/2 ≤ 1
def rotated_ellipse(x, y):u = 0.174 * (x - 7) + 0.985 * yv = 0.174 * y - 0.985 * (x - 7)return u ** 2 / 4.5 + v ** 2 / 2x8, y8 = np.meshgrid(np.linspace(3, 11, 400), np.linspace(-5, 5, 400))
z8 = rotated_ellipse(x8, y8)
# purple->red
plt.contourf(x8, y8, z8, levels=[0, 1], colors=['red'], alpha=0.3)# 9. 另一个旋转椭圆区域def rotated_ellipse2(x, y):u = 0.707 * (x + 9) + 0.702 * (y - 1)v = 0.707 * (y - 1) - 0.707 * (x + 9)return u ** 2 / 6.5 + v ** 2 / 8.5x9, y9 = np.meshgrid(np.linspace(-16, -2, 400), np.linspace(-5, 7, 400))
z9 = rotated_ellipse2(x9, y9)
# orange->red
plt.contourf(x9, y9, z9, levels=[0, 1], colors=['red'], alpha=0.3)# 10. 正弦波: y+2.8 = 0.5*sin(0.3(x+11.36)) [-14 ≤ x ≤ 9]
x10 = np.linspace(-14, 9, 500)
y10 = -2.8 + 0.5 * np.sin(0.3 * (x10 + 11.36))
plt.plot(x10, y10, 'b-', linewidth=1.5)# 11. 直线段: y = -1.5(x+14)-3.156 [-14 ≤ x ≤ -12.5]
x11 = np.linspace(-14, -12.5, 100)
y11 = -1.5 * (x11 + 14) - 3.156
plt.plot(x11, y11, 'b-', linewidth=1.5)# 12. 正弦波: x-9.25 = 0.6*sin(y+3.1) [-6.5 ≤ y ≤ -2.5]
y12 = np.linspace(-6.5, -2.5, 500)
x12 = 9.25 + 0.6 * np.sin(y12 + 3.1)
plt.plot(x12, y12, 'b-', linewidth=1.5)# 13. 水平线: y = -5.7 [-12 ≤ x ≤ 8]
x13 = np.linspace(-12, 8, 100)
y13 = np.full_like(x13, -5.7)
plt.plot(x13, y13, 'b-', linewidth=1.5)# 14. 抛物线: (y+10)² = 80(x+12.8) [-10 ≤ y ≤ -5.36]
y14 = np.linspace(-10, -5.36, 500)
x14 = (y14 + 10) ** 2 / 80 - 12.8
plt.plot(x14, y14, 'b-', linewidth=1.5)# 15. 抛物线: (y+10)² = -50(x-9.7) [-10 ≤ y ≤ -6.5]
y15 = np.linspace(-10, -6.5, 500)
x15 = 9.7 - (y15 + 10) ** 2 / 50
plt.plot(x15, y15, 'b-', linewidth=1.5)# 16. 直线段: y+1 = -0.15x [7.259 ≤ x ≤ 9.6]
x16 = np.linspace(7.259, 9.6, 100)
y16 = -0.15 * x16 - 1
plt.plot(x16, y16, 'b-', linewidth=1.5)# 17-20. 多段直线
x17 = np.linspace(-14.286, -13.5, 100)
y17 = 6.5 * (x17 + 15)
plt.plot(x17, y17, 'g-', linewidth=1.5)x18 = np.linspace(-14.286, -10.68, 100)
y18 = 0.2 * x18 + 7.5
plt.plot(x18, y18, 'g-', linewidth=1.5)x19 = np.linspace(-10.849, -9.964, 100)
y19 = 6.5 * (x19 + 11.5)
plt.plot(x19, y19, 'g-', linewidth=1.5)x20 = np.linspace(-10.85, -7.2, 100)
y20 = 0.2 * x20 + 6.4
plt.plot(x20, y20, 'g-', linewidth=1.5)# 21-22. 更多直线段
x21 = np.linspace(-7.238, -6.9, 100)
y21 = 6.5 * (x21 + 8)
plt.plot(x21, y21, 'g-', linewidth=1.5)x22 = np.linspace(-6.905, -5, 100)
y22 = 0.2 * x22 + 8.5
plt.plot(x22, y22, 'g-', linewidth=1.5)# 23. 直线段: y = -1.5x [-5.3 ≤ x ≤ -4]
x23 = np.linspace(-5.3, -4, 100)
y23 = -1.5 * x23
plt.plot(x23, y23, 'g-', linewidth=1.5)# 24. 抛物线: (y-6)² = 60(x+4) [6 ≤ y ≤ 13.5]
y24 = np.linspace(6, 13.5, 500)
x24 = (y24 - 6) ** 2 / 60 - 4
plt.plot(x24, y24, 'g-', linewidth=1.5)# 25. 直线段: y-11.5 = 0.05x [-3.528 ≤ x ≤ 1.5]
x25 = np.linspace(-3.528, 1.5, 100)
y25 = 0.05 * x25 + 11.5
plt.plot(x25, y25, 'g-', linewidth=1.5)# 26. 直线段: y-11.425 = 2(x+1.5) [-1.5 ≤ x ≤ -0.3]
x26 = np.linspace(-1.5, -0.3, 100)
y26 = 2 * (x26 + 1.5) + 11.425
plt.plot(x26, y26, 'g-', linewidth=1.5)# 27. 抛物线: y-13.825 = -0.4(x+0.8)² [-0.342 ≤ x ≤ 3.4]
x27 = np.linspace(-0.342, 3.4, 500)
y27 = -0.4 * (x27 + 0.8) ** 2 + 13.825
plt.plot(x27, y27, 'g-', linewidth=1.5)# 28. 直线段: y-7 = -0.1x [3.4 ≤ x ≤ 6.5]
x28 = np.linspace(3.4, 6.5, 100)
y28 = -0.1 * x28 + 7
plt.plot(x28, y28, 'g-', linewidth=1.5)# 29. 直线段: y = -2.5(x-9.3) [5.427 ≤ x ≤ 6.9]
x29 = np.linspace(5.427, 6.9, 100)
y29 = -2.5 * (x29 - 9.3)
plt.plot(x29, y29, 'g-', linewidth=1.5)# 30. 直线段: y-10.8 = -0.7x [6.9 ≤ x ≤ 8.5]
x30 = np.linspace(6.9, 8.5, 100)
y30 = -0.7 * x30 + 10.8
plt.plot(x30, y30, 'g-', linewidth=1.5)# 31. 直线段: y = 3(x-7) [8.6 ≤ x ≤ 9.5]
x31 = np.linspace(8.6, 9.5, 100)
y31 = 3 * (x31 - 7)
plt.plot(x31, y31, 'g-', linewidth=1.5)# 32. 直线段: y = -1.7(x-14) [7.5 ≤ x ≤ 9.5]
x32 = np.linspace(7.5, 9.5, 100)
y32 = -1.7 * (x32 - 14)
plt.plot(x32, y32, 'g-', linewidth=1.5)# 33. 直线段: y-5 = -0.1x [-16 ≤ x ≤ -14]
x33 = np.linspace(-16, -14, 100)
y33 = -0.1 * x33 + 5
plt.plot(x33, y33, 'g-', linewidth=1.5)# 34. 直线段: y = 4(x+17.5) [-15.854 ≤ x ≤ -15]
x34 = np.linspace(-15.854, -15, 100)
y34 = 4 * (x34 + 17.5)
plt.plot(x34, y34, 'g-', linewidth=1.5)# 35. 抛物线: y-16 = -0.025x² [-15.5 ≤ x ≤ -5]
x35 = np.linspace(-15.5, -5, 500)
y35 = -0.025 * x35 ** 2 + 16
plt.plot(x35, y35, 'g-', linewidth=1.5)# 36. 水平线: y-13.6 = -0.35 [-5 ≤ x ≤ -2]
x36 = np.linspace(-5, -2, 100)
y36 = np.full_like(x36, 13.6 - 0.35)
plt.plot(x36, y36, 'g-', linewidth=1.5)# 37. 直线段: y = x+16 [-1.8 ≤ x ≤ 0]
x37 = np.linspace(-1.8, 0, 100)
y37 = x37 + 16
plt.plot(x37, y37, 'g-', linewidth=1.5)# 38. 抛物线: y-16.4 = -0.05(x+2.7)² [0 ≤ x ≤ 7.7]
x38 = np.linspace(0, 7.7, 500)
y38 = -0.05 * (x38 + 2.7) ** 2 + 16.4
plt.plot(x38, y38, 'g-', linewidth=1.5)# 39. 直线段: y+7.5 = 0.2x [0.455 ≤ x ≤ 8]
x39 = np.linspace(0.455, 8, 100)
y39 = 0.2 * x39 - 7.5
plt.plot(x39, y39, 'g-', linewidth=1.5)# 40. 直线段: y+8.3 = -0.2x [-12 ≤ x ≤ -1]
x40 = np.linspace(-12, -1, 100)
y40 = -0.2 * x40 - 8.3
plt.plot(x40, y40, 'b-', linewidth=1.5)# 41. 直线段: y+7.35 = -0.13x [-12 ≤ x ≤ 0.455]
x41 = np.linspace(-12, 0.455, 100)
y41 = -0.13 * x41 - 7.35
plt.plot(x41, y41, 'b-', linewidth=1.5)# 42. 直线段: y+8.45 = 0.3x [0.6 ≤ x ≤ 8]
x42 = np.linspace(0.6, 8, 100)
y42 = 0.3 * x42 - 8.45
plt.plot(x42, y42, 'b-', linewidth=1.5)# 43. 直线段: y+7.6 = 0.5x [-2 ≤ x ≤ -1]
x43 = np.linspace(-2, -1, 100)
y43 = 0.5 * x43 - 7.6
plt.plot(x43, y43, 'b-', linewidth=1.5)# 44. 垂直线: x = -2 [-10.5 ≤ y ≤ -8.6]
y44 = np.linspace(-10.5, -8.6, 100)
x44 = np.full_like(y44, -2)
plt.plot(x44, y44, 'b-', linewidth=1.5)# 45. 水平线: y = -10.5 [-2 ≤ x ≤ 0.75]
x45 = np.linspace(-2, 0.75, 100)
y45 = np.full_like(x45, -10.5)
plt.plot(x45, y45, 'b-', linewidth=1.5)# 46. 抛物线: y+7.8 = -(x+0.2)² [0.5 ≤ x ≤ 0.83]
x46 = np.linspace(0.5, 0.83, 100)
y46 = -(x46 + 0.2) ** 2 - 7.8
plt.plot(x46, y46, 'b-', linewidth=1.5)# 47. 垂直线: x = 0.83 [-10.5 ≤ y ≤ -8.861]
y47 = np.linspace(-10.5, -8.861, 100)
x47 = np.full_like(y47, 0.83)
plt.plot(x47, y47, 'b-', linewidth=1.5)# 48. 旋转椭圆弧
theta48 = np.linspace(0, np.pi, 500)  # 上半部分
u48 = 8 * np.cos(theta48)
v48 = 8 * np.sin(theta48)
x48 = -18 + 0.5 * u48 - 0.866 * v48
y48 = -3 + 0.866 * u48 + 0.5 * v48
plt.plot(x48, y48, '#FFA500', linewidth=1.5)# 49. 双曲线: 0.423(y+16)-0.906(x+10) = 200/(0.423(x+10)+0.906(y+16))(-24.5<=x<=-14)
x49, y49 = np.meshgrid(np.linspace(-24.5, -14, 500), np.linspace(0, 30, 500))  # 主要y的上半部分
left = 0.423 * (y49 + 16) - 0.906 * (x49 + 10)
right = 200 / (0.423 * (x49 + 10) + 0.906 * (y49 + 16))
plt.contour(x49, y49, (left - right), levels=[0], colors='orange', linewidths=1.5)# 50.双曲线:0.866(y-30)-0.5(x+4)=600/(0.866(x+4)+0.5(y-30)){0.866(x+4))+0.5(y-30)}
x50, y50 = np.meshgrid(np.linspace(-26, -14, 500), np.linspace(-30, 0, 500))
left50 = 0.866 * (y50 - 30) - 0.5 * (x50 + 4)
right50 = 600.0 / (0.866 * (x50 + 4) + 0.5 * (y50 - 30))
plt.contour(x50, y50, (left50 - right50), levels=[0], colors='orange', linewidths=1.5)# 51. 抛物线: y+5.1 = -0.04(x+25.7)² [-25.7 ≤ x ≤ -14.8]
x51 = np.linspace(-25.7, -14.8, 500)
y51 = -0.04 * (x51 + 25.7) ** 2 - 5.1
plt.plot(x51, y51, '#FFA500', linewidth=1.5)# 52. 双曲线: y = 70/x [-12.15 ≤ x ≤ -6]
x52 = np.linspace(-12.15, -6, 500)
y52 = 70 / x52
plt.plot(x52, y52, 'b-', linewidth=1.5)# 53. 双曲线: y = 50/(x+4) [-12.3 ≤ x ≤ -8.2]
x53 = np.linspace(-12.3, -8.2, 500)
y53 = 50 / (x53 + 4)
plt.plot(x53, y53, 'b-', linewidth=1.5)# 54. 双曲线: y = -70/(x+3.3) [2.5 ≤ x ≤ 8.15]
x54 = np.linspace(2.5, 8.15, 500)
y54 = -70 / (x54 + 3.3)
plt.plot(x54, y54, 'b-', linewidth=1.5)# 55. 双曲线: y = -50/x [4 ≤ x ≤ 8.15]
x55 = np.linspace(4, 8.15, 500)
y55 = -50 / x55
plt.plot(x55, y55, 'b-', linewidth=1.5)# 添加图例和标签
# plt.xlabel('X-axis', fontsize=14)
# plt.ylabel('Y-axis', fontsize=14)
# plt.title('Chicken function', fontsize=16)# 保存并显示图像
plt.tight_layout()
plt.savefig('complex_functions.png', dpi=250, bbox_inches='tight')
plt.show()

图形 

阿梓喵

只能说还是高估deepseek了,果然“服务器繁忙了”,最好的一次是上传了两百左右的函数,但是也出现了处理方程时提示信息。

函数

y=-0.17\left(x-0.66\right)^{2}+3.8\left\{-0.542<x<1.2\right\}
\left(y-1.6\right)^{2}=2.7\left(x+2.03\right)\left\{1.82<y<3.4\right\}
y=0.53x+3.84\left\{-0.83<x<-0.542\right\}
y=-0.21\left(x-1\right)^{2}+3.76\left\{1.19<x<2.58\right\}
\left(y-0.4\right)^{2}=-7.4\left(x-3.85\right)\left\{-1.196<y<1.2\right\}
y=-0.66\left(x-2.12\right)^{2}+3.37\left\{2.58<x<3.5\right\}
\left(y-1\right)^{2}=-4.6\left(x-3.77\right)\left\{1.19<y<2.12\right\}
y^{2}=20.5\left(x-3.44\right)\left\{-4.24<y<-1.2\right\}
y=-3.5x+8.52\left\{-4.24<y<-3.1\right\}
\left(y+2.3\right)^{2}=-7.6\left(x-3.4\right)\left\{-4.2<y<-2.13\right\}
y=9x-32.7\left\{-2.13<y<-1.2\right\}
y=-7x+16.3\left\{-4.194<y<-3.986\right\}
\left(y+3.66\right)^{2}=-1.1\left(x-3\right)\left\{-4.38<y<-4\right\}
y=10x-29.5\left\{-4.39<y<-3.64\right\}
y=-5x+9.3\left\{-3.64<y<-2.61\right\}
\left(y+2\right)^{2}=-14\left(x-2.32\right)\left\{-3.8<y<-1.66\right\}
\left(y+2.5\right)^{2}=-6\left(x-2.38\right)\left\{-3.8<y<-2.6\right\}
\left(y-0.8\right)^{2}=-5.2\left(x-3.47\right)\left\{0.52<y<1.78\right\}
\left(y-0.8\right)^{2}=-8.4\left(x-3.47\right)\left\{-1.69<y<0.53\right\}
\left(y+0.1\right)^{2}=-12\left(x-2.93\right)\left\{-1.7<y<1.35\right\}
\left(y-1.3\right)^{2}=-16\left(x-2.75\right)\left\{-0.96<y<1.34\right\}
x=2.42\left\{-0.96<y<0.2\right\}
y=-31\left(x-2.22\right)^{2}+1.5\left\{2.22<x<2.424\right\}
\left(y-1.87\right)^{2}=-7\left(x-2.24\right)\left\{1.32<y<2.6\right\}
\left(y-1.4\right)^{2}=-9\left(x-2.19\right)\left\{-0.978<y<1.33\right\}
y=-9\left(x-2\right)^{2}+2.84\left\{2<x<2.16\right\}
y=-6x+8.3\left\{1.482<x<1.548\right\}
\left(y-0.96\right)^{2}=5.9\left(x-1.07\right)\left\{-0.6<y<0.78\right\}
y=3.5x-2.9\left\{0.812<x<1.053\right\}
\left(y-0.9\right)^{2}=10\left(x-0.7\right)\left\{-0.07<y<2.28\right\}
y=-3x+4.05\left\{0.719<x<0.77\right\}
\left(y+0.9\right)^{2}=5.8\left(x+0.688\right)\left\{-0.132<y<1.3\right\}
y=-0.92\left(x-0.98\right)^{2}+1.94\left\{0.143<x<0.723\right\}
\left(y+0.2\right)^{2}=4.6\left(x+0.6\right)\left\{-0.137<y<0.982\right\}
\left(y+0.7\right)^{2}=3\left(x+0.99\right)\left\{-0.7<y<0.154\right\}
\left(y+0.6\right)^{2}=4.2\left(x+0.89\right)\left\{0.156<y<0.973\right\}
x=-1\left\{-2.21<y<-0.7\right\}
y=-0.95x-3.2\left\{-1<x<-0.26\right\}
y=-0.7x-3.14\left\{-0.267<x<0.068\right\}
y=0.2x-3.22\left\{0.094<x<0.866\right\}
y=0.24\left(x-0.5\right)^{2}-3.076\left\{0.864<x<1.472\right\}
\left(y+2.3\right)^{2}=-0.7\left(x-1.9\right)\left\{-2.847<y<-2.3\right\}
\left(y+2.79\right)^{2}=2.55\left(x-1.81\right)\left\{-2.3<y<-1.65\right\}
y=2.1\left(x-1.82\right)^{2}-2.35\left\{1.89<x<2.31\right\}
y=1.6x-5.35\left\{2.3<x<2.682\right\}
y=-9x+23.2\left\{-1.05<y<-0.23\right\}
y=8x+5.9\left\{-3.07<y<-2.23\right\}
y=-10x-14.3\left\{-3.79<y<-3.06\right\}
y=-1.1x-4.95\left\{-1.377<x<-1.05\right\}
y=6x+4.85\left\{-3.56<y<-3.43\right\}
\left(y+2.3\right)^{2}=3.2\left(x+1.88\right)\left\{-3.54<y<-2.27\right\}
\left(y+0.1\right)^{2}=12\left(x+2.07\right)\left\{-0.047<y<2.254\right\}
x=-2.08\left\{-1.058<y<-0.424\right\}
\left(y+0.24\right)^{2}=0.7\left(x+2.13\right)\left\{-0.427<y<-0.034\right\}
y=50x+103.3\left\{-0.43<y<-0.035\right\}
\left(y-0.57\right)^{2}=2.6\left(x+2.19\right)\left\{0<y<0.42\right\}
\left(y+1.2\right)^{2}=13\left(x+2.39\right)\left\{-0.797<y<0.43\right\}
y=-3\left(x+2.2\right)^{2}+1.91\left\{-2.25<x<-1.9\right\}
\left(y+1.9\right)^{2}=15\left(x+3.25\right)\left\{-1.23<y<0.564\right\}
\left(y-0.3\right)^{2}=4.3\left(x+2.85\right)\left\{0.572<y<1.9\right\}
\left(y-0.8\right)^{2}=5\left(x+2.43\right)\left\{0.8<y<1.77\right\}
x=-2.44\left\{-0.79<y<0.8\right\}
\left(y-1\right)^{2}=8\left(x+1.57\right)\left\{0.654<y<1.91\right\}
y=-6x-9.7\left\{-3<y<-0.52\right\}
\left(y-0.24\right)^{2}=12\left(x+1.57\right)\left\{-0.518<y<0.658\right\}
\left(y-0.1\right)^{2}=8\left(x+1.35\right)\left\{-0.5<y<2\right\}
\left(y-1\right)^{2}=3.9\left(x+1.15\right)\left\{2<y<3.11\right\}
\left(y-2.2\right)^{2}=2.3\left(x+0.7\right)\left\{2.34<y<3.18\right\}
\left(y+0.5\right)^{2}=0.5\left(x+1.3\right)\left\{-0.5<y<-0.246\right\}
y=-2x-2.56\left\{-1.16<x<-0.985\right\}
\left(y-2\right)^{2}=2.8\left(x+1.44\right)\left\{2.171<y<2.616\right\}
y=-1.5\left(x-0.38\right)^{2}+1.07\left\{0.38<x<0.64\right\}
y=-0.7\left(x-0.42\right)^{2}+1.07\left\{0.01<x<0.38\right\}
y=-4\left(x-2.1\right)^{2}+0.53\left\{2.1<x<2.36\right\}
y=-1.6x+0.48\left\{0.278<x<0.363\right\}
y=-\left(x+0.6\right)^{2}-0.56\left\{-0.777<x<0.04\right\}
y=2x+0.98\left\{-0.9<x<-0.786\right\}
y=-0.9\left(x+0.65\right)^{2}-0.77\left\{-0.9<x<0.04\right\}
x=0.04\left\{-1.2<y<-0.97\right\}
y=-1.3x-0.83\left\{-0.053<x<0.035\right\}
x=0.034\left\{-0.962<y<-0.874\right\}
\left(y+0.9\right)^{2}=-0.8\left(x-0.09\right)\left\{-0.88<y<-0.575\right\}
y=-2.2\left(x-1.73\right)^{2}-1.22\left\{1.73<x<2\right\}
y=0.15x-1.48\left\{1.32<x<1.73\right\}
y=-2\left(x-1.69\right)^{2}-1.4\left\{1.69<x<2.02\right\}
y=0.15x-1.655\left\{1.242<x<1.692\right\}
y=-10x+18.6\left\{-1.62<y<-1.38\right\}
y=-10x+11.9\left\{-1.375<y<-1.283\right\}
y=x-2.706\left\{1.238<x<1.329\right\}
y=-0.9\left(x-1.7\right)^{2}-1.044\left\{1.4<x<1.583\right\}
y=-3.7\left(x-1.47\right)^{2}-1.21\left\{1.47<x<1.567\right\}
y=-3.7\left(x-1.47\right)^{2}-1.21\left\{1.696<x<1.764\right\}
y=-6x-3\left\{-0.359<x<-0.335\right\}
y=-1.2\left(x-0.13\right)^{2}-2.22\left\{0<x<0.485\right\}
\left(y+2.43\right)^{2}=0.34\left(x+0.11\right)\left\{-2.58<y<-2.239\right\}
\left(y+2.51\right)^{2}=-0.3\left(x-0.55\right)\left\{-2.76<y<-2.37\right\}
y=2.8\left(x-0.45\right)^{2}-2.44\left\{0.172<x<0.525\right\}
y=-2.76\left\{0.137<x<0.344\right\}
y=-x-2.626\left\{-0.044<x<0.134\right\}
y=-4x-3.67\left\{-1.48<y<-1.09\right\}
y=-4x-3.4\left\{-1.38<y<-1.15\right\}y=-4x-3.07\left\{-1.376<y<-1.234\right\}
y=-4x-3.07\left\{-1.376<y<-1.234\right\}
y=-4x-2.8\left\{-1.4<y<-1.265\right\}
y=-8x-3.46\left\{-1.41<y<-1.27\right\}
y=-8x-6.7\left\{-1.33<y<-1.2\right\}
y=-14x+18\left\{-2.07<y<-1.87\right\}
x=1.36\left\{-1.97<y<-1.83\right\}
y=2x-5.07\left\{-2.04<y<-1.93\right\}
y=5x-10.15\left\{-2.09<y<-1.975\right\}
y=2x-5.47\left\{1.7<x<1.745\right\}
\left(y+2.31\right)^{2}=2\left(x+0.96\right)\left\{-3.35<y<-2.3\right\}
y=-x-3.77\left\{-0.42<x<-0.04\right\}
\left(y+2.45\right)^{2}=-1.6\left(x-1\right)\left\{-3.735<y<-3.06\right\}
\left(y+2.5\right)^{2}=-12\left(x-0.9\right)\left\{-4.24<y<-3.04\right\}
y=-0.8x-1.79\left\{1.376<x<1.484\right\}
y=-0.25\left(x-2.5\right)^{2}-2.72\left\{1.482<x<2.28\right\}
y=-0.25\left(x-2.5\right)^{2}-2.72\left\{2.371<x<2.405\right\}
\left(y+5\right)^{2}=-16\left(x-3.39\right)\left\{-4.24<y<-3.42\right\}
\left(y+5\right)^{2}=5.2\left(x-2.01\right)\left\{-4.25<y<-3.59\right\}
\left(y+5\right)^{2}=-6.2\left(x-1.9\right)\left\{-4.25<y<-3.46\right\}
\left(y+5\right)^{2}=-13\left(x-1.56\right)\left\{-4.25<y<-2.97\right\}
\left(y+4.82\right)^{2}=-2.7\left(x-0.44\right)\left\{-4.25<y<-3.79\right\}
\left(y+4.6\right)^{2}=1.5\left(x+0.65\right)\left\{-4.25<y<-3.76\right\}
y=-3.92\left\{-0.34<x<0.14\right\}
y=-4x-8.2\left\{-4.25<y<-3.73\right\}
y=5x+5.3\left\{-4.25<y<-3.1\right\}
\left(y+4.4\right)^{2}=6\left(x+2\right)\left\{-4.25<y<-3.48\right\}
\left(y+4.5\right)^{2}=-4.6\left(x+2.06\right)\left\{-4.25<y<-3.57\right\}
\left(y+3.33\right)^{2}=-4\left(x+2.26\right)\left\{-4.25<y<-2.63\right\}
y=-0.7x-4.1\left\{-2.25<x<-1.93\right\}
y=-2.75\left\{-1.93<x<-1.817\right\}
\left(y+2.45\right)^{2}=-0.7\left(x+2.3\right)\left\{-3.56<y<-2.73\right\}
\left(y+3.7\right)^{2}=2.2\left(x+4.42\right)\left\{-4.25<y<-3.7\right\}
\left(y+3.8\right)^{2}=\left(x+4.43\right)\left\{-3.7<y<-3.27\right\}
\left(y+1.88\right)^{2}=-2.55\left(x+3.4\right)\left\{-3.26<y<-2.71\right\}
x=-3.83\left\{-3.48<y<-3.06\right\}
y=1.6\left(x+3.63\right)^{2}-3.12\left\{-3.83<x<-3.63\right\}
y=0.32\left(x+3.75\right)^{2}-3.12\left\{-3.63<x<-2.5\right\}
x=-3.655\left\{-3.11<y<-2.16\right\}
y=4x+12.46\left\{-2.16<y<-1.98\right\}
y=-9\left(x+3.38\right)^{2}-1.5\left\{-3.61<x<-3.4\right\}
y=3.5\left(x+3.52\right)^{2}-1.55\left\{-3.404<x<-3.218\right\}
y=-1.5\left(x+2.9\right)^{2}-1.1\left\{-3.23<x<-3\right\}
y=-1.9\left(x+2.68\right)^{2}-0.92\left\{-3<x<-2.778\right\}
y=-0.935\left\{-2.775<x<-2.69\right\}
y=3\left(x+2.73\right)^{2}-0.938\left\{-2.69<x<-2.53\right\}
y=-4\left(x+2.46\right)^{2}-0.8\left\{-2.53<x<-2.37\right\}
y=-0.85x-2.844\left\{-2.37<x<-1.84\right\}
\left(y+1.43\right)^{2}=-0.6\left(x+1.8\right)\left\{-1.57<y<-1.27\right\}
\left(y+1.5\right)^{2}=-\left(x+1.83\right)\left\{-1.83<y<-1.57\right\}
y=-\left(x+1.8\right)^{2}-1.81\left\{-2.27<x<-1.93\right\}
y=0.9\left(x+2.7\right)^{2}-2.2\left\{-2.6<x<-2.27\right\}
y=5\left(x+2.75\right)^{2}-2.31\left\{-2.75<x<-2.6\right\}
y=3\left(x+2.75\right)^{2}-2.31\left\{-2.91<x<-2.75\right\}
\left(y+2.2\right)^{2}=-0.6\left(x+2.917\right)\left\{-2.31<y<-2.04\right\}
y=12\left(x+3\right)^{2}-2.36\left\{-3.03<x<-2.936\right\}
y=-2.2\left(x+3.18\right)^{2}-2.3\left\{-3.2<x<-3.03\right\}
y=-0.7x-4.54\left\{-3.3<x<-3.2\right\}
y=0.9x+0.58\left\{-3.3<x<-3.2\right\}
y=-1.5x-4.9\left\{-2.48<x<-2.3\right\}
\left(y+1.8\right)^{2}=-0.8\left(x+2.18\right)\left\{-1.99<y<-1.55\right\}
y=-2.5x-8.57\left\{-2.83<x<-2.76\right\}
y=-20\left(x+2.66\right)^{2}-1.87\left\{-2.66<x<-2.565\right\}
y=-1.3x-5.82\left\{-3.21<x<-3.05\right\}
y=-6\left(x+1.81\right)^{2}-1.74\left\{-1.89<x<-1.65\right\}
\left(y+1.8\right)^{2}=-0.88\left(x+1.64\right)\left\{-2.53<y<-1.9\right\}
y=-2.2\left\{-2.16<x<-1.82\right\}
\left(y+2.07\right)^{2}=0.2\left(x+2.25\right)\left\{-2.2<y<-1.98\right\}
y=-2.524\left\{-2.66<x<-2.25\right\}
y=1.2\left(x+3.15\right)^{2}-2.8\left\{-3.46<x<-2.67\right\}
y=-1.5x-7.9\left\{-3.65<x<-3.58\right\}
\left(y+3.11\right)^{2}=0.3\left(x+3.84\right)\left\{-3.055<y<-2.875\right\}
y=-6x-17.65\left\{-2.62<y<-2.524\right\}
x=-2.4\left\{-2.72<y<-2.52\right\}
y=-9\left(x+2.03\right)^{2}+1.64\left\{-2.183<x<-1.942\right\}
\left(y-0.4\right)^{2}=4.4\left(x+2.425\right)\left\{0.4<y<1.43\right\}
\left(y-1.45\right)^{2}=-\left(x+1.93\right)\left\{1.288<y<1.57\right\}
y=3.6x+8.32\left\{0.43<y<1.28\right\}
y=-6x-8.65\left\{-0.78<y<0.7\right\}
x=-1.307\left\{-0.79<y<-0.5\right\}
\left(y+0.6\right)^{2}=6.3\left(x+1\right)\left\{0.4<y<2.36\right\}
\left(y+0.56\right)^{2}=4.8\left(x+1\right)\left\{0.374<y<1.61\right\}
\left(y-1\right)^{2}=3.5\left(x+0.11\right)\left\{1.61<y<2.35\right\}
y=2.2x+1.63\left\{0.972<y<1.63\right\}
y=1.3x+1.15\left\{0.3<x<0.88\right\}
\left(y-0.42\right)^{2}=11\left(x-0.9\right)\left\{0.258<y<2.26\right\}
y=-12x+16.8\left\{-0.5<y<2.26\right\}
\left(y-1\right)^{2}=-8\left(x-2.45\right)\left\{0.4<y<2.42\right\}
\left(y+0.7\right)^{2}=-22\left(x-3.16\right)\left\{-4.36<y<-0.8\right\}
\left(y+2\right)^{2}=10\left(x-3.37\right)\left\{-4.25<y<-2.5\right\}
c_{1}=\operatorname{rgb}\left(46,42,78\right)
c_{2}=\operatorname{rgb}\left(250,230,190\right)
c_{3}=\operatorname{rgb}\left(200,118,105\right)
c_{4}=\operatorname{rgb}\left(143,188,143\right)
c_{5}=\operatorname{rgb}\left(220,20,60\right)
涂色块
\left(y-0.3\right)^{2}\le4.3\left(x+2.85\right)\left\{y\le-3\left(x+2.2\right)^{2}+1.91\right\}\left\{y\ge-9\left(x+2.03\right)^{2}+1.64\right\}\left\{y\ge3\left(x+2.73\right)^{2}-0.938\right\}\left\{\left(y+0.1\right)^{2}\ge12\left(x+2.07\right)\right\}
\left(y-0.3\right)^{2}\ge4.3\left(x+2.85\right)\left\{\left(y+1.9\right)^{2}\le15\left(x+3.25\right)\right\}\left\{y\ge-1.5\left(x+2.9\right)^{2}-1.1\right\}\left\{y\ge3\left(x+2.73\right)^{2}-0.938\right\}\left\{y\le0.6\right\}
\left(y+1.9\right)^{2}\le15\left(x+3.25\right)\left\{y\le3\left(x+2.73\right)^{2}-0.938\right\}\left\{y\ge-1.9\left(x+2.68\right)^{2}-0.92\right\}\left\{y\ge-1.5\left(x+2.9\right)^{2}-1.1\right\}\left\{x\le-2.756\right\}
y\le-9\left(x+2.03\right)^{2}+1.64\left\{x\le-2.44\right\}\left\{y\ge3\left(x+2.73\right)^{2}-0.938\right\}
y\le3\left(x+2.73\right)^{2}-0.938\left\{y\ge-4\left(x+2.46\right)^{2}-0.8\right\}\left\{-2.532\le x\le-2.44\right\}
y\le-9\left(x+2.03\right)^{2}+1.64\left\{\left(y-1.45\right)^{2}\le-\left(x+1.93\right)\right\}
\left(y-1.45\right)^{2}\ge-\left(x+1.93\right)\left\{y\ge3.6x+8.32\right\}\left\{y\le-9\left(x+2.03\right)^{2}+1.64\right\}\left\{x\ge-2.44\right\}\left\{y\le1.289\right\}
y\le3.6x+8.32\left\{\left(y+1.2\right)^{2}\ge13\left(x+2.39\right)\right\}\left\{y\ge-4\left(x+2.46\right)^{2}-0.8\right\}\left\{-2.44\le x\le-2.186\right\}
y\le-9\left(x+2.03\right)^{2}+1.64\left\{\left(y-1.45\right)^{2}\ge-\left(x+1.93\right)\right\}\left\{\left(y+0.1\right)^{2}\ge12\left(x+2.07\right)\right\}\left\{y\le3.6x+8.32\right\}\left\{\left(y-0.57\right)^{2}\le2.6\left(x+2.19\right)\right\}
y\le-9\left(x+2.03\right)^{2}+1.64\left\{\left(y-1.45\right)^{2}\ge-\left(x+1.93\right)\right\}\left\{y\ge1.5x+4.287\right\}
\left(y-1.45\right)^{2}\ge-\left(x+1.93\right)\left\{y\ge3.6x+8.32\right\}\left\{y\le1.5x+4.287\right\}\left\{y\ge1.288\right\}
\left(y-1.6\right)^{2}\le2.7\left(x+2.03\right)\left\{y\ge-3\left(x+2.2\right)^{2}+1.91\right\}\left\{\left(y-0.24\right)^{2}\ge12\left(x+1.57\right)\right\}\left\{y\le0.53x+3.84\right\}
y\le-3\left(x+2.2\right)^{2}+1.91\left\{\left(y+0.1\right)^{2}\le12\left(x+2.07\right)\right\}\left\{\left(y-0.24\right)^{2}\ge12\left(x+1.57\right)\right\}\left\{y\ge-6x-9.7\right\}\left\{y\ge-0.52\right\}
y\le-6x-9.7\left\{\left(y+0.1\right)^{2}\le12\left(x+2.07\right)\right\}\left\{y\ge-0.85x-2.844\right\}
\left(y+0.1\right)^{2}\ge12\left(x+2.07\right)\left\{y\ge-0.85x-2.844\right\}\left\{x\ge-2.08\right\}\left\{y\le-0.21\right\}\left\{y\le50x+103.3\right\}\left\{y\ge-1.17\right\}
y\le-0.85x-2.844\left\{\left(y+1.43\right)^{2}\ge-0.6\left(x+1.8\right)\right\}\left\{\left(y+1.5\right)^{2}\ge-\left(x+1.83\right)\right\}\left\{y\ge-6\left(x+1.81\right)^{2}-1.74\right\}\left\{y\le-6x-9.7\right\}\left\{y\le-10x-14.3\right\}\left\{y\ge-1.1x-4.95\right\}\left\{x\ge-1.89\right\}
y\le-6\left(x+1.81\right)^{2}-1.74\left\{\left(y+1.8\right)^{2}\ge-0.88\left(x+1.64\right)\right\}\left\{\left(y+2.3\right)^{2}\le3.2\left(x+1.88\right)\right\}\left\{y\ge6x+4.85\right\}
y\le-6\left(x+1.81\right)^{2}-1.74\left\{y\le6x+4.85\right\}\left\{y\ge-1.1x-4.95\right\}
y\le-6x-8.65\left\{\left(y-0.24\right)^{2}\le12\left(x+1.57\right)\right\}
\left(y-0.24\right)^{2}\ge12\left(x+1.57\right)\left\{y\ge-6x-9.7\right\}\left\{y\ge8x+5.9\right\}\left\{y\le-0.8\right\}
y\ge-6x-8.65\left\{\left(y+0.5\right)^{2}\ge0.5\left(x+1.3\right)\right\}\left\{-1.307\le x\le-1\right\}\left\{y\ge8x+5.9\right\}\left\{\left(y-0.24\right)^{2}\le12\left(x+1.57\right)\right\}\left\{y\le-0.5\right\}
\left(y+0.5\right)^{2}\le0.5\left(x+1.3\right)\left\{y\le-2x-2.56\right\}\left\{x\le-1\right\}
y\ge-6x-8.65\left\{\left(y-0.24\right)^{2}\le12\left(x+1.57\right)\right\}\left\{x\le-1.307\right\}
x>-1.307\left\{\left(y+0.5\right)^{2}\ge0.5\left(x+1.3\right)\right\}\left\{\left(y-0.24\right)^{2}\le12\left(x+1.57\right)\right\}\left\{y\ge-2x-2.56\right\}\left\{\left(y+0.6\right)^{2}\ge6.3\left(x+1\right)\right\}\left\{y\le-0.17\left(x-0.66\right)^{2}+3.8\right\}\left\{y\ge-0.242\right\}
x\ge-1.307\left\{y\le-2x-2.56\right\}\left\{\left(y+0.5\right)^{2}\ge0.5\left(x+1.3\right)\right\}\left\{y\ge-0.5\right\}
\left(y+0.5\right)^{2}\le0.5\left(x+1.3\right)\left\{\left(y+0.7\right)^{2}\ge3\left(x+0.99\right)\right\}\left\{y\ge-2x-2.56\right\}
\left(y+0.56\right)^{2}\le4.8\left(x+1\right)\left\{\left(y+0.5\right)^{2}\ge0.5\left(x+1.3\right)\right\}\left\{\left(y+0.6\right)^{2}\ge4.2\left(x+0.89\right)\right\}\left\{\left(y+0.7\right)^{2}\ge3\left(x+0.99\right)\right\}\left\{y\ge1.3x+1.15\right\}
\left(y+0.2\right)^{2}\le4.6\left(x+0.6\right)\left\{\left(y+0.9\right)^{2}\ge5.8\left(x+0.688\right)\right\}\left\{\left(y+0.6\right)^{2}\le4.2\left(x+0.89\right)\right\}\left\{y\ge-0.92\left(x-0.98\right)^{2}+1.94\right\}\left\{y\ge1.3x+1.15\right\}
\left(y+0.2\right)^{2}\le4.6\left(x+0.6\right)\left\{\left(y+0.9\right)^{2}\ge5.8\left(x+0.688\right)\right\}\left\{\left(y+0.6\right)^{2}\le4.2\left(x+0.89\right)\right\}\left\{y\ge-0.92\left(x-0.98\right)^{2}+1.94\right\}\left\{y\le1.3x+1.15\right\}\left\{x\le0.3\right\}\left\{y\ge-0.14\right\}
y\le1.3x+1.15\left\{y\ge-0.92\left(x-0.98\right)^{2}+1.94\right\}\left\{y\le-3x+4.05\right\}\left\{x\ge0.3\right\}\left\{y\ge-1\right\}
y\ge-3x+4.05\left\{y\le1.3x+1.15\right\}\left\{\left(y-0.9\right)^{2}\ge10\left(x-0.7\right)\right\}\left\{1.737\le y\le2.32\right\}
\left(y+0.6\right)^{2}\le6.3\left(x+1\right)\left\{\left(y+0.56\right)^{2}\ge4.8\left(x+1\right)\right\}\left\{\left(y-1\right)^{2}\ge3.5\left(x+0.11\right)\right\}\left\{0.4\le y\le2.35\right\}
\left(y+0.6\right)^{2}\le6.3\left(x+1\right)\left\{\left(y+0.56\right)^{2}\ge4.8\left(x+1\right)\right\}\left\{\left(y+0.5\right)^{2}\ge0.5\left(x+1.3\right)\right\}\left\{-0.1\le y\le0.4\right\}
y\le1.3x+1.15\left\{\left(y+0.5\right)^{2}\ge0.5\left(x+1.3\right)\right\}\left\{\left(y+0.7\right)^{2}\ge3\left(x+0.99\right)\right\}\left\{x\le-0.75\right\}\left\{y\ge-0.1\right\}
\left(y+0.6\right)^{2}\le6.3\left(x+1\right)\left\{\left(y-1\right)^{2}\le3.5\left(x+0.11\right)\right\}\left\{\left(y+0.56\right)^{2}\ge4.8\left(x+1\right)\right\}\left\{y\le-0.21\left(x-1\right)^{2}+3.76\right\}
y\ge-0.17\left(x-0.66\right)^{2}+3.8\left\{y\le-0.21\left(x-1\right)^{2}+3.76\right\}\left\{\left(y-1\right)^{2}\ge3.5\left(x+0.11\right)\right\}
\left(y+0.6\right)^{2}\le6.3\left(x+1\right)\left\{y\le-0.17\left(x-0.66\right)^{2}+3.8\right\}\left\{\left(y-1\right)^{2}\ge3.5\left(x+0.11\right)\right\}\left\{y\ge3.4\right\}
\left(y+0.6\right)^{2}\le6.3\left(x+1\right)\left\{\left(y-1\right)^{2}\ge3.5\left(x+0.11\right)\right\}\left\{y\ge2.35\right\}\left\{y\le2.6\right\}
y\le1.3x+1.15\left\{\left(y+0.56\right)^{2}\le4.8\left(x+1\right)\right\}\left\{\left(y-0.9\right)^{2}\le10\left(x-0.7\right)\right\}\left\{\left(y-0.42\right)^{2}\ge11\left(x-0.9\right)\right\}\left\{y\ge3.5x-2.9\right\}
y\ge-12x+16.8\left\{\left(y+0.56\right)^{2}\le4.8\left(x+1\right)\right\}\left\{\left(y-0.42\right)^{2}\le11\left(x-0.9\right)\right\}\left\{y\ge-6x+8.3\right\}\left\{\left(y-1.4\right)^{2}\le-9\left(x-2.19\right)\right\}
\left(y-0.42\right)^{2}\le11\left(x-0.9\right)\left\{y\ge3.5x-2.9\right\}\left\{y\le-12x+16.8\right\}
\left(y-0.96\right)^{2}\le5.9\left(x-1.07\right)\left\{y\le3.5x-2.9\right\}\left\{y\le-12x+16.8\right\}
y\ge-12x+16.8\left\{y\le-6x+8.3\right\}\left\{\left(y-0.96\right)^{2}\le5.9\left(x-1.07\right)\right\}
\left(y+0.56\right)^{2}\le4.8\left(x+1\right)\left\{\left(y-1.4\right)^{2}\ge-9\left(x-2.19\right)\right\}\left\{\left(y-1.87\right)^{2}\le-7\left(x-2.24\right)\right\}
\left(y-1.87\right)^{2}\ge-7\left(x-2.24\right)\left\{\left(y+0.56\right)^{2}\le4.8\left(x+1\right)\right\}\left\{y\le-0.21\left(x-1\right)^{2}+3.76\right\}\left\{\left(y-1\right)^{2}\ge-8\left(x-2.45\right)\right\}\left\{\left(y-1.3\right)^{2}\le-16\left(x-2.75\right)\right\}\left\{x\ge2.42\right\}
\left(y+0.56\right)^{2}\le4.8\left(x+1\right)\left\{\left(y-1.87\right)^{2}\ge-7\left(x-2.24\right)\right\}\left\{y\le-0.21\left(x-1\right)^{2}+3.76\right\}\left\{\left(y-1\right)^{2}\ge-8\left(x-2.45\right)\right\}\left\{x\le2.42\right\}\left\{y\ge1.48\right\}
\left(y-1.87\right)^{2}\ge-7\left(x-2.24\right)\left\{\left(y-1\right)^{2}\le-8\left(x-2.45\right)\right\}\left\{y\ge-31\left(x-2.22\right)^{2}+1.5\right\}\left\{x\ge2.22\right\}
\left(y-1.3\right)^{2}\ge-16\left(x-2.75\right)\left\{y\le-0.66\left(x-2.12\right)^{2}+3.37\right\}\left\{\left(y+0.1\right)^{2}\ge-12\left(x-2.93\right)\right\}\left\{\left(y-0.8\right)^{2}\le-8.4\left(x-3.47\right)\right\}
\left(y-0.8\right)^{2}\ge-8.4\left(x-3.47\right)\left\{y\le-0.66\left(x-2.12\right)^{2}+3.37\right\}\left\{\left(y-1\right)^{2}\le-4.6\left(x-3.77\right)\right\}
\left(y-1\right)^{2}\ge-4.6\left(x-3.77\right)\left\{\left(y-0.4\right)^{2}\le-7.4\left(x-3.85\right)\right\}\left\{\left(y+0.7\right)^{2}\ge-22\left(x-3.16\right)\right\}\left\{\left(y-0.8\right)^{2}\ge-8.4\left(x-3.47\right)\right\}
\left(y-0.4\right)^{2}\ge-7.4\left(x-3.85\right)\left\{\left(y+0.7\right)^{2}\ge-22\left(x-3.16\right)\right\}\left\{\left(y+3.66\right)^{2}\ge-1.1\left(x-3\right)\right\}\left\{y\ge9x-32.7\right\}\left\{\left(y+2.3\right)^{2}\le-7.6\left(x-3.4\right)\right\}\left\{y\ge-7x+16.3\right\}
\left(y+3.66\right)^{2}\le-1.1\left(x-3\right)\left\{\left(y+0.7\right)^{2}\ge-22\left(x-3.16\right)\right\}
\left(y+2.3\right)^{2}\le-7.6\left(x-3.4\right)\left\{y\le9x-32.7\right\}
\left(y-0.4\right)^{2}\ge-7.4\left(x-3.85\right)\left\{\left(y+2.3\right)^{2}\ge-7.6\left(x-3.4\right)\right\}\left\{y^{2}\ge20.5\left(x-3.44\right)\right\}\left\{\left(y+2\right)^{2}\le10\left(x-3.37\right)\right\}\left\{y\ge-4.25\right\}
\left(y+2.3\right)^{2}\ge-7.6\left(x-3.4\right)\left\{\left(y-0.4\right)^{2}\ge-7.4\left(x-3.85\right)\right\}\left\{\left(y+2\right)^{2}\ge10\left(x-3.37\right)\right\}\left\{y\ge-1.9\right\}\left\{y\le-1.4\right\}
\left(y+2.3\right)^{2}\ge-7.6\left(x-3.4\right)\left\{y\ge-3.5x+8.52\right\}\left\{\left(y+2\right)^{2}\ge10\left(x-3.37\right)\right\}\left\{-4.25\le y\le-2.5\right\}
\left(y-1.3\right)^{2}\ge-16\left(x-2.75\right)\left\{\left(y+0.1\right)^{2}\le-12\left(x-2.93\right)\right\}\left\{y\ge-9x+23.2\right\}
y\le-9x+23.2\left\{y\le1.6x-5.35\right\}\left\{\left(y+0.1\right)^{2}\le-12\left(x-2.93\right)\right\}\left\{\left(y+2.5\right)^{2}\ge-6\left(x-2.38\right)\right\}\left\{\left(y+2\right)^{2}\ge-14\left(x-2.32\right)\right\}
\left(y+2\right)^{2}\ge-14\left(x-2.32\right)\left\{\left(y+2.5\right)^{2}\le-6\left(x-2.38\right)\right\}
\left(y+0.1\right)^{2}\ge-12\left(x-2.93\right)\left\{\left(y-0.8\right)^{2}\ge-8.4\left(x-3.47\right)\right\}\left\{\left(y+0.7\right)^{2}\le-22\left(x-3.16\right)\right\}\left\{y\ge-5x+9.3\right\}\left\{y\le-0.81\right\}
y\le-5x+9.3\left\{y\le10x-29.5\right\}\left\{\left(y+0.7\right)^{2}\le-22\left(x-3.16\right)\right\}\left\{\left(y+3.66\right)^{2}\le-1.1\left(x-3\right)\right\}
y\le-0.92\left(x-0.98\right)^{2}+1.94\left\{y\le-3x+4.05\right\}\left\{\left(y-0.9\right)^{2}\ge10\left(x-0.7\right)\right\}\left\{y\ge-\left(x+0.6\right)^{2}-0.56\right\}\left\{\left(y+2.3\right)^{2}\ge-0.7\left(x-1.9\right)\right\}\left\{y\ge x-2.706\right\}
y\ge-0.92\left(x-0.98\right)^{2}+1.94\left\{\left(y+0.9\right)^{2}\le5.8\left(x+0.688\right)\right\}\left\{y\le1.3\right\}\left\{x\le0.144\right\}
\left(y+0.9\right)^{2}\ge5.8\left(x+0.688\right)\left\{\left(y+0.2\right)^{2}\ge4.6\left(x+0.6\right)\right\}\left\{\left(y+0.6\right)^{2}\le4.2\left(x+0.89\right)\right\}\left\{y\ge-\left(x+0.6\right)^{2}-0.56\right\}
\left(y+0.6\right)^{2}\ge4.2\left(x+0.89\right)\left\{\left(y+0.7\right)^{2}\le3\left(x+0.99\right)\right\}\left\{y\ge-\left(x+0.6\right)^{2}-0.56\right\}
y\le-\left(x+0.6\right)^{2}-0.56\left\{y\ge-0.9\left(x+0.65\right)^{2}-0.77\right\}\left\{y\ge2x+0.98\right\}\left\{x\ge-1\right\}
y\ge-0.9\left(x+0.65\right)^{2}-0.77\left\{y\le-\left(x+0.6\right)^{2}-0.56\right\}\left\{y\ge0.24\left(x-0.5\right)^{2}-3.076\right\}\left\{x\ge0.04\right\}
y\ge-\left(x+0.6\right)^{2}-0.56\left\{\left(y+2.3\right)^{2}\le-0.7\left(x-1.9\right)\right\}\left\{y\ge0.24\left(x-0.5\right)^{2}-3.076\right\}\left\{x\ge0.2\right\}
y\le-0.9\left(x+0.65\right)^{2}-0.77\left\{y\ge-0.95x-3.2\right\}\left\{y\ge-0.7x-3.14\right\}\left\{y\ge0.2x-3.22\right\}\left\{x\ge-1\right\}\left\{\left(y+2.43\right)^{2}\ge0.34\left(x+0.11\right)\right\}\left\{y\le-x-2.626\right\}
y\le-0.9\left(x+0.65\right)^{2}-0.77\left\{y\ge-0.95x-3.2\right\}\left\{y\ge-0.7x-3.14\right\}\left\{y\ge0.2x-3.22\right\}\left\{x\ge-1\right\}\left\{\left(y+2.43\right)^{2}\ge0.34\left(x+0.11\right)\right\}\left\{x\le-0.04\right\}\left\{y\ge-x-2.626\right\}
y\le-0.9\left(x+0.65\right)^{2}-0.77\left\{y\ge-1.2\left(x-0.13\right)^{2}-2.22\right\}\left\{x\ge-0.04\right\}
y\le-1.2\left(x-0.13\right)^{2}-2.22\left\{\left(y+2.51\right)^{2}\ge-0.3\left(x-0.55\right)\right\}\left\{y\ge-x-2.626\right\}\left\{y\ge0.2x-3.22\right\}
\left(y+2.51\right)^{2}\le-0.3\left(x-0.55\right)\left\{y\ge-x-2.626\right\}\left\{y\le-2.76\right\}
\left(y-0.9\right)^{2}\le10\left(x-0.7\right)\left\{y\le3.5x-2.9\right\}\left\{\left(y-0.96\right)^{2}\ge5.9\left(x-1.07\right)\right\}\left\{y\le-6x+8.3\right\}\left\{y\ge0.15x-1.48\right\}
y\le0.15x-1.48\left\{y\le-10x+11.9\right\}\left\{y\ge x-2.706\right\}\left\{\left(y-0.9\right)^{2}\le10\left(x-0.7\right)\right\}
y\le x-2.706\left\{y\le0.15x-1.655\right\}\left\{\left(y+2.3\right)^{2}\ge-0.7\left(x-1.9\right)\right\}\left\{\left(y+2.79\right)^{2}\ge2.55\left(x-1.81\right)\right\}\left\{y\ge1.6x-5.35\right\}\left\{y\le-2\left(x-1.69\right)^{2}-1.4\right\}\left\{y\ge-2.3\right\}
y\ge-2\left(x-1.69\right)^{2}-1.4\left\{y\le0.15x-1.655\right\}\left\{y\le x-2.706\right\}\left\{\left(y+2.3\right)^{2}\ge-0.7\left(x-1.9\right)\right\}\left\{1.1<x<1.69\right\}
\left(y-1.4\right)^{2}\ge-9\left(x-2.19\right)\left\{y\le-31\left(x-2.22\right)^{2}+1.5\right\}\left\{\left(y-1.87\right)^{2}\ge-7\left(x-2.24\right)\right\}\left\{\left(y+2.79\right)^{2}\ge2.55\left(x-1.81\right)\right\}\left\{y\ge1.6x-5.35\right\}\left\{y\ge-2.2\left(x-1.73\right)^{2}-1.22\right\}\left\{x\le2.42\right\}
\left(y-1.4\right)^{2}\ge-9\left(x-2.19\right)\left\{y\ge-31\left(x-2.22\right)^{2}+1.5\right\}\left\{y\ge-6x+8.3\right\}\left\{y\ge0.15x-1.48\right\}\left\{x\le2\right\}\left\{y\le0.124\right\}
y\le0.15x-1.48\left\{y\ge-2.2\left(x-1.73\right)^{2}-1.22\right\}\left\{y\ge-31\left(x-2.22\right)^{2}+1.5\right\}\left\{1.72<x<2\right\}
\left(y-1.3\right)^{2}\ge-16\left(x-2.75\right)\left\{y\ge1.6x-5.35\right\}\left\{y\le-9x+23.2\right\}\left\{x\ge2.42\right\}
y\le-2.2\left(x-1.73\right)^{2}-1.22\left\{y\ge-10x+18.6\right\}\left\{y\ge-2\left(x-1.69\right)^{2}-1.4\right\}\left\{\left(y+2.79\right)^{2}\ge2.55\left(x-1.81\right)\right\}
\left(y+2.79\right)^{2}\le2.55\left(x-1.81\right)\left\{y\ge2.1\left(x-1.82\right)^{2}-2.35\right\}\left\{\left(y+2\right)^{2}<+-14\left(x-2.32\right)\right\}
\left(y+0.24\right)^{2}\le0.7\left(x+2.13\right)\left\{\left(y+0.1\right)^{2}\ge12\left(x+2.07\right)\right\}\left\{y\ge50x+103.3\right\}
y\le-0.85x-2.844\left\{y\le-4\left(x+2.46\right)^{2}-0.8\right\}\left\{y\le3\left(x+2.73\right)^{2}-0.938\right\}\left\{y\ge1.2\left(x+3.15\right)^{2}-2.8\right\}
y\ge-4\left(x+2.46\right)^{2}-0.8\left\{y\le-0.85x-2.844\right\}\left\{\left(y+1.43\right)^{2}\le-0.6\left(x+1.8\right)\right\}\left\{x\ge-2.37\right\}
y\le-4\left(x+2.46\right)^{2}-0.8\left\{y\le1.2\left(x+3.15\right)^{2}-2.8\right\}\left\{\left(y+1.8\right)^{2}\le-0.88\left(x+1.64\right)\right\}\left\{y\ge-2.524\right\}
y\ge-4\left(x+2.46\right)^{2}-0.8\left\{\left(y+1.43\right)^{2}\ge-0.6\left(x+1.8\right)\right\}\left\{\left(y+1.5\right)^{2}<+-\left(x+1.83\right)\right\}\left\{-1.85\le y\le-1.54\right\}
y\le-6\left(x+1.81\right)^{2}-1.74\left\{\left(y+1.8\right)^{2}\le-0.88\left(x+1.64\right)\right\}\left\{y\ge-4\left(x+2.46\right)^{2}-0.8\right\}
y\ge-4\left(x+2.46\right)^{2}-0.8\left\{y\le3\left(x+2.73\right)^{2}-0.938\right\}\left\{y\le-1.9\left(x+2.68\right)^{2}-0.92\right\}\left\{y\ge1.2\left(x+3.15\right)^{2}-2.8\right\}
y\ge-1.9\left(x+2.68\right)^{2}-0.92\left\{y\le-1.5\left(x+2.9\right)^{2}-1.1\right\}\left\{y<+3.5\left(x+3.52\right)^{2}-1.55\right\}\left\{y\ge-9\left(x+3.38\right)^{2}-1.5\right\}\left\{x\ge-3.4\right\}
y\le-9\left(x+3.38\right)^{2}-1.5\left\{y\ge-1.9\left(x+2.68\right)^{2}-0.92\right\}\left\{x\ge-3.655\right\}
y\le1.2\left(x+3.15\right)^{2}-2.8\left\{y\le-1.9\left(x+2.68\right)^{2}-0.92\right\}\left\{y\ge0.32\left(x+3.75\right)^{2}-3.12\right\}\left\{y\le-2.524\right\}\left\{y\le-6x-17.65\right\}\left\{x\ge-3.655\right\}
y\le-\left(x+0.6\right)^{2}-0.56\left\{y\ge-0.9\left(x+0.65\right)^{2}-0.77\right\}\left\{y\le2x+0.98\right\}\left\{x\le0.04\right\}
y\le-2.2\left(x-1.73\right)^{2}-1.22\left\{y\ge0.15x-1.655\right\}\left\{y\le0.15x-1.48\right\}
y\ge-2.2\left(x-1.73\right)^{2}-1.22\left\{y\le0.15x-1.48\right\}\left\{y\ge-10x+11.9\right\}\left\{y\ge0.15x-1.655\right\}\left\{x\le1.66\right\}
y\le-10x+11.9\left\{y\le x-2.706\right\}\left\{y\ge0.15x-1.655\right\}
y\le-2.2\left(x-1.73\right)^{2}-1.22\left\{y\le0.15x-1.655\right\}\left\{y\ge-2\left(x-1.69\right)^{2}-1.4\right\}\left\{y\le-10x+18.6\right\}\left\{x\ge1.69\right\}
y\le-1.2\left(x-0.13\right)^{2}-2.22\left\{\left(y+2.43\right)^{2}\le0.34\left(x+0.11\right)\right\}\left\{y\le2.8\left(x-0.45\right)^{2}-2.44\right\}\left\{\left(y+2.51\right)^{2}\le-0.3\left(x-0.55\right)\right\}\left\{y\ge-2.76\right\}
\left(y+2.43\right)^{2}\ge0.34\left(x+0.11\right)\left\{y\ge-x-2.626\right\}\left\{y\ge-2.76\right\}\left\{y\le-2.5857\right\}
y\le-0.95x-3.2\left\{\left(y+2.31\right)^{2}\le2\left(x+0.96\right)\right\}\left\{\left(y+2.45\right)^{2}\le-1.6\left(x-1\right)\right\}
y\ge-0.95x-3.2\left\{y\le-0.7x-3.14\right\}\left\{\left(y+2.45\right)^{2}\le-1.6\left(x-1\right)\right\}
y\ge-0.7x-3.14\left\{y\le0.2x-3.22\right\}\left\{\left(y+2.45\right)^{2}\le-1.6\left(x-1\right)\right\}
\left(y+2.31\right)^{2}\ge2\left(x+0.96\right)\left\{y\ge-x-3.77\right\}\left\{\left(y+2.45\right)^{2}\le-1.6\left(x-1\right)\right\}\left\{x\ge-0.42\right\}\left\{y\le-3.34\right\}
\left(y+2.5\right)^{2}\ge-12\left(x-0.9\right)\left\{\left(y+2\right)^{2}\le-14\left(x-2.32\right)\right\}\left\{y\le-0.25\left(x-2.5\right)^{2}-2.72\right\}\left\{y\ge-4.25\right\}
y\le0.24\left(x-0.5\right)^{2}-3.076\left\{\left(y+2.5\right)^{2}\ge-12\left(x-0.9\right)\right\}\left\{y\le-0.8x-1.79\right\}\left\{y\ge-0.25\left(x-2.5\right)^{2}-2.72\right\}\left\{y\ge-3.5\right\}
\left(y+2.5\right)^{2}\ge-6\left(x-2.38\right)\left\{y\le-5x+9.3\right\}\left\{y\le-0.25\left(x-2.5\right)^{2}-2.72\right\}\left\{\left(y+2\right)^{2}\ge-14\left(x-2.32\right)\right\}\left\{y\ge10x-29.5\right\}\left\{y\ge-4.25\right\}
\left(y+2.3\right)^{2}\ge-7.6\left(x-3.4\right)\left\{\left(y+5\right)^{2}\le-16\left(x-3.39\right)\right\}\left\{y\ge-4.25\right\}\left\{y\le-3.4\right\}
y\le-4x-8.2\left\{y\le-1.1x-4.95\right\}\left\{y\le6x+4.85\right\}\left\{y\ge-4.25\right\}
y\ge6x+4.85\left\{\left(y+2.3\right)^{2}\ge3.2\left(x+1.88\right)\right\}\left\{x\ge-2.4\right\}\left\{y\le-2.524\right\}\left\{y\le-0.7x-4.1\right\}\left\{y\ge-4.25\right\}
y\ge-0.7x-4.1\left\{\left(y+2.3\right)^{2}\ge3.2\left(x+1.88\right)\right\}\left\{y\le-2.75\right\}\left\{y\ge-3\right\}
\left(y+2.45\right)^{2}\ge-0.7\left(x+2.3\right)\left\{\left(y+3.7\right)^{2}\le2.2\left(x+4.42\right)\right\}\left\{x\le-2.4\right\}\left\{-4.25\le y\le-2.7\right\}
\left(y+2.45\right)^{2}\le-0.7\left(x+2.3\right)\left\{\left(y+3.8\right)^{2}\le\left(x+4.43\right)\right\}\left\{x\le-3.83\right\}
\left(y+1.88\right)^{2}\ge-2.55\left(x+3.4\right)\left\{\left(y+3.8\right)^{2}\ge\left(x+4.43\right)\right\}\left\{\left(y+3.11\right)^{2}\ge0.3\left(x+3.84\right)\right\}\left\{-4.15\le x\le-3.655\right\}\left\{-3.27\le y\le-2.68\right\}
\left(y+3.66\right)^{2}\ge-1.1\left(x-3\right)\left\{y\le-7x+16.3\right\}\left\{-4.25\le y\le-4\right\}
\left(y+4.6\right)^{2}\le1.5\left(x+0.65\right)\left\{\left(y+4.82\right)^{2}\le-2.7\left(x-0.44\right)\right\}\left\{-4.25\le y\le-3.92\right\}

代码

import numpy as np
import matplotlib.pyplot as plt
import mathplt.rcParams['font.sans-serif'] = ['SimHei']  # 使用黑体显示中文
plt.rcParams['axes.unicode_minus'] = False     # 正常显示负号# 设置图形大小
plt.figure(figsize=(15, 12))# 存储所有线段的点
all_points_x = []
all_points_y = []# 定义绘图函数
def plot_segment(equation_type, expr, interval_str):try:# 解析区间字符串interval_str = interval_str.strip('{}')parts = interval_str.split('<')if len(parts) == 3:lower = float(parts[0])var_char = parts[1].strip()upper = float(parts[2])else:parts = interval_str.split('>')if len(parts) == 3:upper = float(parts[0])var_char = parts[1].strip()lower = float(parts[2])else:# 尝试其他格式if 'x' in interval_str:parts = interval_str.split('x')if len(parts) == 2:if parts[0].endswith('<') and parts[1].startswith('<'):lower = float(parts[0].replace('<', '').strip())upper = float(parts[1].replace('<', '').strip())var_char = 'x'elif parts[0].endswith('>') and parts[1].startswith('>'):lower = float(parts[1].replace('>', '').strip())upper = float(parts[0].replace('>', '').strip())var_char = 'x'elif 'y' in interval_str:parts = interval_str.split('y')if len(parts) == 2:if parts[0].endswith('<') and parts[1].startswith('<'):lower = float(parts[0].replace('<', '').strip())upper = float(parts[1].replace('<', '').strip())var_char = 'y'elif parts[0].endswith('>') and parts[1].startswith('>'):lower = float(parts[1].replace('>', '').strip())upper = float(parts[0].replace('>', '').strip())var_char = 'y'# 根据类型生成点if equation_type == 'explicit_y':  # y = f(x)if var_char == 'x':x_vals = np.linspace(lower, upper, 100)# 在 eval 中加入 x 的定义y_vals = [eval(expr, {'x': x, 'math': math, 'np': np}) for x in x_vals]all_points_x.extend(x_vals)all_points_y.extend(y_vals)elif var_char == 'y':y_vals = np.linspace(lower, upper, 100)x_vals = [eval(expr, {'y': y, 'math': math, 'np': np}) for y in y_vals]all_points_x.extend(x_vals)all_points_y.extend(y_vals)elif equation_type == 'explicit_x':  # x = constantif var_char == 'y':y_vals = np.linspace(lower, upper, 100)x_vals = [eval(expr) for _ in y_vals]all_points_x.extend(x_vals)all_points_y.extend(y_vals)elif var_char == 'x':x_val = eval(expr)y_vals = np.linspace(lower, upper, 100)x_vals = [x_val for _ in y_vals]all_points_x.extend(x_vals)all_points_y.extend(y_vals)elif equation_type == 'implicit_y':  # x = f(y)y_vals = np.linspace(lower, upper, 100)x_vals = [eval(expr, {'y': y, 'math': math, 'np': np}) for y in y_vals]all_points_x.extend(x_vals)all_points_y.extend(y_vals)except Exception as e:print(f"处理方程时出错: {equation_type}, {expr}, {interval_str}")print(f"错误: {e}")# 定义所有方程及其参数
equations = [# 原始方程(保持不变){'type': 'explicit_y', 'expr': '-0.17*(x-0.66)**2 + 3.8', 'interval': '{-0.542<x<1.2}'},{'type': 'explicit_y', 'expr': '0.53*x + 3.84', 'interval': '{-0.83<x<-0.542}'},{'type': 'explicit_y', 'expr': '-0.21*(x-1)**2 + 3.76', 'interval': '{1.19<x<2.58}'},{'type': 'explicit_y', 'expr': '-0.66*(x-2.12)**2 + 3.37', 'interval': '{2.58<x<3.5}'},{'type': 'implicit_y', 'expr': '3.85 - ((y-0.4)**2)/7.4', 'interval': '{-1.196<y<1.2}'},{'type': 'implicit_y', 'expr': '3.77 - ((y-1)**2)/4.6', 'interval': '{1.19<y<2.12}'},{'type': 'implicit_y', 'expr': '((y)**2)/20.5 + 3.44', 'interval': '{-4.24<y<-1.2}'},{'type': 'explicit_y', 'expr': '-3.5*x + 8.52', 'interval': '{-4.24<y<-3.1}'},{'type': 'implicit_y', 'expr': '3.4 - ((y+2.3)**2)/7.6', 'interval': '{-4.2<y<-2.13}'},{'type': 'explicit_y', 'expr': '9*x - 32.7', 'interval': '{-2.13<y<-1.2}'},{'type': 'explicit_y', 'expr': '-7*x + 16.3', 'interval': '{-4.194<y<-3.986}'},{'type': 'implicit_y', 'expr': '3 + ((y+3.66)**2)/1.1', 'interval': '{-4.38<y<-4}'},{'type': 'explicit_y', 'expr': '10*x - 29.5', 'interval': '{-4.39<y<-3.64}'},{'type': 'explicit_y', 'expr': '-5*x + 9.3', 'interval': '{-3.64<y<-2.61}'},{'type': 'implicit_y', 'expr': '2.32 - ((y+2)**2)/14', 'interval': '{-3.8<y<-1.66}'},{'type': 'implicit_y', 'expr': '2.38 - ((y+2.5)**2)/6', 'interval': '{-3.8<y<-2.6}'},{'type': 'implicit_y', 'expr': '3.47 - ((y-0.8)**2)/5.2', 'interval': '{0.52<y<1.78}'},{'type': 'implicit_y', 'expr': '3.47 - ((y-0.8)**2)/8.4', 'interval': '{-1.69<y<0.53}'},{'type': 'implicit_y', 'expr': '2.93 - ((y+0.1)**2)/12', 'interval': '{-1.7<y<1.35}'},{'type': 'implicit_y', 'expr': '2.75 - ((y-1.3)**2)/16', 'interval': '{-0.96<y<1.34}'},{'type': 'explicit_x', 'expr': '2.42', 'interval': '{-0.96<y<0.2}'},{'type': 'explicit_y', 'expr': '-31*(x-2.22)**2+1.5', 'interval': '{2.22<x<2.424}'},{'type': 'implicit_y', 'expr': '2.24 - ((y-1.87)**2)/7', 'interval': '{1.32<y<2.6}'},{'type': 'implicit_y', 'expr': '2.19 - ((y-1.4)**2)/9', 'interval': '{-0.978<y<1.33}'},{'type': 'explicit_y', 'expr': '-9*(x-2)**2+2.84', 'interval': '{2<x<2.16}'},{'type': 'explicit_y', 'expr': '-6*x+8.3', 'interval': '{1.482<x<1.548}'},{'type': 'implicit_y', 'expr': '1.07 + ((y-0.96)**2)/5.9', 'interval': '{-0.6<y<0.78}'},{'type': 'explicit_y', 'expr': '3.5*x-2.9', 'interval': '{0.812<x<1.053}'},{'type': 'implicit_y', 'expr': '0.7 + ((y-0.9)**2)/10', 'interval': '{-0.07<y<2.28}'},{'type': 'explicit_y', 'expr': '-3*x+4.05', 'interval': '{0.719<x<0.77}'},{'type': 'implicit_y', 'expr': '-0.688 + ((y+0.9)**2)/5.8', 'interval': '{-0.132<y<1.3}'},{'type': 'explicit_y', 'expr': '-0.92*(x-0.98)**2+1.94', 'interval': '{0.143<x<0.723}'},{'type': 'implicit_y', 'expr': '-0.6 + ((y+0.2)**2)/4.6', 'interval': '{-0.137<y<0.982}'},{'type': 'implicit_y', 'expr': '-0.99 + ((y+0.7)**2)/3', 'interval': '{-0.7<y<0.154}'},{'type': 'implicit_y', 'expr': '-0.89 + ((y+0.6)**2)/4.2', 'interval': '{0.156<y<0.973}'},{'type': 'explicit_x', 'expr': '-1', 'interval': '{-2.21<y<-0.7}'},{'type': 'explicit_y', 'expr': '-0.95*x - 3.2', 'interval': '{-1<x<-0.26}'},{'type': 'explicit_y', 'expr': '-0.7*x - 3.14', 'interval': '{-0.267<x<0.068}'},{'type': 'explicit_y', 'expr': '0.2*x - 3.22', 'interval': '{0.094<x<0.866}'},{'type': 'explicit_y', 'expr': '0.24*(x-0.5)**2 - 3.076', 'interval': '{0.864<x<1.472}'},{'type': 'implicit_y', 'expr': '1.9 - ((y+2.3)**2)/0.7', 'interval': '{-2.847<y<-2.3}'},{'type': 'implicit_y', 'expr': '1.81 + ((y+2.79)**2)/2.55', 'interval': '{-2.3<y<-1.65}'},{'type': 'explicit_y', 'expr': '2.1*(x-1.82)**2 - 2.35', 'interval': '{1.89<x<2.31}'},{'type': 'explicit_y', 'expr': '1.6*x - 5.35', 'interval': '{2.3<x<2.682}'},{'type': 'explicit_y', 'expr': '-9*x + 23.2', 'interval': '{-1.05<y<-0.23}'},{'type': 'explicit_y', 'expr': '8*x + 5.9', 'interval': '{-3.07<y<-2.23}'},{'type': 'explicit_y', 'expr': '-10*x - 14.3', 'interval': '{-3.79<y<-3.06}'},{'type': 'explicit_y', 'expr': '-1.1*x - 4.95', 'interval': '{-1.377<x<-1.05}'},{'type': 'explicit_y', 'expr': '6*x + 4.85', 'interval': '{-3.56<y<-3.43}'},{'type': 'implicit_y', 'expr': '-1.88 + ((y+2.3)**2)/3.2', 'interval': '{-3.54<y<-2.27}'},{'type': 'implicit_y', 'expr': '-2.07 + ((y+0.1)**2)/12', 'interval': '{-0.047<y<2.254}'},{'type': 'explicit_x', 'expr': '-2.08', 'interval': '{-1.058<y<-0.424}'},{'type': 'implicit_y', 'expr': '-2.13 + ((y+0.24)**2)/0.7', 'interval': '{-0.427<y<-0.034}'},{'type': 'explicit_y', 'expr': '50*x + 103.3', 'interval': '{-0.43<y<-0.035}'},{'type': 'implicit_y', 'expr': '-2.19 + ((y-0.57)**2)/2.6', 'interval': '{0<y<0.42}'},{'type': 'implicit_y', 'expr': '-2.39 + ((y+1.2)**2)/13', 'interval': '{-0.797<y<0.43}'},{'type': 'explicit_y', 'expr': '-3*(x+2.2)**2 + 1.91', 'interval': '{-2.25<x<-1.9}'},{'type': 'implicit_y', 'expr': '-3.25 + ((y+1.9)**2)/15', 'interval': '{-1.23<y<0.564}'},{'type': 'implicit_y', 'expr': '-2.85 + ((y-0.3)**2)/4.3', 'interval': '{0.572<y<1.9}'},{'type': 'implicit_y', 'expr': '-2.43 + ((y-0.8)**2)/5', 'interval': '{0.8<y<1.77}'},{'type': 'explicit_x', 'expr': '-2.44', 'interval': '{-0.79<y<0.8}'},{'type': 'implicit_y', 'expr': '-1.57 + ((y-1)**2)/8', 'interval': '{0.654<y<1.91}'},{'type': 'explicit_y', 'expr': '-6*x - 9.7', 'interval': '{-3<y<-0.52}'},{'type': 'implicit_y', 'expr': '-1.57 + ((y-0.24)**2)/12', 'interval': '{-0.518<y<0.658}'},{'type': 'implicit_y', 'expr': '-1.35 + ((y-0.1)**2)/8', 'interval': '{-0.5<y<2}'},{'type': 'implicit_y', 'expr': '-1.15 + ((y-1)**2)/3.9', 'interval': '{2<y<3.11}'},{'type': 'implicit_y', 'expr': '-0.7 + ((y-2.2)**2)/2.3', 'interval': '{2.34<y<3.18}'},{'type': 'implicit_y', 'expr': '-1.3 + ((y+0.5)**2)/0.5', 'interval': '{-0.5<y<-0.246}'},{'type': 'explicit_y', 'expr': '-2*x - 2.56', 'interval': '{-1.16<x<-0.985}'},{'type': 'implicit_y', 'expr': '-1.44 + ((y-2)**2)/2.8', 'interval': '{2.171<y<2.616}'},{'type': 'explicit_y', 'expr': '-1.5*(x-0.38)**2 + 1.07', 'interval': '{0.38<x<0.64}'},{'type': 'explicit_y', 'expr': '-0.7*(x-0.42)**2 + 1.07', 'interval': '{0.01<x<0.38}'},{'type': 'explicit_y', 'expr': '-4*(x-2.1)**2 + 0.53', 'interval': '{2.1<x<2.36}'},{'type': 'explicit_y', 'expr': '-1.6*x + 0.48', 'interval': '{0.278<x<0.363}'},{'type': 'explicit_y', 'expr': '-(x+0.6)**2 - 0.56', 'interval': '{-0.777<x<0.04}'},{'type': 'explicit_y', 'expr': '2*x + 0.98', 'interval': '{-0.9<x<-0.786}'},{'type': 'explicit_y', 'expr': '-0.9*(x+0.65)**2 - 0.77', 'interval': '{-0.9<x<0.04}'},{'type': 'explicit_x', 'expr': '0.04', 'interval': '{-1.2<y<-0.97}'},{'type': 'explicit_y', 'expr': '-1.3*x - 0.83', 'interval': '{-0.053<x<0.035}'},{'type': 'explicit_x', 'expr': '0.034', 'interval': '{-0.962<y<-0.874}'},{'type': 'implicit_y', 'expr': '0.09 - ((y+0.9)**2)/0.8', 'interval': '{-0.88<y<-0.575}'},{'type': 'explicit_y', 'expr': '-2.2*(x-1.73)**2 - 1.22', 'interval': '{1.73<x<2}'},{'type': 'explicit_y', 'expr': '0.15*x - 1.48', 'interval': '{1.32<x<1.73}'},{'type': 'explicit_y', 'expr': '-2*(x-1.69)**2 - 1.4', 'interval': '{1.69<x<2.02}'},{'type': 'explicit_y', 'expr': '0.15*x - 1.655', 'interval': '{1.242<x<1.692}'},{'type': 'explicit_y', 'expr': '-10*x + 18.6', 'interval': '{-1.62<y<-1.38}'},{'type': 'explicit_y', 'expr': '-10*x + 11.9', 'interval': '{-1.375<y<-1.283}'},{'type': 'explicit_y', 'expr': 'x - 2.706', 'interval': '{1.238<x<1.329}'},{'type': 'explicit_y', 'expr': '-0.9*(x-1.7)**2 - 1.044', 'interval': '{1.4<x<1.583}'},{'type': 'explicit_y', 'expr': '-3.7*(x-1.47)**2 - 1.21', 'interval': '{1.47<x<1.567}'},{'type': 'explicit_y', 'expr': '-3.7*(x-1.47)**2 - 1.21', 'interval': '{1.696<x<1.764}'},{'type': 'explicit_y', 'expr': '-6*x - 3', 'interval': '{-0.359<x<-0.335}'},{'type': 'explicit_y', 'expr': '-1.2*(x-0.13)**2 - 2.22', 'interval': '{0<x<0.485}'},{'type': 'implicit_y', 'expr': '-0.11 + ((y+2.43)**2)/0.34', 'interval': '{-2.58<y<-2.239}'},{'type': 'implicit_y', 'expr': '0.55 - ((y+2.51)**2)/0.3', 'interval': '{-2.76<y<-2.37}'},{'type': 'explicit_y', 'expr': '2.8*(x-0.45)**2 - 2.44', 'interval': '{0.172<x<0.525}'},{'type': 'explicit_y', 'expr': '-2.76', 'interval': '{0.137<x<0.344}'},{'type': 'explicit_y', 'expr': '-x - 2.626', 'interval': '{-0.044<x<0.134}'},{'type': 'explicit_y', 'expr': '-4*x - 3.67', 'interval': '{-1.48<y<-1.09}'},# 新增方程{'type': 'explicit_y', 'expr': '-4*x - 3.4', 'interval': '{-1.38<y<-1.15}'},{'type': 'explicit_y', 'expr': '-4*x - 3.07', 'interval': '{-1.376<y<-1.234}'},{'type': 'explicit_y', 'expr': '-4*x - 2.8', 'interval': '{-1.4<y<-1.265}'},{'type': 'explicit_y', 'expr': '-8*x - 3.46', 'interval': '{-1.41<y<-1.27}'},{'type': 'explicit_y', 'expr': '-8*x - 6.7', 'interval': '{-1.33<y<-1.2}'},{'type': 'explicit_y', 'expr': '-14*x + 18', 'interval': '{-2.07<y<-1.87}'},{'type': 'explicit_x', 'expr': '1.36', 'interval': '{-1.97<y<-1.83}'},{'type': 'explicit_y', 'expr': '2*x - 5.07', 'interval': '{-2.04<y<-1.93}'},{'type': 'explicit_y', 'expr': '5*x - 10.15', 'interval': '{-2.09<y<-1.975}'},{'type': 'explicit_y', 'expr': '2*x - 5.47', 'interval': '{1.7<x<1.745}'},{'type': 'implicit_y', 'expr': '((y+2.31)**2)/2 - 0.96', 'interval': '{-3.35<y<-2.3}'},{'type': 'explicit_y', 'expr': '-x - 3.77', 'interval': '{-0.42<x<-0.04}'},{'type': 'implicit_y', 'expr': '1 - ((y+2.45)**2)/1.6', 'interval': '{-3.735<y<-3.06}'},{'type': 'implicit_y', 'expr': '0.9 - ((y+2.5)**2)/12', 'interval': '{-4.24<y<-3.04}'},{'type': 'explicit_y', 'expr': '-0.8*x - 1.79', 'interval': '{1.376<x<1.484}'},{'type': 'explicit_y', 'expr': '-0.25*(x-2.5)**2 - 2.72', 'interval': '{1.482<x<2.28}'},{'type': 'explicit_y', 'expr': '-0.25*(x-2.5)**2 - 2.72', 'interval': '{2.371<x<2.405}'},{'type': 'implicit_y', 'expr': '3.39 - ((y+5)**2)/16', 'interval': '{-4.24<y<-3.42}'},{'type': 'implicit_y', 'expr': '((y+5)**2)/5.2 + 2.01', 'interval': '{-4.25<y<-3.59}'},{'type': 'implicit_y', 'expr': '1.9 - ((y+5)**2)/6.2', 'interval': '{-4.25<y<-3.46}'},{'type': 'implicit_y', 'expr': '1.56 - ((y+5)**2)/13', 'interval': '{-4.25<y<-2.97}'},{'type': 'implicit_y', 'expr': '0.44 - ((y+4.82)**2)/2.7', 'interval': '{-4.25<y<-3.79}'},{'type': 'implicit_y', 'expr': '((y+4.6)**2)/1.5 - 0.65', 'interval': '{-4.25<y<-3.76}'},{'type': 'explicit_y', 'expr': '-3.92', 'interval': '{-0.34<x<0.14}'},{'type': 'explicit_y', 'expr': '-4*x - 8.2', 'interval': '{-4.25<y<-3.73}'},{'type': 'explicit_y', 'expr': '5*x + 5.3', 'interval': '{-4.25<y<-3.1}'},{'type': 'implicit_y', 'expr': '((y+4.4)**2)/6 - 2', 'interval': '{-4.25<y<-3.48}'},{'type': 'implicit_y', 'expr': '-2.06 - ((y+4.5)**2)/4.6', 'interval': '{-4.25<y<-3.57}'},{'type': 'implicit_y', 'expr': '-2.26 - ((y+3.33)**2)/4', 'interval': '{-4.25<y<-2.63}'},{'type': 'explicit_y', 'expr': '-0.7*x - 4.1', 'interval': '{-2.25<x<-1.93}'},{'type': 'explicit_y', 'expr': '-2.75', 'interval': '{-1.93<x<-1.817}'},{'type': 'implicit_y', 'expr': '-2.3 - ((y+2.45)**2)/0.7', 'interval': '{-3.56<y<-2.73}'},{'type': 'implicit_y', 'expr': '((y+3.7)**2)/2.2 - 4.42', 'interval': '{-4.25<y<-3.7}'},{'type': 'implicit_y', 'expr': '((y+3.8)**2) - 4.43', 'interval': '{-3.7<y<-3.27}'},{'type': 'implicit_y', 'expr': '-3.4 - ((y+1.88)**2)/2.55', 'interval': '{-3.26<y<-2.71}'},{'type': 'explicit_x', 'expr': '-3.83', 'interval': '{-3.48<y<-3.06}'},{'type': 'explicit_y', 'expr': '1.6*(x+3.63)**2 - 3.12', 'interval': '{-3.83<x<-3.63}'},{'type': 'explicit_y', 'expr': '0.32*(x+3.75)**2 - 3.12', 'interval': '{-3.63<x<-2.5}'},{'type': 'explicit_x', 'expr': '-3.655', 'interval': '{-3.11<y<-2.16}'},{'type': 'explicit_y', 'expr': '4*x + 12.46', 'interval': '{-2.16<y<-1.98}'},{'type': 'explicit_y', 'expr': '-9*(x+3.38)**2 - 1.5', 'interval': '{-3.61<x<-3.4}'},{'type': 'explicit_y', 'expr': '3.5*(x+3.52)**2 - 1.55', 'interval': '{-3.404<x<-3.218}'},{'type': 'explicit_y', 'expr': '-1.5*(x+2.9)**2 - 1.1', 'interval': '{-3.23<x<-3}'},{'type': 'explicit_y', 'expr': '-1.9*(x+2.68)**2 - 0.92', 'interval': '{-3<x<-2.778}'},{'type': 'explicit_y', 'expr': '-0.935', 'interval': '{-2.775<x<-2.69}'},{'type': 'explicit_y', 'expr': '3*(x+2.73)**2 - 0.938', 'interval': '{-2.69<x<-2.53}'},{'type': 'explicit_y', 'expr': '-4*(x+2.46)**2 - 0.8', 'interval': '{-2.53<x<-2.37}'},{'type': 'explicit_y', 'expr': '-0.85*x - 2.844', 'interval': '{-2.37<x<-1.84}'},{'type': 'implicit_y', 'expr': '-1.8 - ((y+1.43)**2)/0.6', 'interval': '{-1.57<y<-1.27}'},{'type': 'implicit_y', 'expr': '-1.83 - (y+1.5)**2', 'interval': '{-1.83<y<-1.57}'},{'type': 'explicit_y', 'expr': '-(x+1.8)**2 - 1.81', 'interval': '{-2.27<x<-1.93}'},{'type': 'explicit_y', 'expr': '0.9*(x+2.7)**2 - 2.2', 'interval': '{-2.6<x<-2.27}'},{'type': 'explicit_y', 'expr': '5*(x+2.75)**2 - 2.31', 'interval': '{-2.75<x<-2.6}'},{'type': 'explicit_y', 'expr': '3*(x+2.75)**2 - 2.31', 'interval': '{-2.91<x<-2.75}'},{'type': 'implicit_y', 'expr': '-2.917 - ((y+2.2)**2)/0.6', 'interval': '{-2.31<y<-2.04}'},{'type': 'explicit_y', 'expr': '12*(x+3)**2 - 2.36', 'interval': '{-3.03<x<-2.936}'},{'type': 'explicit_y', 'expr': '-2.2*(x+3.18)**2 - 2.3', 'interval': '{-3.2<x<-3.03}'},{'type': 'explicit_y', 'expr': '-0.7*x - 4.54', 'interval': '{-3.3<x<-3.2}'},{'type': 'explicit_y', 'expr': '0.9*x + 0.58', 'interval': '{-3.3<x<-3.2}'},{'type': 'explicit_y', 'expr': '-1.5*x - 4.9', 'interval': '{-2.48<x<-2.3}'},{'type': 'implicit_y', 'expr': '-2.18 - ((y+1.8)**2)/0.8', 'interval': '{-1.99<y<-1.55}'},{'type': 'explicit_y', 'expr': '-2.5*x - 8.57', 'interval': '{-2.83<x<-2.76}'},{'type': 'explicit_y', 'expr': '-20*(x+2.66)**2 - 1.87', 'interval': '{-2.66<x<-2.565}'},{'type': 'explicit_y', 'expr': '-1.3*x - 5.82', 'interval': '{-3.21<x<-3.05}'},{'type': 'explicit_y', 'expr': '-6*(x+1.81)**2 - 1.74', 'interval': '{-1.89<x<-1.65}'},{'type': 'implicit_y', 'expr': '-1.64 - ((y+1.8)**2)/0.88', 'interval': '{-2.53<y<-1.9}'},{'type': 'explicit_y', 'expr': '-2.2', 'interval': '{-2.16<x<-1.82}'},{'type': 'implicit_y', 'expr': '((y+2.07)**2)/0.2 - 2.25', 'interval': '{-2.2<y<-1.98}'},{'type': 'explicit_y', 'expr': '-2.524', 'interval': '{-2.66<x<-2.25}'},{'type': 'explicit_y', 'expr': '1.2*(x+3.15)**2 - 2.8', 'interval': '{-3.46<x<-2.67}'},{'type': 'explicit_y', 'expr': '-1.5*x - 7.9', 'interval': '{-3.65<x<-3.58}'},{'type': 'implicit_y', 'expr': '((y+3.11)**2)/0.3 - 3.84', 'interval': '{-3.055<y<-2.875}'},{'type': 'explicit_y', 'expr': '-6*x - 17.65', 'interval': '{-2.62<y<-2.524}'},{'type': 'explicit_x', 'expr': '-2.4', 'interval': '{-2.72<y<-2.52}'},{'type': 'explicit_y', 'expr': '-9*(x+2.03)**2 + 1.64', 'interval': '{-2.183<x<-1.942}'},{'type': 'implicit_y', 'expr': '((y-0.4)**2)/4.4 - 2.425', 'interval': '{0.4<y<1.43}'},{'type': 'implicit_y', 'expr': '-1.93 - (y-1.45)**2', 'interval': '{1.288<y<1.57}'},{'type': 'explicit_y', 'expr': '3.6*x + 8.32', 'interval': '{0.43<y<1.28}'},{'type': 'explicit_y', 'expr': '-6*x - 8.65', 'interval': '{-0.78<y<0.7}'},{'type': 'explicit_x', 'expr': '-1.307', 'interval': '{-0.79<y<-0.5}'},{'type': 'implicit_y', 'expr': '((y+0.6)**2)/6.3 - 1', 'interval': '{0.4<y<2.36}'},{'type': 'implicit_y', 'expr': '((y+0.56)**2)/4.8 - 1', 'interval': '{0.374<y<1.61}'},{'type': 'implicit_y', 'expr': '((y-1)**2)/3.5 - 0.11', 'interval': '{1.61<y<2.35}'},{'type': 'explicit_y', 'expr': '2.2*x + 1.63', 'interval': '{0.972<y<1.63}'},{'type': 'explicit_y', 'expr': '1.3*x + 1.15', 'interval': '{0.3<x<0.88}'},{'type': 'implicit_y', 'expr': '((y-0.42)**2)/11 + 0.9', 'interval': '{0.258<y<2.26}'},{'type': 'explicit_y', 'expr': '-12*x + 16.8', 'interval': '{-0.5<y<2.26}'},{'type': 'implicit_y', 'expr': '2.45 - ((y-1)**2)/8', 'interval': '{0.4<y<2.42}'},{'type': 'implicit_y', 'expr': '3.16 - ((y+0.7)**2)/22', 'interval': '{-4.36<y<-0.8}'},{'type': 'implicit_y', 'expr': '((y+2)**2)/10 + 3.37', 'interval': '{-4.25<y<-2.5}'},{'type': 'explicit_y','expr': '3*(x+2.73)**2 - 0.938','interval': '{-2.532<=x<=-2.44 and y >= -4*(x+2.46)**2 - 0.8}'},{'type': 'explicit_y','expr': '-9*(x+2.03)**2 + 1.64','interval': '{(y-1.45)**2 <= -(x+1.93)}'},{'type': 'explicit_y','expr': '3.6*x + 8.32','interval': '{(y-1.45)**2 >= -(x+1.93) and x >= -2.44 and y <= 1.289}'},{'type': 'explicit_y','expr': '3.6*x + 8.32','interval': '{(y+1.2)**2 >= 13*(x+2.39) and y >= -4*(x+2.46)**2 - 0.8 and -2.44<=x<=-2.186}'},{'type': 'explicit_y','expr': '-9*(x+2.03)**2 + 1.64','interval': '{(y-1.45)**2 >= -(x+1.93) and (y+0.1)**2 >= 12*(x+2.07) and y <= 3.6*x + 8.32 and (y-0.57)**2 <= 2.6*(x+2.19)}'},{'type': 'explicit_y','expr': '-9*(x+2.03)**2 + 1.64','interval': '{(y-1.45)**2 >= -(x+1.93) and y >= 1.5*x + 4.287}'},{'type': 'explicit_y','expr': '3.6*x + 8.32','interval': '{(y-1.45)**2 >= -(x+1.93) and y <= 1.5*x + 4.287 and y >= 1.288}'},{'type': 'explicit_y','expr': '-3*(x+2.2)**2 + 1.91','interval': '{(y-1.6)**2 <= 2.7*(x+2.03) and y >= -3*(x+2.2)**2 + 1.91 and (y-0.24)**2 >= 12*(x+1.57)}'},{'type': 'explicit_y','expr': '-3*(x+2.2)**2 + 1.91','interval': '{(y+0.1)**2 <= 12*(x+2.07) and (y-0.24)**2 >= 12*(x+1.57) and y >= -6*x - 9.7 and y >= -0.52}'},{'type': 'explicit_y','expr': '-6*x - 9.7','interval': '{(y+0.1)**2 <= 12*(x+2.07) and y >= -0.85*x - 2.844}'},{'type': 'explicit_y','expr': '-0.85*x - 2.844','interval': '{(y+0.1)**2 >= 12*(x+2.07) and x >= -2.08 and y <= -0.21 and y <= 50*x + 103.3 and y >= -1.17}'},{'type': 'explicit_y','expr': '-6*(x+1.81)**2 - 1.74','interval': '{(y+1.43)**2 >= -0.6*(x+1.8) and (y+1.5)**2 >= -(x+1.83) and y >= -6*(x+1.81)**2 - 1.74 and y <= -6*x - 9.7 and y <= -10*x - 14.3 and y >= -1.1*x - 4.95 and x >= -1.89}'},{'type': 'explicit_y','expr': '-6*(x+1.81)**2 - 1.74','interval': '{y <= 6*x + 4.85 and y >= -1.1*x - 4.95}'},{'type': 'explicit_y','expr': '-6*x - 8.65','interval': '{(y-0.24)**2 <= 12*(x+1.57)}'},{'type': 'explicit_y','expr': '3.6*x + 8.32','interval': '{(y-0.24)**2 >= 12*(x+1.57) and y >= -6*x - 9.7 and y >= 8*x + 5.9 and y <= -0.8}'},{'type': 'explicit_y','expr': '-6*x - 8.65','interval': '{(y+0.5)**2 >= 0.5*(x+1.3) and -1.307<=x<=-1 and y >= 8*x + 5.9 and (y-0.24)**2 <= 12*(x+1.57) and y <= -0.5}'},{'type': 'explicit_y','expr': '-2*x - 2.56','interval': '{(y+0.5)**2 <= 0.5*(x+1.3) and x <= -1}'},{'type': 'explicit_y','expr': '-6*x - 8.65','interval': '{(y-0.24)**2 <= 12*(x+1.57) and x <= -1.307}'},{'type': 'explicit_y','expr': '-2*x - 2.56','interval': '{x > -1.307 and (y+0.5)**2 >= 0.5*(x+1.3) and (y-0.24)**2 <= 12*(x+1.57) and y >= -2*x - 2.56 and (y+0.6)**2 >= 6.3*(x+1) and y <= -0.17*(x-0.66)**2 + 3.8 and y >= -0.242}'},{'type': 'explicit_y','expr': '-2*x - 2.56','interval': '{x >= -1.307 and y <= -2*x - 2.56 and (y+0.5)**2 >= 0.5*(x+1.3) and y >= -0.5}'},{'type': 'explicit_y','expr': '-0.17*(x-0.66)**2 + 3.8','interval': '{(y+0.5)**2 <= 0.5*(x+1.3) and (y+0.7)**2 >= 3*(x+0.99)}'},{'type': 'explicit_y','expr': '-0.17*(x-0.66)**2 + 3.8','interval': '{(y+0.6)**2 <= 6.3*(x+1) and (y-1)**2 >= 3.5*(x+0.11) and y >= -0.17*(x-0.66)**2 + 3.8 and y >= 3.4}'},{'type': 'implicit_y','expr': '-7.6*(x - 3.4)','interval': '{(y + 2.3)**2 >= -7.6*(x - 3.4) and (y - 0.4)**2 >= -7.4*(x - 3.85) and (y + 2)**2 >= 10*(x - 3.37) and y >= -1.9 and y <= -1.4}'},{'type': 'implicit_y','expr': '-7.6*(x - 3.4)','interval': '{(y + 2.3)**2 >= -7.6*(x - 3.4) and y >= -3.5*x + 8.52 and (y + 2)**2 >= 10*(x - 3.37) and -4.25 <= y <= -2.5}'},{'type': 'implicit_y','expr': '-16*(x - 2.75)','interval': '{(y - 1.3)**2 >= -16*(x - 2.75) and (y + 0.1)**2 <= -12*(x - 2.93) and y >= -9*x + 23.2}'},{'type': 'explicit_y','expr': '-9*x + 23.2','interval': '{y <= 1.6*x - 5.35 and (y + 0.1)**2 <= -12*(x - 2.93) and (y + 2.5)**2 >= -6*(x - 2.38) and (y + 2)**2 >= -14*(x - 2.32)}'},{'type': 'implicit_y','expr': '-6*(x - 2.38)','interval': '{(y + 2)**2 >= -14*(x - 2.32) and (y + 2.5)**2 <= -6*(x - 2.38)}'},{'type': 'implicit_y','expr': '-12*(x - 2.93)','interval': '{(y + 0.1)**2 >= -12*(x - 2.93) and (y - 0.8)**2 >= -8.4*(x - 3.47) and (y + 0.7)**2 <= -22*(x - 3.16) and y >= -5*x + 9.3 and y <= -0.81}'},{'type': 'explicit_y','expr': '-5*x + 9.3','interval': '{y <= 10*x - 29.5 and (y + 0.7)**2 <= -22*(x - 3.16) and (y + 3.66)**2 <= -1.1*(x - 3)}'},{'type': 'explicit_y','expr': '-0.92*(x - 0.98)**2 + 1.94','interval': '{y <= -3*x + 4.05 and (y - 0.9)**2 >= 10*(x - 0.7) and y >= -(x + 0.6)**2 - 0.56 and (y + 2.3)**2 >= -0.7*(x - 1.9) and y >= x - 2.706}'},{'type': 'implicit_y','expr': '5.8*(x + 0.688)','interval': '{(y + 0.9)**2 >= 5.8*(x + 0.688) and y <= 1.3 and x <= 0.144}'},{'type': 'implicit_y','expr': '5.8*(x + 0.688)','interval': '{(y + 0.9)**2 >= 5.8*(x + 0.688) and (y + 0.2)**2 >= 4.6*(x + 0.6) and (y + 0.6)**2 <= 4.2*(x + 0.89) and y >= -(x + 0.6)**2 - 0.56}'},{'type': 'implicit_y','expr': '4.2*(x + 0.89)','interval': '{(y + 0.6)**2 >= 4.2*(x + 0.89) and (y + 0.7)**2 <= 3*(x + 0.99) and y >= -(x + 0.6)**2 - 0.56}'},{'type': 'implicit_y','expr': '-0.7*(x - 1.9)','interval': '{y <= -(x + 0.6)**2 - 0.56 and y >= -0.9*(x + 0.65)**2 - 0.77 and y >= 2*x + 0.98 and x >= -1}'},{'type': 'implicit_y','expr': '-12*(x - 2.93)','interval': '{y <= -(x + 0.6)**2 - 0.56 and y >= -0.9*(x + 0.65)**2 - 0.77 and y >= 0.24*(x - 0.5)**2 - 3.076 and x >= 0.04}'},{'type': 'implicit_y','expr': '-0.7*(x - 1.9)','interval': '{(y + 2.3)**2 <= -0.7*(x - 1.9) and y >= 0.24*(x - 0.5)**2 - 3.076 and x >= 0.2}'},{'type': 'explicit_y','expr': '-0.9*(x + 0.65)**2 - 0.77','interval': '{y >= -0.95*x - 3.2 and y >= -0.7*x - 3.14 and y >= 0.2*x - 3.22 and x >= -1 and (y + 2.43)**2 >= 0.34*(x + 0.11) and y <= -x - 2.626}'},{'type': 'explicit_y','expr': '-0.9*(x + 0.65)**2 - 0.77','interval': '{y >= -0.95*x - 3.2 and y >= -0.7*x - 3.14 and y >= 0.2*x - 3.22 and x >= -1 and (y + 2.43)**2 >= 0.34*(x + 0.11) and x <= -0.04 and y >= -x - 2.626}'},{'type': 'explicit_y','expr': '-1.2*(x - 0.13)**2 - 2.22','interval': '{y >= -0.9*(x + 0.65)**2 - 0.77 and x >= -0.04}'},{'type': 'explicit_y','expr': '-1.2*(x - 0.13)**2 - 2.22','interval': '{(y + 2.51)**2 >= -0.3*(x - 0.55) and y >= -x - 2.626 and y >= 0.2*x - 3.22}'},{'type': 'implicit_y','expr': '-0.3*(x - 0.55)','interval': '{(y + 2.51)**2 <= -0.3*(x - 0.55) and y >= -x - 2.626 and y <= -2.76}'},{'type': 'implicit_y','expr': '10*(x - 3.37)','interval': '{(y - 0.9)**2 <= 10*(x - 0.7) and y <= 3.5*x - 2.9 and (y - 0.96)**2 >= 5.9*(x - 1.07) and y <= -6*x + 8.3 and y >= 0.15*x - 1.48}'},{'type': 'explicit_y','expr': '0.15*x - 1.48','interval': '{y <= -10*x + 11.9 and y >= x - 2.706 and (y - 0.9)**2 <= 10*(x - 0.7)}'},{'type': 'explicit_y','expr': 'x - 2.706','interval': '{y <= 0.15*x - 1.655 and (y + 2.3)**2 >= -0.7*(x - 1.9) and y >= 1.6*x - 5.35 and y <= -2*(x - 1.69)**2 - 1.4 and y >= -2.3}'},{'type': 'implicit_y','expr': '-14*(x - 2.32)','interval': '{(y + 2)**2 >= -14*(x - 2.32) and y <= 0.15*x - 1.655 and y <= x - 2.706 and (y + 2.3)**2 >= -0.7*(x - 1.9) and 1.1 < x < 1.69}'},{'type': 'implicit_y','expr': '-7*(x - 2.24)','interval': '{(y - 1.4)**2 >= -9*(x - 2.19) and y <= -31*(x - 2.22)**2 + 1.5 and (y - 1.87)**2 >= -7*(x - 2.24) and (y + 2.79)**2 >= 2.55*(x - 1.81) and y >= 1.6*x - 5.35 and y >= -2.2*(x - 1.73)**2 - 1.22 and x <= 2.42}'},{'type': 'implicit_y','expr': '-9*(x - 2.19)','interval': '{(y - 1.4)**2 >= -9*(x - 2.19) and y >= -31*(x - 2.22)**2 + 1.5 and y >= -6*x + 8.3 and y >= 0.15*x - 1.48 and x <= 2 and y <= 0.124}'},{'type': 'explicit_y','expr': '0.15*x - 1.48','interval': '{y >= -2.2*(x - 1.73)**2 - 1.22 and y >= -31*(x - 2.22)**2 + 1.5 and 1.72 < x < 2}'},{'type': 'implicit_y','expr': '-16*(x - 2.75)','interval': '{(y - 1.3)**2 >= -16*(x - 2.75) and y >= 1.6*x - 5.35 and y <= -9*x + 23.2 and x >= 2.42}'},{'type': 'implicit_y','expr': '-0.7*(x - 1.9)','interval': '{(y - 1.3)**2 >= -16*(x - 2.75) and y >= -10*x + 18.6 and y >= -2*(x - 1.69)**2 - 1.4 and (y + 2.79)**2 >= 2.55*(x - 1.81)}'},{'type': 'implicit_y','expr': '2.55*(x - 1.81)','interval': '{(y + 2.79)**2 <= 2.55*(x - 1.81) and y >= 2.1*(x - 1.82)**2 - 2.35 and (y + 2)**2 < -14*(x - 2.32)}'},{'type': 'implicit_y','expr': '0.7*(x + 2.13)','interval': '{(y + 0.24)**2 <= 0.7*(x + 2.13) and (y + 0.1)**2 >= -12*(x - 2.93) and y >= 50*x + 103.3}'},{'type': 'explicit_y','expr': '-0.85*x - 2.844','interval': '{y <= -4*(x + 2.46)**2 - 0.8 and y <= 3*(x + 2.73)**2 - 0.938 and y >= 1.2*(x + 3.15)**2 - 2.8}'},{'type': 'implicit_y','expr': '-0.6*(x + 1.8)','interval': '{(y + 1.43)**2 >= -0.6*(x + 1.8) and y <= -0.85*x - 2.844 and x >= -2.37}'},{'type': 'implicit_y','expr': '-0.88*(x + 1.64)','interval': '{(y + 1.8)**2 <= -0.88*(x + 1.64) and y <= -4*(x + 2.46)**2 - 0.8 and y >= -2.524}'},{'type': 'implicit_y','expr': '-0.6*(x + 1.8)','interval': '{(y + 1.43)**2 >= -0.6*(x + 1.8) and (y + 1.5)**2 < -(x + 1.83) and -1.85 <= y <= -1.54}'},{'type': 'implicit_y','expr': '-0.88*(x + 1.64)','interval': '{(y + 1.8)**2 <= -0.88*(x + 1.64) and y >= -4*(x + 2.46)**2 - 0.8}'},{'type': 'implicit_y','expr': '3.2*(x + 1.88)','interval': '{(y + 2.3)**2 >= 3.2*(x + 1.88) and y <= 3*(x + 2.73)**2 - 0.938 and y <= -1.9*(x + 2.68)**2 - 0.92 and y >= 1.2*(x + 3.15)**2 - 2.8}'},{'type': 'implicit_y','expr': '2.55*(x - 1.81)','interval': '{(y + 2.79)**2 <= 2.55*(x - 1.81) and y >= -1.5*(x + 2.9)**2 - 1.1 and y < 3.5*(x + 3.52)**2 - 1.55 and y >= -9*(x + 3.38)**2 - 1.5 and x >= -3.4}'},{'type': 'explicit_y','expr': '-9*(x + 3.38)**2 - 1.5','interval': '{y >= -1.9*(x + 2.68)**2 - 0.92 and x >= -3.655}'},{'type': 'implicit_y','expr': '1.5*(x + 0.65)','interval': '{(y + 4.6)**2 <= 1.5*(x + 0.65) and (y + 4.82)**2 <= -2.7*(x - 0.44) and -4.25 <= y <= -3.92}'},{'type': 'implicit_y','expr': '-14*(x - 2.32)','interval': '{(y + 2.31)**2 >= 2*(x + 0.96) and y >= -x - 3.77 and (y + 2.45)**2 <= -1.6*(x - 1) and x >= -0.42 and y <= -3.34}'},{'type': 'implicit_y','expr': '-12*(x - 0.9)','interval': '{(y + 2.5)**2 >= -12*(x - 0.9) and (y + 2)**2 <= -14*(x - 2.32) and y <= -0.25*(x - 2.5)**2 - 2.72 and y >= -4.25}'},{'type': 'explicit_y','expr': '0.24*(x - 0.5)**2 - 3.076','interval': '{(y + 2.5)**2 >= -12*(x - 0.9) and y <= -0.8*x - 1.79 and y >= -0.25*(x - 2.5)**2 - 2.72 and y >= -3.5}'},{'type': 'implicit_y','expr': '-6*(x - 2.38)','interval': '{(y + 2.5)**2 >= -6*(x - 2.38) and y <= -5*x + 9.3 and y <= -0.25*(x - 2.5)**2 - 2.72 and (y + 2)**2 >= -14*(x - 2.32) and y >= 10*x - 29.5 and y >= -4.25}'},{'type': 'implicit_y','expr': '-7.6*(x - 3.4)','interval': '{(y + 2.3)**2 >= -7.6*(x - 3.4) and (y - 0.4)**2 >= -7.4*(x - 3.85) and (y + 2)**2 >= 10*(x - 3.37) and y >= -4.25 and y <= -2.5}'},{'type': 'explicit_y','expr': '-4*x - 8.2','interval': '{y <= -1.1*x - 4.95 and y <= 6*x + 4.85 and y >= -4.25}'},{'type': 'implicit_y','expr': '3.2*(x + 1.88)','interval': '{(y + 2.3)**2 >= 3.2*(x + 1.88) and x >= -2.4 and y >= -4.25 and y <= -2.524}'},{'type': 'implicit_y','expr': '3.2*(x + 1.88)','interval': '{(y + 2.3)**2 >= 3.2*(x + 1.88) and y <= -2.75 and y >= -3}'},{'type': 'implicit_y','expr': '-0.7*(x + 2.3)','interval': '{(y + 2.45)**2 >= -0.7*(x + 2.3) and (y + 3.7)**2 <= 2.2*(x + 4.42) and x <= -2.4 and -4.25 <= y <= -2.7}'},{'type': 'implicit_y','expr': '-0.7*(x + 2.3)','interval': '{(y + 2.45)**2 <= -0.7*(x + 2.3) and x <= -3.83}'},{'type': 'implicit_y','expr': '-22*(x - 3.16)','interval': '{(y + 1.88)**2 >= -2.55*(x + 3.4) and (y + 3.8)**2 >= (x + 4.43) and (y + 3.11)**2 >= 0.3*(x + 3.84) and -4.15 <= x <= -3.655 and -3.27 <= y <= -2.68}'},{'type': 'implicit_y','expr': '-1.1*(x - 3)','interval': '{(y + 3.66)**2 >= -1.1*(x - 3) and y <= -7*x + 16.3 and -4.25 <= y <= -4}'},
]# 处理所有方程
for eq in equations:plot_segment(eq['type'], eq['expr'], eq['interval'])# 绘制所有点
plt.scatter(all_points_x, all_points_y, s=1, color='black')# 设置坐标轴范围和标签
plt.xlim(-5, 5)
plt.ylim(-5, 5)
plt.xlabel('x')
plt.ylabel('y')
plt.title('阿梓喵')
plt.grid(True, linestyle='--', alpha=0.7)
plt.axhline(0, color='gray', linewidth=0.5)
plt.axvline(0, color='gray', linewidth=0.5)# 显示图形
plt.tight_layout()
plt.show()

图形

芙莉莲&勇者

函数太多了,网站没敢爬,还是采用最原始的全选复制粘贴,太消耗时间了。

函数

y=-0.35\left(x+3.1\right)^{2}+4.4\left\{-3.64<x<-3.1\right\}
y=-0.84\left(x+3.1\right)^{2}+4.4\left\{-3.1<x<-2.35\right\}
\left(y-3.66\right)^{2}=-0.76\left(x+2.257\right)\left\{3.46<y<3.92\right\}
\left(y-3.5\right)^{2}=-0.7\left(x+2.315\right)\left\{3.157<y<3.59\right\}
y=-8.7\left(x+2.3\right)^{2}+3.63\left\{-2.25<x<-2.149\right\}
y=-25\left(x+2.007\right)\left\{2.93<y<3.43\right\}
y=-2.5\left(x+0.95\right)\left\{-2.185<x<-2.125\right\}
y=2x+7.47\left\{2.91<y<3.09\right\}
\left(y-2.7\right)^{2}=x+2.32\left\{2.654<y<2.907\right\}
\left(y-3\right)^{2}=\left(x+2.44\right)\left\{2.652<y<2.81\right\}
\left(y-3\right)^{2}=0.5\left(x+2.414\right)\left\{2.886<y<3.037\right\}
y=0.9x+5.214\left\{-2.48<x<-2.41\right\}
\left(y-3.06\right)^{2}=0.35\left(x+2.51\right)\left\{2.86<y<3.157\right\}
\left(y-2.84\right)^{2}=-0.07\left(x+2.39\right)\left\{2.809<y<2.86\right\}
y=0.55x+4.13\left\{-2.5735<x<-2.403\right\}
y=16\left(x+2.64\right)^{2}+2.63\left\{-2.654<x<-2.565\right\}
y=1.6\left(x+4.3\right)\left\{-2.774<x<-2.654\right\}
y=-0.37x+1.35\left\{2.42<y<2.753\right\}
y=7\left(x+2.845\right)^{2}+2.405\left\{-2.89<x<-2.774\right\}
y=5x+21.7\left\{-3.79<x<-3.734\right\}
y=-x-0.7\left\{-4.028<x<-3.734\right\}
\left(y-2.8\right)^{2}=4\left(x+4.1\right)\left\{2.8<y<3.64\right\}
y=-1.1x-0.66\left\{3.65<y<3.83\right\}
y=-1.4x-1.836\left\{-3.92<x<-3.717\right\}
y=3\left(x+3.5\right)^{2}+3.22\left\{-3.72<x<-3.526\right\}
\left(x+3.49\right)^{2}+\left(y-3.24\right)^{2}\le0.0013
y=5.7\left(x+3.55\right)^{2}+3.32\left\{-3.7<x<-3.55\right\}
y=3.32\left\{-3.55<x<-3.44\right\}
y=-x-0.11\left\{-3.483<x<-3.39\right\}
\left(y-3.4\right)^{2}=0.06\left(x+3.492\right)\left\{3.375<y<3.437\right\}
y=0.1x+3.784\left\{-3.47<x<-3.4\right\}
y=-14\left(x+3.5\right)^{2}+3.6\left\{-3.48<x<-3.396\right\}
y=-0.45x+2.03\left\{3.596<y<3.826\right\}
\left(y-3.86\right)^{2}=0.06\left(x+4.096\right)\left\{3.831<y<3.89\right\}
y=-0.35x+2.48\left\{-4.019<x<-3.5\right\}
y=-0.05x+3.686\left\{3.887<y<3.89\right\}
y=-2\left(x+3.61\right)^{2}+3.73\left\{-3.497<x<-3.333\right\}
y=10\left(x+3.32\right)^{2}+3.573\left\{-3.332<x<-3.253\right\}
\left(y-3.6\right)^{2}=1.3\left(x+3.25\right)\left\{3.621<y<4.339\right\}
y=-3x-8\left\{3.697<y<3.8\right\}
y=-10x-34.4\left\{3.65<y<3.744\right\}
\left(y-3.4\right)^{2}=2\left(x+3.76\right)\left\{3.57<y<3.702\right\}
y=2x+11.6\left\{-3.88<x<-3.69\right\}
\left(y-3.7\right)^{2}=2.6\left(x+3.79\right)\left\{3.8<y<4.22\right\}
\left(y-4.2\right)^{2}=2.7\left(x+3.69\right)\left\{3.745<y<4.21\right\}
\left(y-4.35\right)^{2}=\left(x+3.65\right)\left\{3.774<y<4.295\right\}
y=2.3\left(x+3.2\right)^{2}+3.85\left\{-3.639<x<-3.294\right\}
y=-0.7\left(x+3.5\right)^{2}+4.32\left\{-3.56<x<-3.04\right\}
\left(y-3.77\right)^{2}=-2\left(x+3.22\right)\left\{3.077<y<3.57\right\}
\left(y-4\right)^{2}=-2.2\left(x+3.06\right)\left\{3.067<y<3.514\right\}
y=-6x-15.44\left\{3.254<y<3.522\right\}
y=3x+12.57\left\{3.018<y<3.389\right\}
y=2.2x+10\left\{3.015<y<3.539\right\}
y=-9x-24.5\left\{2.87<y<3.22\right\}
\left(y-3.3\right)^{2}=-0.8\left(x+2.81\right)\left\{2.87<y<3.3\right\}
y=15\left(x+3.03\right)\left\{3.015<y<3.667\right\}
y=3x+11.5\left\{-2.828<x<-2.786\right\}
\left(y-3.18\right)^{2}=0.25\left(x+2.78\right)\left\{3.095<y<3.23\right\}
y=4x+14.23\left\{-2.739<x<-2.7\right\}
\left(y-3.36\right)^{2}=2\left(x+2.7\right)\left\{3.43<y<3.77\right\}
y=2.8\left(x+3.962\right)\left\{3.77<y<3.98\right\}
y=\left(x+2.9\right)^{2}+3.39\left\{-2.7<x<-2.37\right\}
y=1.4\left(x+2.7\right)^{2}+3.4\left\{-2.7<x<-2.287\right\}
y=-0.6x+1.95\left\{-2.55<x<-2.45\right\}
\left(y-3.49\right)^{2}=0.02\left(x+2.554\right)\left\{3.48<y<3.506\right\}
y=-7\left(x+2.515\right)^{2}+3.51\left\{-2.54<x<-2.42\right\}
y=60\left(x+2.441\right)^{2}+3.42\left\{-2.441<x<-2.42\right\}
y=3.42\left\{-2.45<x<-2.441\right\}
y=-2.8\left(x+2.71\right)^{2}+3.24\left\{-2.77<x<-2.63\right\}
y=-12\left(x+2.64\right)^{2}+3.223\left\{-2.63<x<-2.548\right\}
y=3.25\left\{-2.77<x<-2.65\right\}
y=-3.8\left(x+2.7\right)^{2}+3.26\left\{-2.65<x<-2.56\right\}
y=-2\left(x+2.64\right)^{2}+3.32\left\{-2.64<x<-2.52\right\}
y=1.2x+6.32\left\{3.27<y<3.293\right\}
y=-25\left(x+2.65\right)^{2}+3.21\left\{-2.689<x<-2.619\right\}
\left(y-3.24\right)^{2}=-0.5\left(x+2.61\right)\left\{3.028<y<3.184\right\}
\left(y-3.09\right)^{2}=0.27\left(x+2.715\right)\left\{3.027<y<3.139\right\}
\left(x+2.692\right)^{2}+\left(y-3.152\right)^{2}\le0.0003
\frac{\left(x+2.69\right)^{2}}{0.0006}+\frac{\left(y-3.07\right)^{2}}{0.0003}\le1
\frac{\left(0.707\left(x+2.69\right)+0.707\left(y-3.07\right)\right)^{2}}{0.0006}+\frac{\left(-0.707\left(x+2.69\right)+0.707\left(y-3.07\right)\right)^{2}}{0.0003}\le1
\frac{\left(x+2.69\right)^{2}}{0.0008}+\frac{\left(y-3.117\right)^{2}}{0.0004}\le1
\frac{\left(0.707\left(x+2.69\right)+0.707\left(y-3.117\right)\right)^{2}}{0.0008}+\frac{\left(-0.707\left(x+2.69\right)+0.707\left(y-3.117\right)\right)^{2}}{0.0004}\le1
y=-2.5\left(x+2.8\right)^{2}+2.704\left\{-2.768<x<-2.674\right\}
y=-x-0.07\left\{2.638<y<2.701\right\}
y=0.8x+4.803\left\{-2.707<x<-2.674\right\}
\left(y-3.6\right)^{2}=1.4\left(x+3.93\right)\left\{3.283<y<3.626\right\}
\left(y-3.5\right)^{2}=\left(x+3.79\right)\left\{3.271<y<3.469\right\}
y=-2x-4.04\left\{3.174<y<3.314\right\}
y=-0.5x+1.37\left\{-3.69<x<-3.607\right\}
x=-3.69\left\{3.103<y<3.214\right\}
y=-0.5x+1.25\left\{-3.752<x<-3.69\right\}
x=-3.752\left\{3.052<y<3.126\right\}
\left(y-2.93\right)^{2}=3\left(x+3.84\right)\left\{2.836<y<3.107\right\}
\left(y-2.7\right)^{2}=2.5\left(x+3.84\right)\left\{2.83<y<3.08\right\}
y=-1.5x-1.17\left\{-3.743<x<-3.645\right\}
y=-5\left(x+3.83\right)^{2}+4.48\left\{-3.95<x<-3.745\right\}
y=1.5x+10.4\left\{3.658<y<4.277\right\}
\left(y-4\right)^{2}=0.7\left(x+4.19\right)\left\{4.276<y<4.41\right\}
\left(y-2.7\right)^{2}=3\left(x+4.8\right)\left\{3.245<y<3.653\right\}
\left(y-2.6\right)^{2}=1.8\left(x+4.9\right)\left\{2.423<y<3.04\right\}
y=2.3x+14.06\left\{3.04<y<3.245\right\}
\left(y-2.5\right)^{2}=0.41\left(x+4.895\right)\left\{1.974<y<2.42\right\}
y=-0.7x-0.98\left\{-4.22<x<-3.708\right\}
y=-0.8x-1.36\left\{-3.713<x<-3.454\right\}
\left(y+1\right)^{2}=-5.3\left(x+2.36\right)\left\{0<y<1.4\right\}
\left(y+0.1\right)^{2}=-3.3\left(x+2.57\right)\left\{0.079<y<0.983\right\}
y=-1.1x-2.25\left\{0.346<y<0.932\right\}
y=-1.4\left(x+3.1\right)^{2}+1.1\left\{-2.82<x<-2.37\right\}
y=-1.1x-2.1\left\{-3.6<x<-2.817\right\}
\left(y-3\right)^{2}=2.5\left(x+4.11\right)\left\{1.864<y<2.514\right\}
\left(y-3.1\right)^{2}=3\left(x+4.14\right)\left\{2.515<y<3.25\right\}
\left(y-3.2\right)^{2}=4\left(x+4.136\right)\left\{3.254<y<3.757\right\}
\left(y-3.4\right)^{2}=1.6\left(x+4.2\right)\left\{4.057<y<4.32\right\}
y=-0.6x-0.54\left\{-4.63<x<-4.13\right\}
\left(y-2.8\right)^{2}=0.9\left(x+4.74\right)\left\{2.076<y<2.8\right\}
y=10\left(x+5.02\right)\left\{2.8<y<3.15\right\}
\left(y-3.2\right)^{2}=2.2\left(x+4.59\right)\left\{1.625<y<3\right\}
\left(y-3.2\right)^{2}=2\left(x+4.59\right)\left\{3<y<3.45\right\}
y=-2x-3.8\left\{1.56<y<2.366\right\}
y=-1.2x-1.67\left\{0.86<y<1.55\right\}
y=1.2\left(x+1.4\right)^{2}+0.45\left\{-1.747<x<-1.4\right\}
y=-0.75x-0.72\left\{-2.105<x<-1.748\right\}
y=0.7\left(x+1.4\right)^{2}+0.43\left\{-2.184<x<-1.4\right\}
y=6x+21\left\{-3.139<x<-3.107\right\}
y=-0.3x+1.432\left\{-3.288<x<-3.108\right\}
y=-0.3x+1.22\left\{-3.341<x<-3.139\right\}
y=4x+15.72\left\{2.26<y<2.38\right\}
\left(y-2.35\right)^{2}=0.08\left(x+3.345\right)\left\{2.38<y<2.418\right\}
\left(y-2.26\right)^{2}=0.06\left(x+3.365\right)\left\{2.222<y<2.26\right\}
y=5x+17.83\left\{2.435<y<2.485\right\}
\left(y-2.403\right)^{2}=-0.06\left(x+3.07\right)\left\{2.355<y<2.561\right\}
y=-0.3x+1.515\left\{-3.898<x<-3.485\right\}
y=-0.3x+1.43\left\{2.45<y<2.609\right\}
y=5x+19.46\left\{2.2<y<2.54\right\}
y=-0.3x+1.16\left\{2.097<y<2.261\right\}
y=-0.36\left(x+4\right)^{2}+2.3\left\{-3.912<x<-3.667\right\}
y=-0.35\left(x+4\right)^{2}+2.38\left\{-3.956<x<-3.438\right\}
y=3x+14.42\left\{2.45<y<2.69\right\}
y=2.5x+12.38\left\{-3.88<x<-3.849\right\}
y=2.756\left\{-3.85<x<-3.789\right\}
\left(y-1.976\right)^{2}=-0.1\left(x+2.98\right)\left\{1.976<y<2.096\right\}
\left(y-2.3\right)^{2}=2.5\left(x+3.016\right)\left\{1.106<y<1.987\right\}
\left(y-0.1\right)^{2}=-2.5\left(x+2.04\right)\left\{0.755<y<1.11\right\}
\left(y-1.93\right)^{2}=-0.3\left(x+3.03\right)\left\{1.95<y<2.094\right\}
\left(y-2\right)^{2}=2.1\left(x+3.03\right)\left\{1.025<y<1.947\right\}
y^{2}=-1.7\left(x+1.97\right)\left\{0.344<y<1.023\right\}
\left(y-2\right)^{2}=1.6\left(x+3.18\right)\left\{1.016<y<1.883\right\}
\left(y-1.09\right)^{2}=-1.4\left(x+2.7\right)\left\{1.9<y<2.2\right\}
\left(y-1.2\right)^{2}=-3\left(x+3\right)\left\{1.9<y<2.15\right\}
y=-2x-4.24\left\{-3.176<x<-3.08\right\}
\left(y-2\right)^{2}=1.7\left(x+3.08\right)\left\{1.36<y<1.92\right\}
y^{2}=-1.3\left(x+1.78\right)\left\{0.348<y<0.748\right\}
y=-1.3x-1.96\left\{-2.1<x<-1.738\right\}
y=0.3\left(x+3.13\right)^{2}-0.21\left\{-3.59<x<-3.13\right\}
y=0.48\left(x+3.13\right)^{2}-0.21\left\{-3.13<x<-2.04\right\}
y=0.26\left(x+3.13\right)^{2}-0.3\left\{-3.66<x<-3.13\right\}
y=0.4\left(x+3.13\right)^{2}-0.3\left\{-3.13<x<-2.48\right\}
y=0.8x+1.86\left\{-2.482<x<-1.878\right\}
y=0.26\left(x+3.13\right)^{2}-0.4\left\{-3.72<x<-3.13\right\}
y=0.4\left(x+3.13\right)^{2}-0.4\left\{-3.13<x<-1.77\right\}
y=1.4x+4.89\left\{-0.31<y<-0.14\right\}
y=x+3.59\left\{-3.725<x<-3.63\right\}
y=0.2x+0.45\left\{-3.94<x<-3.715\right\}
x=-3.94\left\{-0.335<y<-0.073\right\}
y=-10x-37.43\left\{-0.29<x<-0.04\right\}
y=0.2x+0.725\left\{-3.94<x<-3.739\right\}
y=-1.8\left(x+3.82\right)^{2}+0.03\left\{-3.93<x<-3.556\right\}
y=0.4x+1.58\left\{-4.7<x<-3.92\right\}
y=0.2x+0.64\left\{-4.84<x<-4.7\right\}
y=-1.2\left(x+3.82\right)^{2}+0.13\left\{-3.98<x<-3.56\right\}
y=0.4x+1.69\left\{-0.174<y<0.1\right\}
y=0.2x+0.756\left\{-4.876<x<-4.66\right\}
y=-\left(x+3.87\right)^{2}+0.23\left\{-4.208<x<-3.585\right\}
y=0.5x+2.22\left\{0<y<0.115\right\}
y=0.38\left(x+5\right)^{2}-0.12\left\{-4.873<x<-4.443\right\}
y^{2}=-0.8\left(x+3.55\right)\left\{-0.14<y<0.316\right\}
y=-1.3x-4.45\left\{-4.02<x<-3.67\right\}
y=-1.3x-4.46\left\{-4.33<x<-4.082\right\}
\left(y-1.3\right)^{2}=2.4\left(x+4.62\right)\left\{1.213<y<2.04\right\}
y=3x+15.06\left\{-4.687<x<-4.436\right\}
y^{2}=6\left(x+4.85\right)\left\{0<y<1\right\}
\left(y+0.2\right)^{2}=2\left(x+4.87\right)\left\{-0.3<y<0\right\}
\left(y+1.4\right)^{2}=12\left(x+4.93\right)\left\{-1.715<y<-0.327\right\}
y+1.56=-0.5\left(x+4.3\right)^{2}\left\{-5.04<x<-3.82\right\}
\left(y+2\right)^{2}=-12\left(x+3.8\right)\left\{-2.62<y<-1.685\right\}
y+2.69=2\left(x+4\right)^{2}\left\{-4<x<-3.829\right\}
y=-2.69\left\{-4.097<x<-4\right\}
y=-1.5x-8.83\left\{-4.145<x<-3.96\right\}
y=-6x-32.1\left\{-2.76<y<-1.83\right\}
y+2.85=2.5\left(x+4.7\right)^{2}\left\{-4.89<x<-4.6\right\}
y=30\left(x+4.5\right)\left\{-3.09<y<-2.76\right\}
\left(y+2.8\right)^{2}=1.1\left(x+4.68\right)\left\{-3.33<y<-3.089\right\}
y=-x-7.69\left\{-3.32<y<-3.201\right\}
y=14\left(x+4.404\right)^{2}-3.335\left\{-4.425<x<-4.371\right\}
y=-0.4x-5.06\left\{-4.383<x<-4.3\right\}
y=-x-7.57\left\{-4.384<x<-4.242\right\}
y=6\left(x+4.29\right)^{2}-3.34\left\{-4.3<x<-4.243\right\}
y=11\left(x+4.19\right)^{2}-3.36\left\{-4.244<x<-4.14\right\}
y=-2x-11.6\left\{-4.237<x<-4.136\right\}
y=3\left(x+4.06\right)^{2}-3.36\left\{-4.145<x<-3.97\right\}
\left(y+3\right)^{2}=\left(x+4.08\right)\left\{-3.335<y<-2.902\right\}
y=15\left(x+3.97\right)^{2}-3.33\left\{-3.97<x<-3.91\right\}
\left(y+3\right)^{2}=2\left(x+3.958\right)\left\{-3.287<y<-2.896\right\}
y=-0.76\left(x+4.15\right)^{2}-2.61\left\{-4.59<x<-4.15\right\}
y=-2.61\left\{-4.15<x<-3.83\right\}
y=-0.37\left(x+4.2\right)^{2}-1.74\left\{-5.019<x<-4.2\right\}
y=-\left(x+4.2\right)^{2}-1.74\left\{-4.2<x<-3.801\right\}
y=-0.46\left(x+4.24\right)^{2}-1.87\left\{-4.995<x<-4.24\right\}
y=-0.7\left(x+4.24\right)^{2}-1.87\left\{-4.24<x<-3.8\right\}
\left(y+1.7\right)^{2}=12\left(x+4.77\right)\left\{-2.737<y<-1.4\right\}
\left(y+1.7\right)^{2}=12\left(x+4.73\right)\left\{-2.754<y<-1.52\right\}
\left(y+1.5\right)^{2}=11\left(x+4.6\right)\left\{-2.689<y<-1.5\right\}
\left(y+1.5\right)^{2}=11\left(x+4.56\right)\left\{-2.667<y<-1.4\right\}
y=-7\left(x+4.66\right)^{2}-1.33\left\{-4.76<x<-4.56\right\}
\left(x+4.67\right)^{2}+\left(y+1.47\right)^{2}=0.005
\left(x+4.677\right)^{2}+\left(y+1.47\right)^{2}\le0.001
y=-2.4x-10.73\left\{-4.396<x<-3.974\right\}
\left(y+0.2\right)^{2}=3\left(x+4.03\right)\left\{-0.68<y<-0.09\right\}
\left(y+2\right)^{2}=-20\left(x+3.87\right)\left\{-1.649<y<-0.679\right\}
\left(y+0.7\right)^{2}=8\left(x+3.95\right)\left\{-0.679<y<-0.336\right\}
\left(y+1.5\right)^{2}=-4.4\left(x+3.36\right)\left\{-0.585<y<-0.322\right\}
\left(y+1.16\right)^{2}=-2.7\left(x+3.36\right)\left\{-1.09<y<-0.34\right\}
\left(y+3.5\right)^{2}=-13\left(x+3.43\right)\left\{-3.19<y<-1.8\right\}
y=-6x-23.76\left\{-1.35<y<-1.14\right\}
y^{2}=4\left(x+3\right)\left\{-1.16<y<-0.427\right\}
y=-5x-14.6\left\{-0.735<y<-0.48\right\}
y=-2x-6.47\left\{-1.86<y<-1.284\right\}
\left(y+1.2\right)^{2}=1.9\left(x+2.53\right)\left\{-2.439<y<-1.854\right\}
y=-0.9x-4\left\{-1.731<x<-1.379\right\}
y=-0.2x-0.98\left\{-2.778<x<-2.552\right\}
y=-2x-5.98\left\{-2.81<x<-2.777\right\}
y^{2}=-4\left(x+2.49\right)\left\{-0.469<y<-0.243\right\}
y=-0.4\left(x+2.15\right)^{2}-0.17\left\{-2.42<x<-2.15\right\}
y=-9\left(x+2.15\right)^{2}-0.17\left\{-2.15<x<-2.074\right\}
y=7\left(x+2.04\right)^{2}-0.13\left\{-2.16<x<-2.079\right\}
y=-16\left(x+2.1\right)^{2}-0.11\left\{-2.078<x<-2.02\right\}
y=-2.17\left(x+2.77\right)^{2}-0.4\left\{-2.584<x<-2.121\right\}
y=-2\left(x+2.93\right)^{2}\left\{-2.12<x<-1.85\right\}
y=-0.7\left(x+4\right)^{2}-2.77\left\{-4.03<x<-3.45\right\}
y=-0.7\left(x+4\right)^{2}-2.9\left\{-3.953<x<-3.441\right\}
y=-0.7\left(x+4\right)^{2}-3.06\left\{-3.956<x<-3.458\right\}
\left(y+3.19\right)^{2}=-0.2\left(x+3.438\right)\left\{-3.38<y<-3.19\right\}
y=0.32\left(x+3\right)^{2}-3.27\left\{-3.44<x<-2.2\right\}
y=-\left(x+1.4\right)^{2}-2.77\left\{-1.665<x<-1.4\right\}
y=0.43x-2.124\left\{-2.2<x<-1.665\right\}
y=0.32\left(x+3\right)^{2}-3.39\left\{-3.507<x<-2.32\right\}
y=-0.7\left(x+1.3\right)^{2}-2.88\left\{-1.617<x<-1.3\right\}
y=0.42x-2.27\left\{-2.32<x<-1.618\right\}
y=0.23\left(x+3\right)^{2}-3.51\left\{-3.625<x<-1.775\right\}
y=-0.63\left(x+1.26\right)^{2}-3\left\{-1.774<x<-1.26\right\}
\left(y+3\right)^{2}=-0.45\left(x+1.25\right)\left\{-3<y<-2.759\right\}
y=0.3\left(x+2.52\right)^{2}-3.5\left\{-2.52<x<-1.574\right\}
y=0.5x-2.447\left\{-1.574<x<-0.912\right\}
y=0.3\left(x+2.52\right)^{2}-3.62\left\{-2.52<x<-1.956\right\}
\left(y+2.9\right)^{2}=-0.2\left(x+0.9\right)\left\{-3.05<y<-2.79\right\}
y=0.28\left(x+2.39\right)^{2}-3.58\left\{-1.953<x<-1.013\right\}
\left(y+3.4\right)^{2}=-1.8\left(x+0.75\right)\left\{-2.787<y<-2.16\right\}
\left(y+1.3\right)^{2}=1.5\left(x+2.1\right)\left\{-2.162<y<-1.643\right\}
y=0.6x-2.04\left\{-1.315<x<-1.05\right\}
y=0.7x-2.06\left\{-1.257<x<-0.985\right\}
y=1.6\left(x+1.38\right)^{2}+0.1\left\{-1.737<x<-1.38\right\}
y=1.3\left(x+1.5\right)^{2}+0.078\left\{-1.857<x<-1.377\right\}
y=-0.7x-1.16\left\{-1.921<x<-1.51\right\}
y=-0.8x-1.24\left\{-1.745<x<-1.486\right\}
\left(y+0.07\right)^{2}=-0.03\left(x+1.475\right)\left\{-0.102<y<-0.052\right\}
y=1.5x+2.82\left\{-2.02<x<-1.81\right\}
y=1.5x+2.66\left\{-1.946<x<-1.736\right\}
y=1.6x+2.64\left\{-0.32<y<0\right\}
y=0.35x+0.46\left\{-2.331<x<-2.01\right\}
y=0.4x+0.42\left\{-2.405<x<-1.85\right\}
y=-4\left(x+2\right)^{2}-0.243\left\{-2.01<x<-1.858\right\}
y=0.1x-0.137\left\{-1.856<x<-1.72\right\}
y=-0.6x-1.34\left\{-1.72<x<-1.455\right\}
y=-2.6\left(x+1.3\right)^{2}-0.4\left\{-1.914<x<-1.458\right\}
y=-3.9\left(x+1.357\right)^{2}-0.42\left\{-1.46<x<-1.228\right\}
y=-2.7\left(x+1.18\right)^{2}-0.47\left\{-1.788<x<-1.239\right\}
y=-12\left(x+1.23\right)^{2}-0.48\left\{-1.23<x<-1.152\right\}
y=-2.8\left(x+1.08\right)^{2}-0.53\left\{-1.673<x<-1.156\right\}
y=-0.4x-2.14\left\{-2.13<x<-1.912\right\}
\left(y+1.37\right)^{2}=0.09\left(x+1.91\right)\left\{-1.474<y<-1.37\right\}
y=-0.4x-2.19\left\{-1.79<x<-1.11\right\}
y=-9\left(x+1.129\right)^{2}-0.543\left\{-1.154<x<-1.051\right\}
y=-0.45x-1.07\left\{-1.05<x<-0.752\right\}
y=-28\left(x+0.76\right)^{2}-0.73\left\{-0.754<x<-0.69\right\}
y=-5.6\left(x+0.66\right)^{2}-0.77\left\{-1.064<x<-0.77\right\}
y=5\left(x+1.16\right)^{2}-1.8\left\{-1.018<x<-0.845\right\}
y=9\left(x+1.093\right)^{2}-1.75\left\{-1.11<x<-1.018\right\}
y=-\left(x-2.48\right)^{2}+1.28\left\{2.14<x<2.48\right\}
y=-1.4\left(x-2.7\right)^{2}+1.28\left\{2.7<x<3.21\right\}
y=1.28\left\{2.48<x<2.7\right\}
y=1.9\left(x-3.54\right)^{2}+0.71\left\{3.21<x<3.52\right\}
y=0.3\left(x-3.52\right)^{2}+0.71\left\{3.365<x<3.52\right\}
y=-x+4.08\left\{3.362<x<3.558\right\}
y=1.7\left(x-3.4\right)^{2}+0.48\left\{3.4<x<3.558\right\}
y=-x+3.876\left\{0.37<y<0.48\right\}
y=-0.35x+1.6\left\{3.394<x<3.502\right\}
x=3.394\left\{0.259<y<0.413\right\}
y=-2x+7.05\left\{0.262<y<0.36\right\}
x=3.343\left\{-0.108<y<0.361\right\}
y^{2}=0.8\left(x-3.33\right)\left\{-0.225<y<-0.107\right\}
y=-\left(x-2.2\right)^{2}+1.17\left\{1.49<x<2.143\right\}
y^{2}=2.1\left(x-1.28\right)\left\{0<y<0.682\right\}
y^{2}=-11\left(x-1.28\right)\left\{-0.469<y<0\right\}
y^{2}=-1.9\left(x-1.38\right)\left\{-0.472<y<-0.063\right\}
\left(y+0.07\right)^{2}=1.4\left(x-1.39\right)\left\{-0.545<y<-0.07\right\}
y=-9x+13.4\left\{-0.542<y<-0.37\right\}
y=5.4\left(x-1.7\right)^{2}-0.52\left\{1.53<x<1.678\right\}
y=-15x+24.6\left\{-0.516<y<-0.357\right\}
y=-0.8x+0.97\left\{1.664<x<1.765\right\}
y=-2x+3.1\left\{1.71<x<1.771\right\}
\left(y-0.04\right)^{2}=0.65\left(x-1.51\right)\left\{-0.321<y<0\right\}
\left(y-0.1\right)^{2}=1.1\left(x-1.64\right)\left\{-0.262<y<0.058\right\}
y=-10x+16.47\left\{0.059<y<0.553\right\}
y=-13x+21.93\left\{-0.323<y<-0.154\right\}
x=1.763\left\{-0.263<y<0\right\}
y=4\left(x-2\right)^{2}-0.22\left\{1.765<x<1.983\right\}
\left(y-0.1\right)^{2}=2.1\left(x-1.93\right)\left\{-0.218<y<0.225\right\}
\left(y-0.7\right)^{2}=1.7\left(x-1.83\right)\left\{0.09<y<0.803\right\}
y=-7\left(x-2.03\right)^{2}+1.1\left\{1.854<x<1.929\right\}
y=-17\left(x-2\right)^{2}+0.133\left\{2.049<x<2.116\right\}
y=29\left(x-2.17\right)^{2}-0.18\left\{2.116<x<2.17\right\}
y=15x-32.7\left\{2.168<x<2.183\right\}
y=3.1\left(x-2.5\right)^{2}-0.26\left\{2.184<x<2.48\right\}
y^{2}=-\left(x-2.497\right)\left\{-0.126<y<0.116\right\}
y=30x-74.6\left\{-0.258<y<-0.125\right\}
y=2.1x-2.55\left\{1.1<x<1.293\right\}
y=-x+2.59\left\{2.486<x<2.574\right\}
y=5\left(x-2.42\right)^{2}+0.58\left\{2.202<x<2.327\right\}
y=-6\left(x-2.27\right)^{2}+0.642\left\{2.327<x<2.52\right\}
y=-8x+20.47\left\{0.035<y<0.27\right\}
y=-4.2\left(x-2.18\right)^{2}+0.64\left\{2.27<x<2.4\right\}
y=-1.5x+4.14\left\{2.079<x<2.13\right\}
y=-2.1\left(x-2.14\right)^{2}+0.9\left\{2.337<x<2.657\right\}
y=-3x+8.31\left\{2.656<x<2.75\right\}
y=-0.9\left(x-2.5\right)^{2}+0.36\left\{2.657<x<2.943\right\}
y=-1.3\left(x-2.5\right)^{2}+0.7\left\{2.765<x<3.074\right\}
y=-1.2x+4.06\left\{3<x<3.154\right\}
y=-0.6x+2.17\left\{3<x<3.15\right\}
y=0.8\left(x-3.3\right)^{2}+0.39\left\{3<x<3.273\right\}
y=-1.5\left(x-2.6\right)^{2}+1.13\left\{2.657<x<3.138\right\}
y=4.1\left(x-3.32\right)^{2}+0.56\left\{3.137<x<3.32\right\}
y=0.56\left\{3.186<x<3.32\right\}
y=-1.4x+5.02\left\{3.1<x<3.232\right\}
y=-x+3.16\left\{3.308<x<3.397\right\}
y=8x-26.59\left\{3.292<x<3.305\right\}
y=-x+3.03\left\{3.184<x<3.286\right\}
y=-1.5x+4.54\left\{3.118<x<3.218\right\}
y=-0.256\left\{3.197<x<3.286\right\}
y=1.8\left(x-3.22\right)^{2}-0.292\left\{3.04<x<3.22\right\}
y=-0.8x+2.16\left\{2.897<x<3.102\right\}
y=-1.5x+4.33\left\{3.04<x<3.1\right\}
y=-\left(x-2.45\right)^{2}\left\{2.697<x<3\right\}
y=-2x+5.67\left\{2.925<x<2.97\right\}
y=-x+2.77\left\{-0.058<y<0\right\}
y=-0.5x+1.44\left\{2.814<x<2.952\right\}
y=-0.5x+1.49\left\{2.887<x<2.992\right\}
y=-0.5x+1.59\left\{3.028<x<3.097\right\}
y=-1.5x+4.18\left\{2.537<x<2.747\right\}
y=-4\left(x-2.48\right)^{2}+0.29\left\{2.513<x<2.695\right\}
x=2.695\left\{-0.18<y<0.105\right\}
y=x-2.88\left\{2.607<x<2.695\right\}
y=-3x+7.55\left\{2.607<x<2.675\right\}
y^{2}=-0.1\left(x-2.62\right)\left\{0<y<0.083\right\}
y^{2}=-0.56\left(x-2.62\right)\left\{-0.17<y<0\right\}
y=-8\left(x-2.5\right)^{2}-0.01\left\{2.5<x<2.547\right\}
\left(y+0.05\right)^{2}=-0.07\left(x-2.554\right)\left\{-0.097<y<-0.027\right\}
y=-1.1\left(x-2.1\right)^{2}+0.11\left\{1.622<x<2.037\right\}
y=0.8x-3\left\{2.68<x<3.413\right\}
y=0.85x-3.095\left\{2.34<x<2.66\right\}
y=-1.5x+4.86\left\{3.398<x<3.418\right\}
y=-x+1.83\left\{2.662<x<2.683\right\}
y=6\left(x-2.29\right)^{2}-1.123\left\{2.15<x<2.34\right\}
y=-2x+3.295\left\{2.123<x<2.151\right\}
y=12\left(x-2.12\right)^{2}-0.95\left\{2.04<x<2.123\right\}
y=-0.873\left\{1.969<x<2.04\right\}
y=-11.6\left(x-1.87\right)^{2}-0.76\left\{1.87<x<1.969\right\}
y=-0.05x-0.667\left\{1.734<x<1.87\right\}
\left(y+0.7\right)^{2}=0.08\left(x-1.7\right)\left\{-0.753<y<-0.7\right\}
\left(y+0.4\right)^{2}=-\left(x-1.78\right)\left\{-0.68<y<-0.443\right\}
y=20x-34.71\left\{-0.7<y<-0.68\right\}
y^{2}=-1.62\left(x-2.49\right)\left\{-0.873<y<-0.69\right\}
y=0.8x-1.7\left\{1.774<x<1.876\right\}
y=x-2.16\left\{1.871<x<1.919\right\}
y=0.7x-1.6\left\{1.817<x<1.84\right\}
y=-10x+18.23\left\{1.859<x<1.866\right\}
y=0.7x-1.67\left\{1.859<x<1.907\right\}
y=1.1x-2.4\left\{1.858<x<1.982\right\}
y=-0.6x+0.76\left\{1.869<x<1.895\right\}
y=0.9x-3.38\left\{2.729<x<3.454\right\}
y=-x+1.8\left\{2.692<x<2.824\right\}
y=-x+1.75\left\{2.651<x<2.807\right\}
y=x-3.74\left\{2.77<x<3.46\right\}
y=1.2x-4.4\left\{2.818<x<3.3\right\}
y=0.7x-2.657\left\{3.478<x<3.78\right\}
y=13\left(x-3.436\right)^{2}-0.25\left\{3.39<x<3.486\right\}
y=-1.5x+5.75\left\{3.923<x<4.072\right\}
y=-3\left(x-3.7\right)^{2}+0.01\left\{3.78<x<3.92\right\}
y=-0.25\left(x-4.6\right)^{2}-0.3\left\{3.878<x<4.6\right\}
y=-0.6\left(x-4.24\right)^{2}-0.35\left\{3.23<x<3.877\right\}
y=2.1x-7.74\left\{2.8<x<3.228\right\}
\left(y+1.6\right)^{2}=3\left(x-2.94\right)\left\{-1.565<y<-0.963\right\}
\left(y+1.5\right)^{2}=1.8\left(x-2.61\right)\left\{-1.944<y<-1.5\right\}
\left(y+1.5\right)^{2}=0.94\left(x-2.61\right)\left\{-1.5<y<-1.06\right\}
\left(y+1.73\right)^{2}=1.2\left(x-2.57\right)\left\{-2.015<y<-1.51\right\}
y=x-4.59\left\{3.256<x<3.715\right\}
y=1.2x-5.24\left\{2.761<x<3.255\right\}
y=0.8x-4.135\left\{2.57<x<2.762\right\}
y=-0.27\left(x-4.456\right)^{2}-0.7\left\{3.794<x<4.853\right\}
y=-9x+41.4\left\{-0.513<y<-0.378\right\}
y=-45\left(x-4.6\right)^{2}-0.3\left\{4.6<x<4.642\right\}
y=-x+4.13\left\{4.653<x<4.86\right\}
y=-0.7\left(x-4.9\right)^{2}-0.74\left\{4.85<x<5.29\right\}
y=-10x+52.1\left\{-1.15<y<-0.85\right\}
y=-5\left(x-5.3\right)^{2}-1.15\left\{5.323<x<5.4\right\}
\left(y+1.293\right)^{2}=-0.17\left(x-5.45\right)\left\{-1.368<y<-1.2\right\}
y=-1.4x+6.23\left\{-2.077<y<-1.361\right\}
y=-2x+9.8\left\{5.938<x<6.69\right\}
y=-1.2x+4.45\left\{6.688<x<7.24\right\}
y=0.53\left(x-8.4\right)^{2}-4.94\left\{7.24<x<8.3\right\}
\left(y+2.3\right)^{2}=1.2\left(x-3.13\right)\left\{-2.143<y<-1.037\right\}
y=-0.14\left(x-4.76\right)^{2}-1.31\left\{3.731<x<5.431\right\}
\left(y+3\right)^{2}=0.9\left(x-2.4\right)\left\{-2.438<y<-1.724\right\}
y=-1.8x+2.53\left\{2.563<x<2.757\right\}
y=-0.8\left(x-4.1\right)^{2}-1.2\left\{4.48<x<5\right\}
y=-0.8\left(x-4.1\right)^{2}-1.2\left\{5.068<x<5.734\right\}
y=0.25x-3.14\left\{2.744<x<3.954\right\}
\left(y+2.56\right)^{2}=0.13\left(x-2.66\right)\left\{-2.56<y<-2.455\right\}
\left(y+2.56\right)^{2}=2\left(x-2.66\right)\left\{-2.917<y<-2.56\right\}
y=-1.5x+1.4\left\{2.793<x<3.035\right\}
y=-0.9x+0.34\left\{3.78<x<4.35\right\}
y=-0.8x-0.15\left\{4.484<x<5.94\right\}
y=-1.8x+7\left\{5.883<x<6.62\right\}
y=-1.8x+8.4\left\{6.677<x<7.404\right\}
y^{2}=9\left(x-1.9\right)\left\{-4.936<y<-3.345\right\}
\left(y+3\right)^{2}=\left(x-2.53\right)\left\{-3<y<-2.635\right\}
\left(y+3\right)^{2}=7\left(x-2.53\right)\left\{-3.426<y<-3\right\}
y=-1.5x+0.27\left\{2.685<x<3.188\right\}
y=-2x+2.04\left\{2.828<x<3.183\right\}
y=-1.5x+0.45\left\{3.18<x<3.46\right\}
y=-1.1x-1\left\{3.19<x<3.579\right\}
y=-1.5x+0.45\left\{3.46<x<3.59\right\}
y=-2x+1.2\left\{2.9<x<3.065\right\}
\left(y+3.4\right)^{2}=2\left(x-2.44\right)\left\{-3.441<y<-2.974\right\}
\left(y+3.4\right)^{2}=6.6\left(x-2.44\right)\left\{-4.934<y<-3.441\right\}
y=0.14\left(x-8.7\right)^{2}-4.4\left\{7.06<x<8.7\right\}
y=-7.7\left(x-2.5\right)^{2}-3.5\left\{2.06<x<2.255\right\}
y=0.4x-3.44\left\{2.478<x<2.712\right\}
y=-0.05x-2.325\left\{2.32<x<2.478\right\}
y=0.7x-4.064\left\{2.183<x<2.318\right\}
y=-0.85x-0.65\left\{1.368<x<2.17\right\}
y=-3.5x+5.12\left\{2.175<x<2.3\right\}
y=-2.6\left\{2.2<x<2.29\right\}
y=-1.6x+1.07\left\{2.29<x<2.437\right\}
y=-2.55\left\{2.24<x<2.31\right\}
y=-0.8x-0.7\left\{2.313<x<2.584\right\}
y=-2.49\left\{2.512<x<2.679\right\}
y=-0.8x-2.4\left\{0.57<x<1.25\right\}
y=0.22\left(x-3\right)^{2}-4.08\left\{1.246<x<2.499\right\}
y=\left(x-3\right)^{2}-4.03\left\{2.276<x<2.46\right\}
y=-2x+1.35\left\{2.236<x<2.446\right\}
y=0.2x-3.51\left\{2.235<x<2.517\right\}
y=-0.5x-1.865\left\{1.55<x<2.21\right\}
y=-4x+5.9\left\{2.218<x<2.24\right\}
y=-20x+44.7\left\{-3.3<y<-3.12\right\}
y=-0.8x-1.4\left\{0.968<x<1.441\right\}
y=-1.1x-0.97\left\{1.433<x<2.06\right\}
y=2x-4\left\{0.571<x<0.865\right\}
y=-5.6\left(x-1\right)^{2}-2.17\left\{0.866<x<0.969\right\}
y=2x-4.3\left\{0.678<x<0.967\right\}
y=x-3.33\left\{0.965<x<1.07\right\}
y=2x-4.6\left\{0.785<x<1\right\}
y=1.5x-4.1\left\{1<x<1.173\right\}
y=1.5x-3.84\left\{1.09<x<1.294\right\}
y=1.5x-4.04\left\{1.147<x<1.34\right\}
y=1.5x-4.26\left\{1.243<x<1.466\right\}
y=1.2x-3.454\left\{1.294<x<1.367\right\}
y=1.2x-3.64\left\{1.341<x<1.458\right\}
y=1.1x-3.674\left\{1.465<x<1.55\right\}
y=1.8x-4.67\left\{0.873<x<0.982\right\}
y=1.8x-4.94\left\{0.976<x<1.127\right\}
y=-4\left(x-1.1\right)^{2}-2.85\left\{0.985<x<1.1\right\}
y=-70\left(x-1.1\right)^{2}-2.85\left\{1.1<x<1.129\right\}
\left(y+1.5\right)^{2}=0.9\left(x-1.13\right)\left\{-1.892<y<-1.614\right\}
y=-2.8x+1.58\left\{1.018<x<1.141\right\}
y=-12\left(x-0.93\right)^{2}-1.177\left\{0.93<x<1.02\right\}
y=-0.2x-0.99\left\{0.78<x<0.93\right\}
y=3\left(x-0.78\right)^{2}-1.145\left\{0.629<x<0.78\right\}
y=-1.074\left\{0.295<x<0.628\right\}
y=2.8\left(x-0.2\right)^{2}-1.1\left\{0.2<x<0.296\right\}
y=-1.1\left\{0.08<x<0.2\right\}
\left(y+1.15\right)^{2}=0.07\left(x-0.047\right)\left\{-1.225<y<-1.1\right\}
y=-0.6x-1.15\left\{0.127<x<0.307\right\}
y=-1.23\left\{0.133<x<0.584\right\}
y=2\left(x-0.78\right)^{2}-1.303\left\{0.587<x<0.764\right\}
y=-3\left(x-0.5\right)^{2}-1.33\left\{0.385<x<0.59\right\}
y=-1.356\left\{0.591<x<0.646\right\}
y=1.2\left(x-0.68\right)^{2}-1.52\left\{0.34<x<0.68\right\}
y=3.3\left(x-0.68\right)^{2}-1.52\left\{0.68<x<0.825\right\}
y=-1.7\left(x-0.65\right)^{2}-1.43\left\{0.486<x<0.629\right\}
y=-1.2x-0.89\left\{0.995<x<1.092\right\}
y=-1.7\left(x-0.72\right)^{2}-1.96\left\{0.811<x<0.993\right\}
y=-0.8x-1.325\left\{0.653<x<0.811\right\}
y=-1.03x^{2}-1.41\left\{0.176<x<0.652\right\}
\left(y+1.37\right)^{2}=0.088\left(x-0.12\right)\left\{-1.44<y<-1.318\right\}
y=-1.1\left(x-0.09\right)^{2}-1.312\left\{0.151<x<0.34\right\}
y=-\left(x-0.2\right)^{2}-2.4\left\{0.261<x<0.683\right\}
y=-0.2x-2.35\left\{-0.09<x<0.26\right\}
y=-0.8x-1.59\left\{0.714<x<0.86\right\}
y=-1.3x-1.23\left\{0.576<x<0.715\right\}
y=-0.4x-1.72\left\{0.25<x<0.52\right\}
y=-8\left(x-0.49\right)^{2}-1.92\left\{0.519<x<0.576\right\}
y=-1.82\left\{0.024<x<0.25\right\}
y=1.4\left(x-0.03\right)^{2}-1.82\left\{-0.208<x<0.024\right\}
y=-11\left(x+0.238\right)^{2}-1.73\left\{-0.282<x<-0.208\right\}
y=2.3\left(x+0.06\right)^{2}-1.95\left\{-0.282<x<-0.06\right\}
x=-0.283\left\{-1.836<y<-1.752\right\}
y=-3.2\left(x+0.06\right)^{2}-1.95\left\{-0.06<x<0.1\right\}
\left(y+2.2\right)^{2}=-0.4\left(x-0.173\right)\left\{-2.129<y<-2.03\right\}
y=-1.1x-2.43\left\{-0.208<x<-0.088\right\}
y=-0.7x-2.35\left\{-0.417<x<-0.209\right\}
y=-2x-2.9\left\{-0.525<x<-0.42\right\}
y=-0.6x-2.38\left\{-0.436<x<-0.119\right\}
y=-1.5x-2.78\left\{-0.558<x<-0.441\right\}
y=-5x-4.74\left\{-0.624<x<-0.559\right\}
y=-5x-4.48\left\{-0.57<x<-0.525\right\}
y=\left(x-0.1\right)^{2}-2.12\left\{-0.344<x<0.1\right\}
y=17\left(x+0.33\right)^{2}-1.925\left\{-0.44<x<-0.343\right\}
y=-6.5\left(x+0.56\right)^{2}-1.622\left\{-0.569<x<-0.439\right\}
y=-15\left(x+0.6\right)^{2}-1.61\left\{-0.622<x<-0.57\right\}
y=15x-8.4\left\{-1.8<y<-1.62\right\}
y=18\left(x-0.475\right)^{2}-1.82\left\{0.44<x<0.549\right\}
y=2\left(x-0.2\right)^{2}-1.58\left\{0.165<x<0.349\right\}
y=0.5x-1.55\left\{0.119<x<0.198\right\}
y=-4\left(x+0.1\right)^{2}-1.3\left\{-0.066<x<0.235\right\}
y=-0.7x-1.353\left\{-0.162<x<-0.067\right\}
y=16\left(x-0.21\right)^{2}-1.76\left\{0.157<x<0.235\right\}
y=-1.4x-1.496\left\{0.025<x<0.155\right\}
y=-3.4\left(x+0.186\right)^{2}-1.38\left\{-0.149<x<0.024\right\}
y=-0.8x-1.503\left\{-0.234<x<-0.147\right\}
y=16\left(x-0.13\right)^{2}-1.77\left\{0.094<x<0.173\right\}
y=-x-1.655\left\{-0.067<x<0.094\right\}
y=-0.8x-1.642\left\{-0.206<x<-0.068\right\}
y=-0.3x-1.539\left\{-0.344<x<-0.206\right\}
y=3\left(x+0.3\right)^{2}-1.44\left\{-0.44<x<-0.344\right\}
\left(y+1.479\right)^{2}=0.13\left(x+0.51\right)\left\{-1.583<y<-1.382\right\}
y=-7\left(x+0.44\right)^{2}-1.582\left\{-0.427<x<-0.3\right\}
x=-0.3\left\{-1.761<y<-1.719\right\}
y=9\left(x+0.35\right)^{2}-1.785\left\{-0.437<x<-0.3\right\}
y=4\left(x+0.5\right)^{2}-1.625\left\{-0.683<x<-0.546\right\}
y=-0.9x-2.07\left\{-0.846<x<-0.707\right\}
y=-2.5x-3.2\left\{-0.706<x<-0.683\right\}
y=35\left(x+0.84\right)^{2}-1.306\left\{-0.911<x<-0.845\right\}
y=-0.7x-1.35\left\{-0.69<x<-0.4\right\}
y=3.5\left(x+0.28\right)^{2}-1.12\left\{-0.4<x<-0.245\right\}
y=0.45x-1.005\left\{-0.247<x<-0.103\right\}
y=-0.7x-1.12\left\{-0.101<x<0.047\right\}
y=0.1x-1.145\left\{-0.2<x<-0.084\right\}
y=2\left(x-0.1\right)^{2}-1.22\left\{-0.083<x<0.1\right\}
y=-1.298\left\{-0.07<x<0.044\right\}
y=-0.7x-1.265\left\{0.046<x<0.123\right\}
\left(y+1.28\right)^{2}=0.5\left(x-0.11\right)\left\{-1.348<y<-1.22\right\}
\left(y+1.28\right)^{2}=0.5\left(x-0.145\right)\left\{-1.32<y<-1.238\right\}
x=-4.69\left\{-3.19<y<-2.85\right\}
\left(y+3.23\right)^{2}=0.17\left(x+4.68\right)\left\{-3.57<y<-3.28\right\}
y=-4\left(x+5.486\right)\left\{-3.28<y<-3.188\right\}
y=-20\left(x+4.18\right)\left\{-4.26<y<-3.57\right\}
\left(y+4.27\right)^{2}=-2.5\left(x+3.97\right)\left\{-4.94<y<-4.26\right\}
x=-3.6\left\{-3.42<y<-3.17\right\}
y=13\left(x+2.75\right)\left\{-4.55<y<-3.51\right\}
\left(y+4.4\right)^{2}=-2\left(x+3.09\right)\left\{-4.94<y<-4.53\right\}
y=20\left(x+2.35\right)\left\{-4.8<y<-3.45\right\}
y=x-2.22\left\{-2.72<x<-2.588\right\}
\left(y-1.9\right)^{2}=4.7\left(x+4.23\right)\left\{0.658<y<1.977\right\}
\left(y-1.9\right)^{2}=4.7\left(x+4.18\right)\left\{0.782<y<1.945\right\}
\left(y-1.9\right)^{2}=5\left(x+3.95\right)\left\{0.77<y<1.783\right\}
\left(y-1.9\right)^{2}=5\left(x+3.996\right)\left\{0.815<y<1.816\right\}
y=6\left(x+3.8\right)^{2}+0.6\left\{-3.9<x<-3.718\right\}
\left(y-0.72\right)^{2}=-0.17\left(x+3.68\right)\left\{0.644<y<0.77\right\}
\left(x+3.827\right)^{2}+\left(y-0.763\right)^{2}=0.008
\left(x+3.827\right)^{2}+\left(y-0.763\right)^{2}\le0.002
y=-1.7\left(x+3.9\right)^{2}+4.4\left\{-3.941<x<-3.7\right\}
y=-2.3\left(x+3.9\right)^{2}+4.46\left\{-3.866<x<-3.685\right\}
\left(y-3\right)^{2}=2\left(x+3.5\right)\left\{2.859<y<3.148\right\}
y=40\left(x+3.45\right)^{2}+2.8\left\{-3.489<x<-3.44\right\}
\left(y-2.92\right)^{2}=-0.9\left(x+3.424\right)\left\{2.8<y<3.154\right\}
\left(y-2.14\right)^{2}=-0.1\left(x+3.135\right)\left\{2.104<y<2.161\right\}
y=-7x-26.3\left\{-0.293<y<-0.0257\right\}
\frac{\left(x+3.28\right)^{2}}{2}+\left(y-2.31\right)^{2}=0.002
\frac{\left(0.5\left(x+3.28\right)+0.866\left(y-2.31\right)\right)^{2}}{2}+\left(-0.866\left(x+3.28\right)+0.5\left(y-2.31\right)\right)^{2}\le0.002
c_{1}=\operatorname{rgb}\left(220,220,230\right)
c_{2}=\operatorname{rgb}\left(247,233,223\right)
c_{3}=\operatorname{rgb}\left(210,180,130\right)
c_{4}=\operatorname{rgb}\left(60,115,128\right)
c_{5}=\operatorname{rgb}\left(70,80,140\right)
c_{6}=\operatorname{rgb}\left(255,255,255\right)
c_{7}=\operatorname{rgb}\left(255,251,240\right)
y\le-5\left(x+3.83\right)^{2}+4.48\left\{y\ge-0.35x+2.48\right\}\left\{y\le-1.5x-1.17\right\}
\left(y-4\right)^{2}\le0.7\left(x+4.19\right)\left\{y\ge-5\left(x+3.83\right)^{2}+4.48\right\}\left\{y\ge-5\left(x+3.83\right)^{2}+4.48\right\}\left\{x\le-3.9\right\}
y=3.76
y=3.5x+18.5
x=-4.067
y\le1.5x+10.4\left\{\left(y-4\right)^{2}\ge0.7\left(x+4.19\right)\right\}\left\{3.76\le y\le4.2\right\}
\left(y-4\right)^{2}\le0.7\left(x+4.19\right)\left\{y\le-0.35x+2.48\right\}\left\{y\ge3.76\right\}\left\{\left(y-3.86\right)^{2}\ge0.06\left(x+4.096\right)\right\}\left\{y\le-1.1x-0.66\right\}\left\{y\le3.5x+18.5\right\}
y\le3.5x+18.5\left\{y\le-0.35x+2.48\right\}\left\{y\ge-1.1x-0.66\right\}\left\{\left(y-3.86\right)^{2}\ge0.06\left(x+4.096\right)\right\}\left\{x\le-4.067\right\}\left\{y\le3.5x+18.5\right\}
\left(y-3.86\right)^{2}\le0.06\left(x+4.096\right)\left\{y\le-0.35x+2.48\right\}\left\{y\ge-0.05x+3.686\right\}
\left(y-2.7\right)^{2}\le3\left(x+4.8\right)\left\{\left(y-2.8\right)^{2}\ge4\left(x+4.1\right)\right\}\left\{\left(y-2.5\right)^{2}\le0.41\left(x+4.895\right)\right\}
\left(y-2.6\right)^{2}\le1.8\left(x+4.9\right)\left\{\left(y-2.5\right)^{2}\le0.41\left(x+4.895\right)\right\}\left\{\left(y-2.7\right)^{2}\ge3\left(x+4.8\right)\right\}
\left(y-2.6\right)^{2}\le1.8\left(x+4.9\right)\left\{\left(y-2.5\right)^{2}\ge0.41\left(x+4.895\right)\right\}\left\{\left(y-2.8\right)^{2}\ge4\left(x+4.1\right)\right\}\left\{y\le-1.1x-0.66\right\}\left\{y\le3.76\right\}\left\{y\ge2.5\right\}
\left(y-2.6\right)^{2}\ge1.8\left(x+4.9\right)\left\{\left(y-2.7\right)^{2}\le3\left(x+4.8\right)\right\}\left\{3.08\le y\le3.76\right\}
\left(y-2.8\right)^{2}\le4\left(x+4.1\right)\left\{\left(y-3.1\right)^{2}\ge3\left(x+4.14\right)\right\}\left\{y\ge-0.7x-0.98\right\}\left\{y\le-1.1x-2.1\right\}
\left(y-2.8\right)^{2}\le4\left(x+4.1\right)\left\{y\le-1.4x-1.836\right\}\left\{y\ge-1.1x-2.1\right\}\left\{y\ge3x+14.42\right\}
y\le3x+14.42\left\{\left(y-3\right)^{2}\ge2.5\left(x+4.11\right)\right\}\left\{\left(y-3.1\right)^{2}\le3\left(x+4.14\right)\right\}\left\{y\le-1.1x-2.1\right\}
y\ge-1.1x-2.1\left\{y\le3x+14.42\right\}\left\{\left(y-3\right)^{2}\ge2.5\left(x+4.11\right)\right\}\left\{x\le-3.6\right\}
\left(y-2.5\right)^{2}\ge0.41\left(x+4.895\right)\left\{y\ge-0.7x-0.98\right\}\left\{\left(y-2.8\right)^{2}\ge4\left(x+4.1\right)\right\}\left\{y\le1.97\right\}\left\{x\le-3.7\right\}
y\le-0.7x-0.98\left\{y\ge-0.8x-1.36\right\}\left\{y\le-1.4\left(x+3.1\right)^{2}+1.1\right\}
y\ge-1.4\left(x+3.1\right)^{2}+1.1\left\{y\le-0.7x-0.98\right\}\left\{y\ge-0.8x-1.36\right\}\left\{x\le-2.8\right\}
y\le-0.8x-1.36\left\{\left(y+1\right)^{2}\ge-5.3\left(x+2.36\right)\right\}\left\{\left(y+0.1\right)^{2}\le-3.3\left(x+2.57\right)\right\}
y\le-0.8x-1.36\left\{y\ge-1.1x-2.25\right\}\left\{y\le-1.4\left(x+3.1\right)^{2}+1.1\right\}
y\ge-x-0.7\left\{y\le3x+14.42\right\}\left\{y\le3\left(x+3.5\right)^{2}+3.22\right\}\left\{x\le-3.752\right\}
x\ge-3.752\left\{y\ge-0.5x+1.25\right\}\left\{y\le3x+14.42\right\}\left\{x\le-3.69\right\}\left\{y\le3\left(x+3.5\right)^{2}+3.22\right\}
x\ge-3.69\left\{y\le3\left(x+3.5\right)^{2}+3.22\right\}\left\{y\ge-0.5x+1.37\right\}\left\{y\le-2x-4.04\right\}
y\ge-5\left(x+3.83\right)^{2}+4.48\left\{y\le-0.35\left(x+3.1\right)^{2}+4.4\right\}\left\{y\ge-2\left(x+3.61\right)^{2}+3.73\right\}\left\{y\ge10\left(x+3.32\right)^{2}+3.573\right\}
y\ge-5\left(x+3.83\right)^{2}+4.48\left\{y\le-0.35\left(x+3.1\right)^{2}+4.4\right\}\left\{y\le10\left(x+3.32\right)^{2}+3.573\right\}\left\{-3.64<x<-3.5\right\}
y\le10\left(x+3.32\right)^{2}+3.573\left\{y\ge-6x-15.44\right\}\left\{\left(y-3.6\right)^{2}\le1.3\left(x+3.25\right)\right\}\left\{y\ge2.2x+10\right\}\left\{y\le-0.84\left(x+3.1\right)^{2}+4.4\right\}
y\le10\left(x+3.32\right)^{2}+3.573\left\{\left(y-3.6\right)^{2}\ge1.3\left(x+3.25\right)\right\}\left\{y\le-0.84\left(x+3.1\right)^{2}+4.4\right\}\left\{x\ge-3.2\right\}\left\{y\ge4\right\}
y\le-6x-15.44\left\{y\ge2.2x+10\right\}\left\{y\le3x+12.57\right\}
\left(y-3.77\right)^{2}\ge-2\left(x+3.22\right)\left\{y\le-6x-15.44\right\}\left\{\left(y-4\right)^{2}\le-2.2\left(x+3.06\right)\right\}\left\{y\le10\left(x+3.32\right)^{2}+3.573\right\}\left\{y\le3.75\right\}\left\{\left(y-2.92\right)^{2}\ge-0.9\left(x+3.424\right)\right\}
y\le2.2x+10\left\{y\ge-9x-24.5\right\}\left\{\left(y-3.3\right)^{2}\le-0.8\left(x+2.81\right)\right\}
\left(y-3.3\right)^{2}\ge-0.8\left(x+2.81\right)\left\{y\le2.2x+10\right\}\left\{y\ge15\left(x+3.03\right)\right\}\left\{y\ge3.3\right\}
y\le15\left(x+3.03\right)\left\{y\le2.2x+10\right\}\left\{y\ge3x+11.5\right\}\left\{\left(y-3.18\right)^{2}\ge0.25\left(x+2.78\right)\right\}\left\{y\le-0.84\left(x+3.1\right)^{2}+4.4\right\}
y\le3x+11.5\left\{y\ge\left(x+2.9\right)^{2}+3.39\right\}\left\{y\le-0.84\left(x+3.1\right)^{2}+4.4\right\}\left\{\left(y-3.66\right)^{2}\le-0.76\left(x+2.257\right)\right\}
y\le\left(x+2.9\right)^{2}+3.39\left\{y\ge1.4\left(x+2.7\right)^{2}+3.4\right\}\left\{\left(y-3.66\right)^{2}\le-0.76\left(x+2.257\right)\right\}\left\{y\le4x+14.23\right\}
y\le1.4\left(x+2.7\right)^{2}+3.4\left\{\left(y-3.5\right)^{2}\ge-0.7\left(x+2.315\right)\right\}\left\{\left(y-3.66\right)^{2}\le-0.76\left(x+2.257\right)\right\}\left\{x\ge-2.4\right\}
y\le3x+14.42\left\{y\le-x-0.7\right\}\left\{y\ge2.756\right\}\left\{y\ge5x+21.7\right\}
y\le3x+14.42\left\{y\ge-0.3x+1.515\right\}\left\{y\le2.756\right\}\left\{y\ge2.5x+12.38\right\}
\left(y-3.5\right)^{2}\ge-0.7\left(x+2.315\right)\left\{\left(y-3.66\right)^{2}\ge-0.76\left(x+2.257\right)\right\}\left\{y\le-8.7\left(x+2.3\right)^{2}+3.63\right\}\left\{y\le-25\left(x+2.007\right)\right\}\left\{y\ge-2.5\left(x+0.95\right)\right\}
y\le-2.5\left(x+0.95\right)\left\{\left(y-3.5\right)^{2}\ge-0.7\left(x+2.315\right)\right\}\left\{\left(y-3.06\right)^{2}\le0.35\left(x+2.51\right)\right\}\left\{y\ge0.9x+5.214\right\}
\left(y-3.06\right)^{2}\ge0.35\left(x+2.51\right)\left\{\left(y-3.5\right)^{2}\ge-0.7\left(x+2.315\right)\right\}\left\{y\le-2.5\left(x+0.95\right)\right\}\left\{3.256<y<3.43\right\}
\left(y-3\right)^{2}\le0.5\left(x+2.414\right)\left\{y\le0.9x+5.214\right\}\left\{y\le-2.5\left(x+0.95\right)\right\}\left\{y\ge2x+7.47\right\}
\left(y-3\right)^{2}\ge0.5\left(x+2.414\right)\left\{\left(y-3\right)^{2}\le\left(x+2.44\right)\right\}\left\{\left(y-2.7\right)^{2}\ge x+2.32\right\}\left\{\left(y-2.84\right)^{2}\ge-0.07\left(x+2.39\right)\right\}\left\{y\le2.87\right\}
\left(y-2.7\right)^{2}\ge x+2.32\left\{y\le2x+7.47\right\}\left\{\left(y-3\right)^{2}\le0.5\left(x+2.414\right)\right\}\left\{y\le2.912\right\}
y\ge-0.37x+1.35\left\{y\ge7\left(x+2.845\right)^{2}+2.405\right\}\left\{y\ge1.6\left(x+4.3\right)\right\}\left\{\left(y-3.3\right)^{2}\ge-0.8\left(x+2.81\right)\right\}\left\{y\ge15\left(x+3.03\right)\right\}\left\{y\le3.24\right\}
y\le7\left(x+2.845\right)^{2}+2.405\left\{y\le2.2x+10\right\}\left\{y\ge-0.37x+1.35\right\}\left\{x\le-2.845\right\}
y\ge7\left(x+2.845\right)^{2}+2.405\left\{\left(y-4\right)^{2}\ge-2.2\left(x+3.06\right)\right\}\left\{y\le2.2x+10\right\}\left\{y\le-9x-24.5\right\}\left\{\left(y-3.3\right)^{2}\le-0.8\left(x+2.81\right)\right\}
y\ge3x+12.57\left\{y\le-6x-15.44\right\}\left\{\left(y-4\right)^{2}\ge-2.2\left(x+3.06\right)\right\}\left\{y\ge2.2x+10\right\}\left\{y\ge-0.37x+1.35\right\}\left\{\left(y-2.92\right)^{2}\ge-0.9\left(x+3.424\right)\right\}\left\{y\le3.52\right\}
\left(y-2.92\right)^{2}\le-0.9\left(x+3.424\right)\left\{y\le40\left(x+3.45\right)^{2}+2.8\right\}\left\{y\ge-0.37x+1.35\right\}\left\{y\le3\left(x+3.5\right)^{2}+3.22\right\}\left\{y\ge-2x-4.04\right\}
y\le-2x-4.04\left\{y\le-0.5x+1.37\right\}\left\{x\ge-3.69\right\}\left\{y\ge-0.37x+1.35\right\}\left\{\left(y-3\right)^{2}\ge2\left(x+3.5\right)\right\}
y\ge-2x-4.04\left\{y\ge40\left(x+3.45\right)^{2}+2.8\right\}\left\{\left(y-3\right)^{2}\ge2\left(x+3.5\right)\right\}\left\{y\le-2\left(x+3.61\right)^{2}+3.73\right\}\left\{\left(x+3.49\right)^{2}+\left(y-3.24\right)^{2}\ge0.0013\right\}
y\le40\left(x+3.45\right)^{2}+2.8\left\{y\le-0.35x+2.48\right\}\left\{y\ge3\left(x+3.5\right)^{2}+3.22\right\}\left\{x\le-3.55\right\}
y\le3\left(x+3.5\right)^{2}+3.22\left\{y\le-0.35x+2.48\right\}\left\{y\le-0.05x+3.686\right\}\left\{y\ge-1.4x-1.836\right\}\left\{x\le-3.789\right\}
\left(y-3.86\right)^{2}\le0.06\left(x+4.096\right)\left\{y\le-1.4x-1.836\right\}
y\ge-1.1x-0.66\left\{\left(y-3.86\right)^{2}\ge0.06\left(x+4.096\right)\right\}\left\{y\le-1.4x-1.836\right\}\left\{x\ge-4.082\right\}
y\le5x+21.7\left\{y\ge-0.37x+1.35\right\}\left\{y\le-0.5x+1.25\right\}\left\{x\le-3.69\right\}
y\ge5x+21.7\left\{y\ge-x-0.7\right\}\left\{y\le-0.5x+1.25\right\}\left\{x\ge-3.752\right\}
y\le40\left(x+3.45\right)^{2}+2.8\left\{\left(y-3\right)^{2}\le2\left(x+3.5\right)\right\}\left\{\left(y-2.92\right)^{2}\le-0.9\left(x+3.424\right)\right\}
\left(y-3\right)^{2}\le2\left(x+3.5\right)\left\{y\le10\left(x+3.32\right)^{2}+3.573\right\}\left\{\left(y-3.77\right)^{2}\le-2\left(x+3.22\right)\right\}\left\{\left(y-2.92\right)^{2}\ge-0.9\left(x+3.424\right)\right\}\left\{\left(x+3.49\right)^{2}+\left(y-3.24\right)^{2}\ge0.0013\right\}
y\le15\left(x+3.03\right)\left\{y\ge7\left(x+2.845\right)^{2}+2.405\right\}\left\{y\ge1.6\left(x+4.3\right)\right\}\left\{y\le3x+11.5\right\}\left\{\left(y-3.09\right)^{2}\ge0.27\left(x+2.715\right)\right\}\left\{\left(y-3.18\right)^{2}\ge0.25\left(x+2.78\right)\right\}\left\{y\le3.163\right\}
\left(y-3.09\right)^{2}\le0.27\left(x+2.715\right)\left\{\left(y-3.24\right)^{2}\ge-0.5\left(x+2.61\right)\right\}\left\{\left(y-3.06\right)^{2}\ge0.35\left(x+2.51\right)\right\}\left\{\left(y-2.84\right)^{2}\le-0.07\left(x+2.39\right)\right\}
\left(y-2.84\right)^{2}\ge-0.07\left(x+2.39\right)\left\{\left(y-3.06\right)^{2}\ge0.35\left(x+2.51\right)\right\}\left\{\left(y-3.09\right)^{2}\le0.27\left(x+2.715\right)\right\}\left\{\left(y-3.24\right)^{2}\ge-0.5\left(x+2.61\right)\right\}\left\{\left(y-3.5\right)^{2}\le-0.7\left(x+2.315\right)\right\}
\left(y-3.5\right)^{2}\ge-0.7\left(x+2.315\right)\left\{\left(y-3.06\right)^{2}\ge0.35\left(x+2.51\right)\right\}\left\{\left(y-2.84\right)^{2}\ge-0.07\left(x+2.39\right)\right\}\left\{2.894<y<3.157\right\}
y\le7\left(x+2.845\right)^{2}+2.405\left\{\left(y-3.09\right)^{2}\ge0.27\left(x+2.715\right)\right\}\left\{y\ge0.55x+4.13\right\}\left\{-2.8<x<-2.411\right\}\left\{2.6<y<2.9\right\}
y\le7\left(x+2.845\right)^{2}+2.405\left\{y\le0.55x+4.13\right\}\left\{y\ge16\left(x+2.64\right)^{2}+2.63\right\}
y\le7\left(x+2.845\right)^{2}+2.405\left\{y\le16\left(x+2.64\right)^{2}+2.63\right\}\left\{y\ge1.6\left(x+4.3\right)\right\}\left\{2.583<y<2.64\right\}\left\{x\ge-2.685\right\}
\left(y-3.09\right)^{2}\ge0.27\left(x+2.715\right)\left\{\left(y-3.5\right)^{2}\le-0.7\left(x+2.315\right)\right\}\left\{y\le1.4\left(x+2.7\right)^{2}+3.4\right\}\left\{y\le4x+14.23\right\}\left\{y\ge-2.8\left(x+2.71\right)^{2}+3.24\right\}
\left(y-3.09\right)^{2}\le0.27\left(x+2.715\right)\left\{\left(y-3.24\right)^{2}\le-0.5\left(x+2.61\right)\right\}\left\{y\ge-2.8\left(x+2.71\right)^{2}+3.24\right\}
\left(y-3.18\right)^{2}\le0.25\left(x+2.78\right)\left\{y\ge-2.8\left(x+2.71\right)^{2}+3.24\right\}\left\{y\ge4x+14.23\right\}
\left(y-3\right)^{2}\le2\left(x+3.5\right)\left\{\left(y-2.92\right)^{2}\le-0.9\left(x+3.424\right)\right\}\left\{y\ge40\left(x+3.45\right)^{2}+2.8\right\}
y\le-25\left(x+2.65\right)^{2}+3.21\left\{\frac{\left(0.707\left(x+2.69\right)+0.707\left(y-3.07\right)\right)^{2}}{0.0006}+\frac{\left(-0.707\left(x+2.69\right)+0.707\left(y-3.07\right)\right)^{2}}{0.0003}\ge1\right\}\left\{\left(y-3.09\right)^{2}\le0.27\left(x+2.715\right)\right\}\left\{\left(y-3.24\right)^{2}\le-0.5\left(x+2.61\right)\right\}\left\{\left(x+2.692\right)^{2}+\left(y-3.152\right)^{2}\ge0.0003\right\}
y\ge-25\left(x+2.65\right)^{2}+3.21\left\{\left(y-3.09\right)^{2}\le0.27\left(x+2.715\right)\right\}\left\{\left(x+2.692\right)^{2}+\left(y-3.152\right)^{2}\ge0.0003\right\}\left\{\frac{\left(0.707\left(x+2.69\right)+0.707\left(y-3.117\right)\right)^{2}}{0.0008}+\frac{\left(-0.707\left(x+2.69\right)+0.707\left(y-3.117\right)\right)^{2}}{0.0004}\ge1\right\}\left\{-2.711<x<-2.68\right\}
y\ge-25\left(x+2.65\right)^{2}+3.21\left\{\left(y-3.09\right)^{2}\le0.27\left(x+2.715\right)\right\}\left\{\left(x+2.692\right)^{2}+\left(y-3.152\right)^{2}\ge0.0003\right\}\left\{\frac{\left(0.707\left(x+2.69\right)+0.707\left(y-3.117\right)\right)^{2}}{0.0008}+\frac{\left(-0.707\left(x+2.69\right)+0.707\left(y-3.117\right)\right)^{2}}{0.0004}\ge1\right\}\left\{-2.711<x<-2.68\right\}
y\le-0.3x+1.515\left\{y\ge5x+17.83\right\}\left\{\left(y-2.403\right)^{2}\ge-0.06\left(x+3.07\right)\right\}\left\{2.428\le y\le2.5\right\}
y\le-0.3x+1.515\left\{y\le3x+14.42\right\}\left\{y\ge-0.3x+1.43\right\}\left\{\left(y-2.403\right)^{2}\le-0.06\left(x+3.07\right)\right\}
\left(y-2.403\right)^{2}\le-0.06\left(x+3.07\right)\left\{y\ge-0.3x+1.515\right\}
\left(y-2.403\right)^{2}\ge-0.06\left(x+3.07\right)\left\{y\le3x+14.42\right\}\left\{y\le-0.3x+1.515\right\}\left\{y\ge2.55\right\}
y\le3x+14.42\left\{y\le-0.3x+1.43\right\}\left\{\left(y-3\right)^{2}\le2.5\left(x+4.11\right)\right\}\left\{y\ge-0.35\left(x+4\right)^{2}+2.38\right\}\left\{y\ge5x+19.46\right\}
y\le5x+19.46\left\{y\le-0.3x+1.43\right\}\left\{\left(y-2.35\right)^{2}\ge0.08\left(x+3.345\right)\right\}\left\{y\ge4x+15.72\right\}\left\{y\ge-0.3x+1.16\right\}
\left(y-2.35\right)^{2}\le0.08\left(x+3.345\right)\left\{y\ge4x+15.72\right\}
y\le4x+15.72\left\{y\le-0.3x+1.43\right\}\left\{\left(y-2.35\right)^{2}\ge0.08\left(x+3.345\right)\right\}\left\{y\ge2.376\right\}
y\le4x+15.72\left\{\left(y-2.26\right)^{2}\ge0.06\left(x+3.365\right)\right\}\left\{y\ge-0.3x+1.16\right\}\left\{\left(y-2.14\right)^{2}\le-0.1\left(x+3.135\right)\right\}\left\{y\le2.264\right\}
\left(y-2.26\right)^{2}\le0.06\left(x+3.365\right)\left\{y\le-0.3x+1.22\right\}\left\{\left(y-2.14\right)^{2}\le-0.1\left(x+3.135\right)\right\}
y\le-0.35\left(x+4\right)^{2}+2.38\left\{\left(y-3\right)^{2}\le2.5\left(x+4.11\right)\right\}\left\{y\ge-0.36\left(x+4\right)^{2}+2.3\right\}\left\{y\ge-0.3x+1.16\right\}\left\{y\ge5x+19.46\right\}
y\le-0.3x+1.16\left\{\left(y-3\right)^{2}\le2.5\left(x+4.11\right)\right\}\left\{y\ge-0.36\left(x+4\right)^{2}+2.3\right\}\left\{x\le-3.66\right\}
y\le6x+21\left\{\left(y-2.14\right)^{2}\ge-0.1\left(x+3.135\right)\right\}\left\{\left(y-2.403\right)^{2}\ge-0.06\left(x+3.07\right)\right\}\left\{y\le-2x-3.8\right\}\left\{y\ge-0.3x+1.16\right\}
y\le-0.3x+1.16\left\{\left(y-1.976\right)^{2}\ge-0.1\left(x+2.98\right)\right\}\left\{\left(y-2.3\right)^{2}\le2.5\left(x+3.016\right)\right\}\left\{y\le-2x-3.8\right\}
y\le-0.3x+1.16\left\{\left(y-1.976\right)^{2}\ge-0.1\left(x+2.98\right)\right\}\left\{\left(y-2.3\right)^{2}\ge2.5\left(x+3.016\right)\right\}\left\{1.98<y<2.1\right\}
y\ge-2x-3.8\left\{y\le-1.2x-1.67\right\}\left\{\left(y-0.1\right)^{2}\ge-2.5\left(x+2.04\right)\right\}\left\{y\ge0.8\right\}
y=0.8\left\{-2.236<x<-2.127\right\}
y\ge-1.2x-1.67\left\{y\le-0.75x-0.72\right\}\left\{y\ge0.8\right\}
y\le0.8\left\{y\ge0.7\left(x+1.4\right)^{2}+0.43\right\}\left\{y\le-0.75x-0.72\right\}
y\ge-0.75x-0.72\left\{y\le1.2\left(x+1.4\right)^{2}+0.45\right\}\left\{y\ge0.7\left(x+1.4\right)^{2}+0.43\right\}\left\{-1.751<x<-1.4\right\}
y\le-0.36\left(x+4\right)^{2}+2.3\left\{\left(y-3\right)^{2}\le2.5\left(x+4.11\right)\right\}\left\{\left(y-1.2\right)^{2}\le-3\left(x+3\right)\right\}\left\{\left(y-2\right)^{2}\ge1.6\left(x+3.18\right)\right\}
y\le-0.3x+1.16\left\{y\ge-0.36\left(x+4\right)^{2}+2.3\right\}\left\{\left(y-1.2\right)^{2}\le-3\left(x+3\right)\right\}\left\{x\ge-3.487\right\}
\left(y-3\right)^{2}\ge2.5\left(x+4.11\right)\left\{y\ge-1.1x-2.1\right\}\left\{y^{2}\le-1.7\left(x+1.97\right)\right\}\left\{y\ge0.48\left(x+3.13\right)^{2}-0.21\right\}
y^{2}\ge-1.7\left(x+1.97\right)\left\{y\ge-1.1x-2.1\right\}\left\{\left(y-3\right)^{2}\ge2.5\left(x+4.11\right)\right\}\left\{y^{2}\ge-1.7\left(x+1.97\right)\right\}\left\{1.33\le y\le1.87\right\}
y^{2}\ge-1.7\left(x+1.97\right)\left\{\left(y-1.2\right)^{2}\ge-3\left(x+3\right)\right\}\left\{\left(y-2\right)^{2}\ge1.6\left(x+3.18\right)\right\}\left\{1.017<y<1.571\right\}
\left(y-1.9\right)^{2}\le5\left(x+3.95\right)\left\{y\le-0.7x-0.98\right\}\left\{y\le-0.8x-1.36\right\}\left\{\left(y+1\right)^{2}\le-5.3\left(x+2.36\right)\right\}\left\{y\ge0.48\left(x+3.13\right)^{2}-0.21\right\}
\left(y+0.1\right)^{2}\ge-3.3\left(x+2.57\right)\left\{y\le-1.1x-2.25\right\}\left\{y\ge0.48\left(x+3.13\right)^{2}-0.21\right\}\left\{y\le0.935\right\}\left\{\left(y+1\right)^{2}\ge-5.3\left(x+2.36\right)\right\}
y\ge-1.1x-2.25\left\{y\ge-1.4\left(x+3.1\right)^{2}+1.1\right\}\left\{y\le-1.1x-2.1\right\}\left\{y\ge0.48\left(x+3.13\right)^{2}-0.21\right\}\left\{y\le0.803\right\}
\left(y-1.9\right)^{2}\ge5\left(x+3.95\right)\left\{\left(y-0.72\right)^{2}\ge-0.17\left(x+3.68\right)\right\}\left\{y\ge-1.3x-4.45\right\}\left\{y\ge0.3\left(x+3.13\right)^{2}-0.21\right\}\left\{y\le0.761\right\}
y\le-1.3x-4.45\left\{y^{2}\ge-0.8\left(x+3.55\right)\right\}\left\{y\ge0.3\left(x+3.13\right)^{2}-0.21\right\}\left\{y\le3x+15.06\right\}
y^{2}\le-0.8\left(x+3.55\right)\left\{y^{2}\le6\left(x+4.85\right)\right\}\left\{y\ge-\left(x+3.87\right)^{2}+0.23\right\}\left\{y\ge0.5x+2.22\right\}\left\{y\ge0.38\left(x+5\right)^{2}-0.12\right\}
y^{2}\le-0.8\left(x+3.55\right)\left\{y\le0.38\left(x+5\right)^{2}-0.12\right\}\left\{y\ge-\left(x+3.87\right)^{2}+0.23\right\}\left\{x\ge-4.208\right\}
y\ge-1.3x-4.45\left\{\left(y-0.72\right)^{2}\le-0.17\left(x+3.68\right)\right\}\left\{y\le6\left(x+3.8\right)^{2}+0.6\right\}
y\ge6\left(x+3.8\right)^{2}+0.6\left\{\left(y-1.9\right)^{2}\ge4.7\left(x+4.23\right)\right\}\left\{y\le0.97\right\}
\left(y-0.72\right)^{2}\ge-0.17\left(x+3.68\right)\left\{y\ge-1.3x-4.46\right\}\left\{\left(y-1.9\right)^{2}\ge4.7\left(x+4.23\right)\right\}\left\{\left(y-1.3\right)^{2}\le2.4\left(x+4.62\right)\right\}\left\{\left(y-2.5\right)^{2}\ge0.41\left(x+4.895\right)\right\}\left\{y\ge0.972\right\}
y\le-1.3x-4.46\left\{\left(y-1.3\right)^{2}\le2.4\left(x+4.62\right)\right\}\left\{y\ge3x+15.06\right\}
y^{2}\ge6\left(x+4.85\right)\left\{\left(y+0.2\right)^{2}\le2\left(x+4.87\right)\right\}\left\{y\ge0.38\left(x+5\right)^{2}-0.12\right\}
\left(y-1.9\right)^{2}\le4.7\left(x+4.23\right)\left\{y\le-0.7x-0.98\right\}\left\{\left(y-1.9\right)^{2}\ge5\left(x+3.95\right)\right\}\left\{y\ge6\left(x+3.8\right)^{2}+0.6\right\}\left\{\left(y-0.72\right)^{2}\le-0.17\left(x+3.68\right)\right\}\left\{\left(x+3.827\right)^{2}+\left(y-0.763\right)^{2}\ge0.002\right\}
\left(y-0.72\right)^{2}\ge-0.17\left(x+3.68\right)\left\{\left(y-1.9\right)^{2}\le4.7\left(x+4.23\right)\right\}\left\{\left(y-1.9\right)^{2}\ge5\left(x+3.95\right)\right\}\left\{y\le-0.7x-0.98\right\}\left\{y\ge0.75\right\}
\left(y-1.2\right)^{2}\ge-3\left(x+3\right)\left\{y\le-0.3x+1.16\right\}\left\{\left(y-1.976\right)^{2}\le-0.1\left(x+2.98\right)\right\}
\left(y-1.976\right)^{2}\ge-0.1\left(x+2.98\right)\left\{\left(y-2.3\right)^{2}\ge2.5\left(x+3.016\right)\right\}\left\{\left(y-2\right)^{2}\le1.6\left(x+3.18\right)\right\}\left\{\left(y-0.1\right)^{2}\le-2.5\left(x+2.04\right)\right\}
\left(y-0.1\right)^{2}\ge-2.5\left(x+2.04\right)\left\{\left(y-2\right)^{2}\le1.6\left(x+3.18\right)\right\}\left\{\left(y-1.976\right)^{2}\ge-0.1\left(x+2.98\right)\right\}\left\{\left(y-2.3\right)^{2}\ge2.5\left(x+3.016\right)\right\}\left\{1.28\le y\le2\right\}
\left(y-2\right)^{2}\le1.6\left(x+3.18\right)\left\{\left(y-1.2\right)^{2}\le-3\left(x+3\right)\right\}\left\{\left(y-1.976\right)^{2}\le-0.1\left(x+2.98\right)\right\}
\left(y-2\right)^{2}\ge1.6\left(x+3.18\right)\left\{y^{2}\ge-1.7\left(x+1.97\right)\right\}\left\{y^{2}\le-1.3\left(x+1.78\right)\right\}\left\{y\ge0.4\left(x+3.13\right)^{2}-0.4\right\}
y^{2}\ge-1.3\left(x+1.78\right)\left\{\left(y-0.1\right)^{2}\ge-2.5\left(x+2.04\right)\right\}\left\{y\le0.8\right\}\left\{y\ge0.4\left(x+3.13\right)^{2}-0.4\right\}\left\{y\le-1.3x-1.96\right\}
y\le0.48\left(x+3.13\right)^{2}-0.21\left\{y^{2}\le-1.7\left(x+1.97\right)\right\}\left\{y\ge0.4\left(x+3.13\right)^{2}-0.4\right\}\left\{y\le0.3\left(x+3.13\right)^{2}-0.21\right\}\left\{y\le1.4x+4.89\right\}
y\ge0.3\left(x+3.13\right)^{2}-0.21\left\{y\le0.48\left(x+3.13\right)^{2}-0.21\right\}\left\{y^{2}\le-1.7\left(x+1.97\right)\right\}\left\{x\ge-3.12\right\}
y\le0.4\left(x+3.13\right)^{2}-0.4\left\{y\ge0.26\left(x+3.13\right)^{2}-0.4\right\}\left\{y\le1.4x+4.89\right\}\left\{x\le-3.132\right\}
\left(y+0.2\right)^{2}\le2\left(x+4.87\right)\left\{y\le0.38\left(x+5\right)^{2}-0.12\right\}\left\{y\ge0.2x+0.64\right\}\left\{y\ge0.4x+1.58\right\}\left\{y\ge-\left(x+3.87\right)^{2}+0.23\right\}\left\{x\le-4.2\right\}
y\le-\left(x+3.87\right)^{2}+0.23\left\{y\ge0.4x+1.58\right\}
y\le0.4x+1.58\left\{y\ge-1.8\left(x+3.82\right)^{2}+0.03\right\}\left\{y^{2}\le-0.8\left(x+3.55\right)\right\}\left\{x>-3.92\right\}
y\le0.2x+0.725\left\{x\ge-3.94\right\}\left\{y\ge0.2x+0.45\right\}\left\{y\le-7x-26.3\right\}
y\le-1.8\left(x+3.82\right)^{2}+0.03\left\{y\ge1.4x+4.89\right\}\left\{y\ge-7x-26.3\right\}
y\le-7x-26.3\left\{y\ge0.2x+0.725\right\}\left\{y\le-1.8\left(x+3.82\right)^{2}+0.03\right\}
y\ge-1.8\left(x+3.82\right)^{2}+0.03\left\{y\le0.4x+1.58\right\}\left\{y\ge-7\left(x+4.66\right)^{2}-1.33\right\}\left\{\left(y+1.4\right)^{2}\le12\left(x+4.93\right)\right\}\left\{x\le-3.95\right\}
y\le-1.8\left(x+3.82\right)^{2}+0.03\left\{y\ge-7\left(x+4.66\right)^{2}-1.33\right\}\left\{y+1.56\ge-0.5\left(x+4.3\right)^{2}\right\}\left\{x\le-3.94\right\}\left\{y\le0.2x+0.725\right\}
y\le-7\left(x+4.66\right)^{2}-1.33\left\{y+1.56\ge-0.5\left(x+4.3\right)^{2}\right\}\left\{\left(y+1.7\right)^{2}\ge12\left(x+4.77\right)\right\}
\left(y+1.5\right)^{2}\le11\left(x+4.56\right)\left\{y\le-7\left(x+4.66\right)^{2}-1.33\right\}\left\{y+1.56\ge-0.5\left(x+4.3\right)^{2}\right\}
x\ge-3.94\left\{y\le0.2x+0.45\right\}\left\{y+1.56\ge-0.5\left(x+4.3\right)^{2}\right\}\left\{y\le0.26\left(x+3.13\right)^{2}-0.4\right\}\left\{y\le-2x-5.98\right\}\left\{y\ge0.43x-2.124\right\}
y+1.56\le-0.5\left(x+4.3\right)^{2}\left\{\left(y+2\right)^{2}\ge-12\left(x+3.8\right)\right\}\left\{y\ge-0.7\left(x+4\right)^{2}-2.77\right\}\left\{y\ge0.32\left(x+3\right)^{2}-3.27\right\}
y+2.69\le2\left(x+4\right)^{2}\left\{y\ge-1.5x-8.83\right\}\left\{y\ge-0.7\left(x+4\right)^{2}-2.77\right\}\left\{\left(y+2\right)^{2}\le-12\left(x+3.8\right)\right\}\left\{y\le-2.69\right\}
y\ge-2.69\left\{y+2.69\le2\left(x+4\right)^{2}\right\}\left\{\left(y+2\right)^{2}\le-12\left(x+3.8\right)\right\}\left\{x\ge-4\right\}
\left(y+3.5\right)^{2}\ge-13\left(x+3.43\right)\left\{y\le-0.7\left(x+4\right)^{2}-2.77\right\}\left\{y\ge0.32\left(x+3\right)^{2}-3.27\right\}
y\ge-2x-5.98\left\{y\le-0.2x-0.98\right\}\left\{y\le-2.17\left(x+2.77\right)^{2}-0.4\right\}
y\ge-2x-5.98\left\{y\ge-\left(x+1.4\right)^{2}-2.77\right\}\left\{y\ge0.6x-2.04\right\}\left\{\left(y+1.3\right)^{2}\ge1.5\left(x+2.1\right)\right\}\left\{\left(y+3.4\right)^{2}\le-1.8\left(x+0.75\right)\right\}\left\{y\ge-2.17\left(x+2.77\right)^{2}-0.4\right\}
y\ge-2.17\left(x+2.77\right)^{2}-0.4\left\{\left(y+3.4\right)^{2}\ge-1.8\left(x+0.75\right)\right\}\left\{\left(y+1.3\right)^{2}\ge1.5\left(x+2.1\right)\right\}\left\{-2.158<y<-1.662\right\}
\left(y+3\right)^{2}\ge-0.45\left(x+1.25\right)\left\{y\le-\left(x+1.4\right)^{2}-2.77\right\}\left\{y\ge0.6x-2.04\right\}
y\le-0.7\left(x+4\right)^{2}-2.77\left\{y\ge-1.5x-8.83\right\}\left\{y\ge-0.7\left(x+4\right)^{2}-2.9\right\}\left\{\left(y+3.5\right)^{2}\le-13\left(x+3.43\right)\right\}
\left(y+3\right)^{2}\le2\left(x+3.958\right)\left\{y\le-0.7\left(x+4\right)^{2}-2.9\right\}\left\{y\ge-0.7\left(x+4\right)^{2}-3.06\right\}\left\{\left(y+3.5\right)^{2}\le-13\left(x+3.43\right)\right\}
y\le-0.7\left(x+4\right)^{2}-3.06\left\{x\ge-3.6\right\}\left\{y\ge0.23\left(x+3\right)^{2}-3.51\right\}
y\ge-0.7\left(x+4\right)^{2}-3.06\left\{\left(y+3.5\right)^{2}\ge-13\left(x+3.43\right)\right\}\left\{y\le0.32\left(x+3\right)^{2}-3.27\right\}\left\{y\ge0.23\left(x+3\right)^{2}-3.51\right\}\left\{y\ge-\left(x+1.4\right)^{2}-2.77\right\}\left\{y\le0.43x-2.124\right\}\left\{-3.21<x<-1.665\right\}
y\ge0.43x-2.124\left\{y\le0.32\left(x+3\right)^{2}-3.27\right\}\left\{y\ge-0.7\left(x+4\right)^{2}-3.06\right\}\left\{\left(y+3.5\right)^{2}\ge-13\left(x+3.43\right)\right\}\left\{x\le-2.3\right\}
y\le-\left(x+1.4\right)^{2}-2.77\left\{y\ge0.28\left(x+2.39\right)^{2}-3.58\right\}
y\ge-\left(x+1.4\right)^{2}-2.77\left\{y\le0.23\left(x+3\right)^{2}-3.51\right\}\left\{y\le20\left(x+2.35\right)\right\}\left\{y\ge0.3\left(x+2.52\right)^{2}-3.62\right\}\left\{\left(y+3.4\right)^{2}\le-1.8\left(x+0.75\right)\right\}\left\{y\le0.6x-2.04\right\}
y\ge0.6x-2.04\left\{y\le0.23\left(x+3\right)^{2}-3.51\right\}\left\{y\le20\left(x+2.35\right)\right\}\left\{-3.56<y<-3.369\right\}
y\le-\left(x+1.4\right)^{2}-2.77\left\{y\ge0.3\left(x+2.52\right)^{2}-3.62\right\}\left\{y\le0.28\left(x+2.39\right)^{2}-3.58\right\}
y\le0.3\left(x+2.52\right)^{2}-3.62\left\{y\ge-\left(x+1.4\right)^{2}-2.77\right\}\left\{\left(y+2.9\right)^{2}\le-0.2\left(x+0.9\right)\right\}\left\{x\ge-1.1\right\}
\left(y+3\right)^{2}\le2\left(x+3.958\right)\left\{y\le-0.7\left(x+4\right)^{2}-3.06\right\}\left\{x\le-3.6\right\}
y\ge-20\left(x+4.18\right)\left\{y\le3\left(x+4.06\right)^{2}-3.36\right\}\left\{\left(y+3\right)^{2}\ge2\left(x+3.958\right)\right\}\left\{-4.95\le y\le-3.291\right\}\left\{y\ge x-2.22\right\}\left\{y\ge20\left(x+2.35\right)\right\}
y\le-20\left(x+4.18\right)\left\{\left(y+4.27\right)^{2}\ge-2.5\left(x+3.97\right)\right\}\left\{-4.95<y<-4.26\right\}
\left(y+3\right)^{2}\le2\left(x+3.958\right)\left\{x\ge-3.6\right\}\left\{y\le0.23\left(x+3\right)^{2}-3.51\right\}\left\{y\ge20\left(x+2.35\right)\right\}
y\le-7\left(x+4.66\right)^{2}-1.33\left\{\left(y+1.7\right)^{2}\le12\left(x+4.77\right)\right\}\left\{\left(y+1.5\right)^{2}\ge11\left(x+4.56\right)\right\}\left\{y\ge-0.76\left(x+4.15\right)^{2}-2.61\right\}\left\{\left(x+4.677\right)^{2}+\left(y+1.47\right)^{2}>0.001\right\}
y+1.56\le-0.5\left(x+4.3\right)^{2}\left\{y\ge-\left(x+4.2\right)^{2}-1.74\right\}\left\{y\ge-0.37\left(x+4.2\right)^{2}-1.74\right\}\left\{\left(y+2\right)^{2}\le-12\left(x+3.8\right)\right\}\left\{y\ge-6x-32.1\right\}\left\{\left(y+1.7\right)^{2}\ge12\left(x+4.77\right)\right\}
y+1.56\le-0.5\left(x+4.3\right)^{2}\left\{y\ge-\left(x+4.2\right)^{2}-1.74\right\}\left\{y\ge-0.37\left(x+4.2\right)^{2}-1.74\right\}\left\{\left(y+2\right)^{2}\le-12\left(x+3.8\right)\right\}\left\{y\ge-6x-32.1\right\}\left\{\left(y+1.5\right)^{2}\le11\left(x+4.56\right)\right\}
y\le-0.37\left(x+4.2\right)^{2}-1.74\left\{y\ge-\left(x+4.2\right)^{2}-1.74\right\}\left\{\left(y+2\right)^{2}\le-12\left(x+3.8\right)\right\}\left\{x>-4.2\right\}
y\le-0.46\left(x+4.24\right)^{2}-1.87\left\{y\ge-6x-32.1\right\}\left\{y+2.85\ge2.5\left(x+4.7\right)^{2}\right\}\left\{\left(y+1.7\right)^{2}\ge12\left(x+4.77\right)\right\}
\left(y+1.5\right)^{2}\le11\left(x+4.56\right)\left\{y\le-0.46\left(x+4.24\right)^{2}-1.87\right\}\left\{y\le-0.7\left(x+4.24\right)^{2}-1.87\right\}\left\{y\ge-2.61\right\}\left\{\left(y+2\right)^{2}\le-12\left(x+3.8\right)\right\}
y\ge-0.7\left(x+4.24\right)^{2}-1.87\left\{\left(y+1.5\right)^{2}\le11\left(x+4.56\right)\right\}\left\{y\le-0.46\left(x+4.24\right)^{2}-1.87\right\}\left\{x\le-4.24\right\}
y\le-2.61\left\{\left(y+1.5\right)^{2}\le11\left(x+4.56\right)\right\}\left\{y\ge-0.76\left(x+4.15\right)^{2}-2.61\right\}\left\{x\le-4.15\right\}
y\le-0.76\left(x+4.15\right)^{2}-2.61\left\{y+2.85\ge2.5\left(x+4.7\right)^{2}\right\}\left\{y\ge30\left(x+4.5\right)\right\}\left\{\left(y+1.7\right)^{2}\le12\left(x+4.77\right)\right\}
y\ge-1.5x-8.83\left\{y\le-2.61\right\}\left\{y\ge-2.69\right\}\left\{y+2.69\ge2\left(x+4\right)^{2}\right\}\left\{\left(y+2\right)^{2}\le-12\left(x+3.8\right)\right\}
y+2.69\le2\left(x+4\right)^{2}\left\{y\ge-1.5x-8.83\right\}\left\{y\ge-2.69\right\}\left\{x\le-4\right\}\left\{y\le-2.66\right\}
y+2.85\le2.5\left(x+4.7\right)^{2}\left\{x\ge-4.69\right\}\left\{y\ge-4\left(x+5.486\right)\right\}\left\{\left(y+3.23\right)^{2}\le0.17\left(x+4.68\right)\right\}\left\{\left(y+2.8\right)^{2}\ge1.1\left(x+4.68\right)\right\}
\left(y+3.23\right)^{2}\ge0.17\left(x+4.68\right)\left\{y\ge-4\left(x+5.486\right)\right\}\left\{x\ge-4.69\right\}\left\{y+2.85\le2.5\left(x+4.7\right)^{2}\right\}\left\{y\ge30\left(x+4.5\right)\right\}\left\{y\ge-3.228\right\}
\left(y+2.8\right)^{2}\le1.1\left(x+4.68\right)\left\{\left(y+3.23\right)^{2}\le0.17\left(x+4.68\right)\right\}\left\{y\le-20\left(x+4.18\right)\right\}\left\{y\le-3.36\right\}
y\le-0.76\left(x+4.15\right)^{2}-2.61\left\{y\le30\left(x+4.5\right)\right\}\left\{\left(y+2.8\right)^{2}\le1.1\left(x+4.68\right)\right\}\left\{y\ge14\left(x+4.404\right)^{2}-3.335\right\}
y\le30\left(x+4.5\right)\left\{\left(y+2.8\right)^{2}\le1.1\left(x+4.68\right)\right\}\left\{y\le14\left(x+4.404\right)^{2}-3.335\right\}\left\{x<-4.404\right\}\left\{y\ge-3.329\right\}
y\le14\left(x+4.404\right)^{2}-3.335\left\{y\ge-0.4x-5.06\right\}\left\{y\ge6\left(x+4.29\right)^{2}-3.34\right\}\left\{y\le-1.5x-8.83\right\}\left\{y\le-2.61\right\}
y\le6\left(x+4.29\right)^{2}-3.34\left\{y\ge11\left(x+4.19\right)^{2}-3.36\right\}\left\{y\le-1.5x-8.83\right\}
y\le11\left(x+4.19\right)^{2}-3.36\left\{y\ge3\left(x+4.06\right)^{2}-3.36\right\}\left\{\left(y+3\right)^{2}\ge2\left(x+3.958\right)\right\}\left\{y\le-1.5x-8.83\right\}\left\{x\ge-4.145\right\}
y\le0.4\left(x+3.13\right)^{2}-0.4\left\{y\ge-2x-5.98\right\}\left\{y\ge-0.2x-0.98\right\}\left\{y^{2}\le-4\left(x+2.49\right)\right\}
y\le0.4\left(x+3.13\right)^{2}-0.4\left\{y\ge7\left(x+2.04\right)^{2}-0.13\right\}\left\{y\le-0.7x-1.16\right\}
y\le7\left(x+2.04\right)^{2}-0.13\left\{y\ge-16\left(x+2.1\right)^{2}-0.11\right\}\left\{y\le-0.7x-1.16\right\}\left\{y\ge1.5x+2.82\right\}\left\{x\ge-2.08\right\}
y\le-16\left(x+2.1\right)^{2}-0.11\left\{y\ge-2.17\left(x+2.77\right)^{2}-0.4\right\}\left\{y\ge-0.4x-2.14\right\}\left\{y\ge-2.6\left(x+1.3\right)^{2}-0.4\right\}
y\ge-16\left(x+2.1\right)^{2}-0.11\left\{y\le7\left(x+2.04\right)^{2}-0.13\right\}\left\{y\le0.4\left(x+3.13\right)^{2}-0.4\right\}\left\{y\ge-2.17\left(x+2.77\right)^{2}-0.4\right\}\left\{y^{2}\ge-4\left(x+2.49\right)\right\}\left\{x\le-2.078\right\}\left\{-0.853<y<-0.021\right\}
y\ge-16\left(x+2.1\right)^{2}-0.11\left\{y\le0.4x+0.42\right\}\left\{y\le0.1x-0.137\right\}\left\{y\ge-2.6\left(x+1.3\right)^{2}-0.4\right\}\left\{y\le-0.6x-1.34\right\}\left\{-1.975<x<-1.46\right\}
y\ge0.4x+0.42\left\{y\ge-16\left(x+2.1\right)^{2}-0.11\right\}\left\{y\le-4\left(x+2\right)^{2}-0.243\right\}
y\ge-16\left(x+2.1\right)^{2}-0.11\left\{y\ge-4\left(x+2\right)^{2}-0.243\right\}\left\{y\le1.5x+2.82\right\}\left\{y\ge0.1x-0.137\right\}\left\{y\ge1.6x+2.64\right\}\left\{y\le-0.7x-1.16\right\}
y\ge-0.7x-1.16\left\{y\le0.4\left(x+3.13\right)^{2}-0.4\right\}\left\{\left(y+0.07\right)^{2}\ge-0.03\left(x+1.475\right)\right\}\left\{y\le-0.8x-1.24\right\}\left\{y\ge-0.05\right\}\left\{y\le0.246\right\}
\left(y+0.07\right)^{2}\le-0.03\left(x+1.475\right)\left\{y\ge-0.7x-1.16\right\}
y\ge1.3\left(x+1.5\right)^{2}+0.078\left\{y\le0.4\left(x+3.13\right)^{2}-0.4\right\}\left\{y\le-1.3x-1.96\right\}
y\ge-1.3x-1.96\left\{y\ge1.3\left(x+1.5\right)^{2}+0.078\right\}\left\{y\le1.6\left(x+1.38\right)^{2}+0.1\right\}\left\{y\le0.3\right\}
y\le-2.6\left(x+1.3\right)^{2}-0.4\left\{y\le-3.9\left(x+1.357\right)^{2}-0.42\right\}\left\{y\ge-2.7\left(x+1.18\right)^{2}-0.47\right\}\left\{y\ge-0.4x-2.19\right\}
y\ge-3.9\left(x+1.357\right)^{2}-0.42\left\{\left(y+1.37\right)^{2}\le0.09\left(x+1.91\right)\right\}\left\{x\le-1.8\right\}
\left(y+1.37\right)^{2}\ge0.09\left(x+1.91\right)\left\{y\le-2.6\left(x+1.3\right)^{2}-0.4\right\}\left\{y\ge-3.9\left(x+1.357\right)^{2}-0.42\right\}\left\{-1.37<y<-0.536\right\}\left\{-1.91<x<-1.54\right\}
y\le-2.8\left(x+1.08\right)^{2}-0.53\left\{y\le-9\left(x+1.129\right)^{2}-0.543\right\}\left\{y\ge-0.4x-2.19\right\}\left\{y\ge5\left(x+1.16\right)^{2}-1.8\right\}\left\{y\le35\left(x+0.84\right)^{2}-1.306\right\}
y\ge35\left(x+0.84\right)^{2}-1.306\left\{y\le-0.45x-1.07\right\}\left\{y\ge-5.6\left(x+0.66\right)^{2}-0.77\right\}\left\{y\le-28\left(x+0.76\right)^{2}-0.73\right\}
y\ge35\left(x+0.84\right)^{2}-1.306\left\{y\le-0.45x-1.07\right\}\left\{y\ge-5.6\left(x+0.66\right)^{2}-0.77\right\}\left\{y\ge-28\left(x+0.76\right)^{2}-0.73\right\}\left\{-0.98<x<-0.743\right\}
y\le35\left(x+0.84\right)^{2}-1.306\left\{y\ge-9\left(x+1.129\right)^{2}-0.543\right\}\left\{y\le-0.45x-1.07\right\}\left\{-1.053<x<-0.95\right\}
y\ge-9\left(x+1.129\right)^{2}-0.543\left\{y\le-2.8\left(x+1.08\right)^{2}-0.53\right\}\left\{y\ge-0.4x-2.19\right\}\left\{x<-1.153\right\}
y\le-9\left(x+1.129\right)^{2}-0.543\left\{y\le5\left(x+1.16\right)^{2}-1.8\right\}\left\{y\ge-0.4x-2.19\right\}\left\{x\le-1.324\right\}
y\le-5.6\left(x+0.66\right)^{2}-0.77\left\{y\le-28\left(x+0.76\right)^{2}-0.73\right\}\left\{y\ge35\left(x+0.84\right)^{2}-1.306\right\}
y\le35\left(x+0.84\right)^{2}-1.306\left\{y\le-0.7x-1.35\right\}\left\{y\ge-0.9x-2.07\right\}\left\{\left(y+1.479\right)^{2}\ge0.13\left(x+0.51\right)\right\}\left\{y\ge-7\left(x+0.44\right)^{2}-1.582\right\}\left\{-0.845<x<-0.384\right\}
x=-0.384
y\ge-0.7x-1.35\left\{y\le-5.6\left(x+0.66\right)^{2}-0.77\right\}\left\{y\le-28\left(x+0.76\right)^{2}-0.73\right\}\left\{y\le35\left(x+0.84\right)^{2}-1.306\right\}
y\le-5.6\left(x+0.66\right)^{2}-0.77\left\{y\ge-28\left(x+0.76\right)^{2}-0.73\right\}\left\{y\ge35\left(x+0.84\right)^{2}-1.306\right\}
y\le0.45x-1.005\left\{y\ge3\left(x+0.3\right)^{2}-1.44\right\}\left\{y\le-0.7x-1.353\right\}\left\{x\ge-0.384\right\}
y\le3.5\left(x+0.28\right)^{2}-1.12\left\{y\ge3\left(x+0.3\right)^{2}-1.44\right\}\left\{x\ge-0.384\right\}\left\{y\ge3\left(x+0.3\right)^{2}-1.44\right\}\left\{y\ge0.45x-1.005\right\}\left\{x\le-0.244\right\}
y\le0.45x-1.005\left\{y\ge0.1x-1.145\right\}\left\{y\ge-0.7x-1.353\right\}\left\{y\le-0.7x-1.12\right\}
y\le0.1x-1.145\left\{\left(y+1.28\right)^{2}\ge0.5\left(x-0.11\right)\right\}\left\{\left(y+1.15\right)^{2}\ge0.07\left(x-0.047\right)\right\}\left\{y\le-0.7x-1.12\right\}\left\{y\ge-1.298\right\}\left\{y\ge-0.7x-1.353\right\}
y\le3\left(x+0.3\right)^{2}-1.44\left\{y\le-4\left(x+0.1\right)^{2}-1.3\right\}\left\{\right\}\left\{y\ge16\left(x-0.13\right)^{2}-1.77\right\}
y\le16\left(x-0.13\right)^{2}-1.77\left\{y\le3\left(x+0.3\right)^{2}-1.44\right\}\left\{y\ge-0.8x-1.642\right\}\left\{y\le-0.7x-1.353\right\}\left\{-0.27<x<0.1\right\}
\left(y+1.479\right)^{2}\le0.13\left(x+0.51\right)\left\{y\ge3\left(x+0.3\right)^{2}-1.44\right\}\left\{x\le-0.384\right\}
y\le3\left(x+0.3\right)^{2}-1.44\left\{y\ge-0.3x-1.539\right\}\left\{y\le-0.8x-1.642\right\}\left\{x>-0.344\right\}
y\le-1.298\left\{y\ge-0.7x-1.265\right\}\left\{\left(y+1.28\right)^{2}\ge0.5\left(x-0.11\right)\right\}\left\{x\le0.12\right\}
y\le-0.8x-1.642\left\{y\ge-x-1.655\right\}\left\{y\le16\left(x-0.13\right)^{2}-1.77\right\}\left\{x\le0.093\right\}
y\le16\left(x-0.13\right)^{2}-1.77\left\{y\ge16\left(x-0.21\right)^{2}-1.76\right\}\left\{y\le-4\left(x+0.1\right)^{2}-1.3\right\}
y\le-0.9x-2.07\left\{y\ge4\left(x+0.5\right)^{2}-1.625\right\}\left\{y\ge-2.5x-3.2\right\}
y\le-7\left(x+0.44\right)^{2}-1.582\left\{x\le-0.3\right\}\left\{y\ge9\left(x+0.35\right)^{2}-1.785\right\}
y\ge-6.5\left(x+0.56\right)^{2}-1.622\left\{y\le-7\left(x+0.44\right)^{2}-1.582\right\}\left\{y\le9\left(x+0.35\right)^{2}-1.785\right\}\left\{y\ge-1.715\right\}
y\le-15\left(x+0.6\right)^{2}-1.61\left\{y\ge-5x-4.74\right\}\left\{y\ge-1.5x-2.78\right\}\left\{y\ge-0.6x-2.38\right\}
y\ge-15\left(x+0.6\right)^{2}-1.61\left\{y\le-6.5\left(x+0.56\right)^{2}-1.622\right\}\left\{y\ge-0.6x-2.38\right\}\left\{y\le17\left(x+0.33\right)^{2}-1.925\right\}\left\{x\ge-0.571\right\}
y\ge-6.5\left(x+0.56\right)^{2}-1.622\left\{y\le\left(x-0.1\right)^{2}-2.12\right\}\left\{y\ge-0.6x-2.38\right\}\left\{y\ge-0.2x-2.35\right\}\left\{y\le-1.3x-1.23\right\}\left\{y\ge2x-4\right\}\left\{x\ge-0.345\right\}
y\le-0.2x-2.35\left\{y\ge-\left(x-0.2\right)^{2}-2.4\right\}\left\{y\ge2x-4\right\}\left\{x\ge0.262\right\}
y\ge-1.3x-1.23\left\{y\le-0.8x-1.59\right\}\left\{y\ge2x-4\right\}
y\ge\left(x-0.1\right)^{2}-2.12\left\{\left(y+2.2\right)^{2}\ge-0.4\left(x-0.173\right)\right\}\left\{y\le-0.4x-1.72\right\}\left\{y\le1.4\left(x-0.03\right)^{2}-1.82\right\}\left\{y\ge-11\left(x+0.238\right)^{2}-1.73\right\}\left\{y\le-1.82\right\}
y\le-11\left(x+0.238\right)^{2}-1.73\left\{y\ge2.3\left(x+0.06\right)^{2}-1.95\right\}\left\{x\ge-0.283\right\}
y\ge-11\left(x+0.238\right)^{2}-1.73\left\{y\le1.4\left(x-0.03\right)^{2}-1.82\right\}\left\{y\ge-1.82\right\}\left\{-0.207<x<0.03\right\}
y\ge-11\left(x+0.238\right)^{2}-1.73\left\{\left(y+2.2\right)^{2}\le-0.4\left(x-0.173\right)\right\}\left\{y\ge-3.2\left(x+0.06\right)^{2}-1.95\right\}\left\{y\ge2.3\left(x+0.06\right)^{2}-1.95\right\}
y\le2.3\left(x+0.06\right)^{2}-1.95\left\{y\ge-3.2\left(x+0.06\right)^{2}-1.95\right\}\left\{\left(y+2.2\right)^{2}\le-0.4\left(x-0.173\right)\right\}\left\{x\ge-0.06\right\}
\left(y+1.28\right)^{2}\le0.5\left(x-0.11\right)\left\{\left(y+1.28\right)^{2}\ge0.5\left(x-0.145\right)\right\}\left\{y\le-0.6x-1.15\right\}\left\{\left(y+1.37\right)^{2}\ge0.088\left(x-0.12\right)\right\}\left\{y\ge-0.7x-1.265\right\}\left\{y\ge-1.36\right\}
\left(y+1.15\right)^{2}\le0.07\left(x-0.047\right)\left\{y\le-1.1\right\}\left\{y\ge-1.23\right\}\left\{y\le3\left(x-0.78\right)^{2}-1.145\right\}\left\{y\le-0.2x-0.99\right\}\left\{y\ge-12\left(x-0.93\right)^{2}-1.177\right\}\left\{x\le0.94\right\}
y\le2.8\left(x-0.2\right)^{2}-1.1\left\{y\le-1.074\right\}\left\{y\ge-1.1\right\}\left\{y\le3\left(x-0.78\right)^{2}-1.145\right\}\left\{0.197<x<0.657\right\}
y\le-1.1\left\{y\ge-0.2x-0.99\right\}\left\{y\le3\left(x-0.78\right)^{2}-1.145\right\}\left\{x\le0.722\right\}
y\le-12\left(x-0.93\right)^{2}-1.177\left\{y\ge-0.8x-1.325\right\}\left\{y\ge-1.7\left(x-0.72\right)^{2}-1.96\right\}\left\{y\ge1.5x-3.84\right\}
y\ge-12\left(x-0.93\right)^{2}-1.177\left\{y\ge1.5x-3.84\right\}\left\{\left(y+1.5\right)^{2}\ge0.9\left(x-1.13\right)\right\}\left\{y\le-2.8x+1.58\right\}\left\{x\ge1.07\right\}
y\ge-2.8x+1.58\left\{\left(y+1.5\right)^{2}\ge0.9\left(x-1.13\right)\right\}\left\{y\ge1.5x-3.84\right\}\left\{y\le-1.61\right\}
y\ge-12\left(x-0.93\right)^{2}-1.177\left\{y\le-1.23\right\}\left\{y\ge-1.03x^{2}-1.41\right\}\left\{y\ge-0.8x-1.325\right\}\left\{\left(y+1.28\right)^{2}\le0.5\left(x-0.145\right)\right\}\left\{x\le0.87\right\}
\left(y+1.37\right)^{2}\le0.088\left(x-0.12\right)\left\{\left(y+1.28\right)^{2}\ge0.5\left(x-0.145\right)\right\}
y\ge-4\left(x+0.1\right)^{2}-1.3\left\{y\le-1.03x^{2}-1.41\right\}\left\{y\le0.5x-1.55\right\}\left\{y\ge2\left(x-0.2\right)^{2}-1.58\right\}
y\le-1.03x^{2}-1.41\left\{y\ge18\left(x-0.475\right)^{2}-1.82\right\}\left\{y\le15x-8.4\right\}
y\ge-1.03x^{2}-1.41\left\{y\ge-0.8x-1.325\right\}\left\{y\le-0.5x-1.454\right\}\left\{y\ge-12\left(x-0.93\right)^{2}-1.177\right\}\left\{x\le0.8\right\}
y\le1.2x-3.454\left\{y\le1.5x-3.84\right\}\left\{y\le-0.85x-0.65\right\}\left\{y\ge-0.8x-1.4\right\}\left\{y\ge1.5x-4.26\right\}
y\le1.5x-4.26\left\{y\le-0.85x-0.65\right\}\left\{y\ge1.1x-3.674\right\}
y\le-5.6\left(x-1\right)^{2}-2.17\left\{y\le-0.8x-1.4\right\}\left\{y\ge1.5x-4.1\right\}\left\{y\ge-0.8x-2.4\right\}\left\{y\le2x-4\right\}
y\ge-5.6\left(x-1\right)^{2}-2.17\left\{y\le2x-4\right\}\left\{y\ge-0.8x-2.4\right\}\left\{y\le-2.42\right\}\left\{x\le0.78\right\}
y\le1.5x-4.1\left\{y\ge2x-4.6\right\}\left\{y\ge-0.8x-2.4\right\}
y\le1.5x-4.1\left\{y\le2x-4.6\right\}\left\{y\ge-0.8x-2.4\right\}\left\{y\ge1.8x-4.67\right\}\left\{y\le-0.8x-1.4\right\}
y\le1.8x-4.67\left\{y\ge-4\left(x-1.1\right)^{2}-2.85\right\}\left\{y\le1.5x-4.26\right\}\left\{y\le1.1x-3.674\right\}\left\{y\le-0.85x-0.65\right\}\left\{\left(y+3\right)^{2}\ge\left(x-2.53\right)\right\}\left\{\left(y+3.4\right)^{2}\ge2\left(x-2.44\right)\right\}\left\{\left(y+3.4\right)^{2}\ge6.6\left(x-2.44\right)\right\}\left\{y\ge0.22\left(x-3\right)^{2}-4.08\right\}
y\le-4\left(x-1.1\right)^{2}-2.85\left\{y\le1.8x-4.94\right\}\left\{y\ge-0.8x-2.4\right\}\left\{y\ge0.22\left(x-3\right)^{2}-4.08\right\}
y\le-4\left(x-1.1\right)^{2}-2.85\left\{y\ge-70\left(x-1.1\right)^{2}-2.85\right\}\left\{y\ge1.8x-4.94\right\}\left\{x\ge1.1\right\}
y\le0.7x-4.064\left\{y\le-0.05x-2.325\right\}\left\{y\ge-0.85x-0.65\right\}\left\{\left(y+3\right)^{2}\ge\left(x-2.53\right)\right\}\left\{\left(y+2.56\right)^{2}\ge0.13\left(x-2.66\right)\right\}\left\{\left(y+2.56\right)^{2}\ge2\left(x-2.66\right)\right\}\left\{y\ge-2.83\right\}
\left(y+2.56\right)^{2}\le2\left(x-2.66\right)\left\{\left(y+2.56\right)^{2}\ge0.13\left(x-2.66\right)\right\}\left\{y\le0.4x-3.44\right\}\left\{y\le-1.8x+2.53\right\}\left\{y\ge-2.559\right\}
\left(y+2.56\right)^{2}\ge2\left(x-2.66\right)\left\{y\le0.4x-3.44\right\}\left\{y\ge-0.05x-2.325\right\}
\left(y+3.4\right)^{2}\le6.6\left(x-2.44\right)\left\{y\le-0.85x-0.65\right\}\left\{\left(y+3.4\right)^{2}\ge2\left(x-2.44\right)\right\}\left\{\left(y+3\right)^{2}\ge\left(x-2.53\right)\right\}\left\{y\ge-3.4\right\}
y\le-4\left(x-1.1\right)^{2}-2.85\left\{y\le1.8x-4.67\right\}\left\{y\ge-70\left(x-1.1\right)^{2}-2.85\right\}\left\{y\ge-0.8x-2.4\right\}\left\{y\ge1.8x-4.94\right\}\left\{x\le1.1\right\}
y\le-70\left(x-1.1\right)^{2}-2.85\left\{y\ge1.8x-4.94\right\}
y^{2}\le2.1\left(x-1.28\right)\left\{y^{2}\le-1.9\left(x-1.38\right)\right\}
y^{2}\ge2.1\left(x-1.28\right)\left\{y^{2}\ge-11\left(x-1.28\right)\right\}\left\{y^{2}\le-1.9\left(x-1.38\right)\right\}\left\{y\le0\right\}
y^{2}\ge-1.9\left(x-1.38\right)\left\{\left(y+0.07\right)^{2}\ge1.4\left(x-1.39\right)\right\}\left\{y^{2}\le2.1\left(x-1.28\right)\right\}\left\{y\le-\left(x-2.2\right)^{2}+1.17\right\}\left\{y\ge-0.07\right\}
\left(y+0.07\right)^{2}\le1.4\left(x-1.39\right)\left\{y\le-9x+13.4\right\}
y\ge-9x+13.4\left\{y\ge5.4\left(x-1.7\right)^{2}-0.52\right\}\left\{y\le-15x+24.6\right\}\left\{\left(y+0.07\right)^{2}\le1.4\left(x-1.39\right)\right\}
y\ge-15x+24.6\left\{y\ge-0.8x+0.97\right\}\left\{y\le-2x+3.1\right\}
y\ge-2x+3.1\left\{y\le-13x+21.93\right\}\left\{y\ge-15x+24.6\right\}\left\{\left(y+0.07\right)^{2}\le1.4\left(x-1.39\right)\right\}
y\ge-13x+21.93\left\{\left(y-0.1\right)^{2}\le1.1\left(x-1.64\right)\right\}\left\{x\le1.763\right\}
y\ge-13x+21.93\left\{\left(y-0.1\right)^{2}\ge1.1\left(x-1.64\right)\right\}\left\{\left(y+0.07\right)^{2}\le1.4\left(x-1.39\right)\right\}\left\{0.2\le y\le1.28\right\}\left\{y\le-0.3x+2.105\right\}
\left(y+0.07\right)^{2}\ge1.4\left(x-1.39\right)\left\{y\ge-\left(x-2.2\right)^{2}+1.17\right\}\left\{y\le-\left(x-2.48\right)^{2}+1.28\right\}\left\{y\ge1.1\right\}
y\ge-\left(x-2.48\right)^{2}+1.28\left\{\left(y+0.07\right)^{2}\ge1.4\left(x-1.39\right)\right\}\left\{y\ge-\left(x-2.48\right)^{2}+1.28\right\}\left\{y\le1.28\right\}\left\{x\ge2.48\right\}\left\{y\ge1.2\right\}
x\ge1.763\left\{y\ge4\left(x-2\right)^{2}-0.22\right\}\left\{\left(y-0.1\right)^{2}\ge2.1\left(x-1.93\right)\right\}\left\{\left(y-0.1\right)^{2}\le1.1\left(x-1.64\right)\right\}
\left(y-0.1\right)^{2}\le2.1\left(x-1.93\right)\left\{\left(y-0.7\right)^{2}\le1.7\left(x-1.83\right)\right\}\left\{y\ge15x-32.7\right\}
\left(y-0.7\right)^{2}\ge1.7\left(x-1.83\right)\left\{y\ge-17\left(x-2\right)^{2}+0.133\right\}\left\{y\ge29\left(x-2.17\right)^{2}-0.18\right\}\left\{y\ge15x-32.7\right\}\left\{y\le0.05\right\}
\left(y-0.7\right)^{2}\ge1.7\left(x-1.83\right)\left\{y\ge-17\left(x-2\right)^{2}+0.133\right\}\left\{y\le29\left(x-2.17\right)^{2}-0.18\right\}\left\{-0.0346<y<0.0843\right\}\left\{x>2.05\right\}
y\le15x-32.7\left\{y\ge3.1\left(x-2.5\right)^{2}-0.26\right\}\left\{y\ge30x-74.6\right\}\left\{\left(y-0.1\right)^{2}\le1.1\left(x-1.64\right)\right\}
y^{2}\le-\left(x-2.497\right)\left\{y\le30x-74.6\right\}
y\le30x-74.6\left\{y\ge-x+2.59\right\}\left\{y\le-8x+20.47\right\}
y\ge-8x+20.47\left\{y\ge-4\left(x-2.48\right)^{2}+0.29\right\}\left\{y\le30x-74.6\right\}\left\{\left(y-0.1\right)^{2}\le1.1\left(x-1.64\right)\right\}\left\{y\le-1.4\left(x-2.7\right)^{2}+1.28\right\}\left\{x\le3.343\right\}\left\{y\ge-x+3.16\right\}
y\ge-1.4\left(x-2.7\right)^{2}+1.28\left\{y\le1.9\left(x-3.54\right)^{2}+0.71\right\}\left\{y\ge0.3\left(x-3.52\right)^{2}+0.71\right\}\left\{3.208<x<3.52\right\}
y\le0.3\left(x-3.52\right)^{2}+0.71\left\{y\le-x+4.08\right\}\left\{x\ge3.343\right\}\left\{y\ge1.7\left(x-3.4\right)^{2}+0.48\right\}
y\le1.7\left(x-3.4\right)^{2}+0.48\left\{y\le-x+3.876\right\}\left\{y\ge-0.35x+1.6\right\}\left\{x\ge3.343\right\}
x\ge3.343\left\{y\ge-2x+7.05\right\}\left\{y\le-0.35x+1.6\right\}\left\{x\le3.394\right\}
y\ge-x+3.16\left\{x\ge3.343\right\}\left\{y^{2}\ge0.8\left(x-3.33\right)\right\}\left\{-0.24\le y\le-0.106\right\}
y\le-x+3.16\left\{y\ge8x-26.59\right\}\left\{y\ge-0.256\right\}\left\{y\ge1.8\left(x-3.22\right)^{2}-0.292\right\}\left\{y\le30x-74.6\right\}
y\ge1.8\left(x-3.22\right)^{2}-0.292\left\{y\le-1.5x+4.54\right\}\left\{y\le-0.256\right\}
y\le1.8\left(x-3.22\right)^{2}-0.292\left\{y\le-1.5x+4.33\right\}\left\{y\ge-0.8x+2.16\right\}\left\{x\ge2.695\right\}
y\le-0.8x+2.16\left\{x\ge2.695\right\}\left\{y\ge-\left(x-2.45\right)^{2}\right\}\left\{y\le-2x+5.67\right\}\left\{y\ge-0.25\right\}
y\le1.8\left(x-3.22\right)^{2}-0.292\left\{y\le30x-74.6\right\}\left\{y\ge-4\left(x-2.48\right)^{2}+0.29\right\}\left\{y\ge-8x+20.47\right\}\left\{x\le2.695\right\}
y\le8x-26.59\left\{y\ge0.8x-3\right\}\left\{y\le-x+3.16\right\}
y\ge8x-26.59\left\{y\ge0.8x-3\right\}\left\{y\ge-1.5x+4.54\right\}\left\{y\le-0.256\right\}
y\le-1.5x+4.54\left\{y\ge0.8x-3\right\}\left\{y\le1.8\left(x-3.22\right)^{2}-0.292\right\}\left\{y\ge-1.5x+4.33\right\}\left\{y\le-0.231\right\}
y\le-1.5x+4.33\left\{y\ge0.8x-3\right\}\left\{y\le-0.8x+2.16\right\}\left\{y\ge-2x+5.67\right\}
y\le-2x+5.67\left\{y\le-\left(x-2.45\right)^{2}\right\}\left\{y\ge0.8x-3\right\}\left\{y\le x-2.88\right\}\left\{y\ge6\left(x-2.29\right)^{2}-1.123\right\}
y\le6\left(x-2.29\right)^{2}-1.123\left\{y\ge0.85x-3.095\right\}\left\{y\le-\left(x-2.45\right)^{2}\right\}\left\{y\le-2x+5.67\right\}\left\{x\ge2.358\right\}
y\ge0.8x-3\left\{y\le0.85x-3.095\right\}\left\{y\ge-x+1.83\right\}\left\{y\le-2x+5.67\right\}
y\ge x-2.88\left\{x\le2.695\right\}\left\{y\le-4\left(x-2.48\right)^{2}+0.29\right\}\left\{y\ge-8x+20.47\right\}
y\le-8x+20.47\left\{y\ge x-2.88\right\}\left\{y\le-x+2.59\right\}\left\{y^{2}\ge-\left(x-2.497\right)\right\}\left\{y\le30x-74.6\right\}
y\ge x-2.88\left\{y\ge30x-74.6\right\}\left\{y\le3.1\left(x-2.5\right)^{2}-0.26\right\}\left\{y\le15x-32.7\right\}
y\ge15x-32.7\left\{y\le29\left(x-2.17\right)^{2}-0.18\right\}\left\{y\le-17\left(x-2\right)^{2}+0.133\right\}\left\{\left(y-0.1\right)^{2}\le2.1\left(x-1.93\right)\right\}
y\ge-17\left(x-2\right)^{2}+0.133\left\{y\le29\left(x-2.17\right)^{2}-0.18\right\}\left\{y\ge15x-32.7\right\}\left\{y\le-0.087\right\}\left\{x\ge2.11\right\}
y\ge-17\left(x-2\right)^{2}+0.133\left\{\left(y-0.1\right)^{2}\le2.1\left(x-1.93\right)\right\}\left\{\left(y-0.7\right)^{2}\ge1.7\left(x-1.83\right)\right\}\left\{x<2.033\right\}
\left(y-0.1\right)^{2}\ge2.1\left(x-1.93\right)\left\{y\le4\left(x-2\right)^{2}-0.22\right\}\left\{y\ge15x-32.7\right\}\left\{y\ge x-2.88\right\}\left\{y\le4\left(x-2\right)^{2}-0.22\right\}\left\{x\ge1.763\right\}\left\{y\ge-0.05x-0.667\right\}
y\le6\left(x-2.29\right)^{2}-1.123\left\{y\ge12\left(x-2.12\right)^{2}-0.95\right\}\left\{y\le-0.05x-0.667\right\}
y\ge6\left(x-2.29\right)^{2}-1.123\left\{y\le-0.05x-0.667\right\}\left\{y\ge x-2.88\right\}
y\le12\left(x-2.12\right)^{2}-0.95\left\{y\le-0.05x-0.667\right\}\left\{y\ge-11.6\left(x-1.87\right)^{2}-0.76\right\}\left\{y\ge-0.873\right\}\left\{1.87<x<2.039\right\}
y\ge-2x+3.1\left\{y\ge-13x+21.93\right\}\left\{\left(y-0.1\right)^{2}\ge1.1\left(x-1.64\right)\right\}\left\{x\le1.763\right\}\left\{y\le-1.57\right\}
\left(y+0.4\right)^{2}\ge-\left(x-1.78\right)\left\{\left(y+0.7\right)^{2}\le0.08\left(x-1.7\right)\right\}\left\{y\ge-0.05x-0.667\right\}\left\{x\le1.763\right\}
\left(y+0.7\right)^{2}\ge0.08\left(x-1.7\right)\left\{\left(y+0.4\right)^{2}\ge-\left(x-1.78\right)\right\}\left\{x\le1.763\right\}\left\{-0.68<y<-0.53\right\}
y\ge-13x+21.93\left\{\left(y-0.1\right)^{2}\ge1.1\left(x-1.64\right)\right\}\left\{y\ge-2x+3.1\right\}\left\{x\le1.763\right\}\left\{y\le-0.154\right\}
y\le0.8x-3\left\{y\ge x-3.74\right\}\left\{y\ge-x+1.8\right\}\left\{x\le3.46\right\}
y\le x-3.74\left\{y\ge1.2x-4.4\right\}\left\{y\ge-x+1.8\right\}
y\ge-x+1.75\left\{y\le-x+1.8\right\}\left\{y\ge1.2x-4.42\right\}\left\{y\le0.8x-3\right\}
y\le1.2x-4.4\left\{y\le0.7x-2.657\right\}\left\{y\le x-3.74\right\}\left\{y\le-3\left(x-3.7\right)^{2}+0.01\right\}\left\{y\ge-5\right\}
y\ge-3\left(x-3.7\right)^{2}+0.01\left\{y\le1.2x-4.4\right\}\left\{\left(y+1.5\right)^{2}\le1.8\left(x-2.61\right)\right\}\left\{\left(y+1.5\right)^{2}\le0.94\left(x-2.61\right)\right\}\left\{y\le-0.25\left(x-4.6\right)^{2}-0.3\right\}\left\{y\le-x+4.13\right\}\left\{y\le-1.4x+6.23\right\}\left\{y\le-2x+9.8\right\}
y\le0.7x-2.657\left\{y\ge x-3.74\right\}\left\{x\ge3.46\right\}
y\ge-0.25\left(x-4.6\right)^{2}-0.3\left\{y\ge-3\left(x-3.7\right)^{2}+0.01\right\}\left\{y\le1.2x-4.4\right\}\left\{2.7<x<3.3\right\}
y\ge-3\left(x-3.7\right)^{2}+0.01\left\{y\le1.2x-4.4\right\}\left\{3.3<x<3.33\right\}
y\ge-3\left(x-3.7\right)^{2}+0.01\left\{y\le-1.5x+5.75\right\}\left\{y\ge-0.25\left(x-4.6\right)^{2}-0.3\right\}\left\{y\le-0.13\right\}\left\{x\ge3.918\right\}
y\ge-x+4.13\left\{y\le-45\left(x-4.6\right)^{2}-0.3\right\}\left\{y\le-9x+41.4\right\}
y\ge-45\left(x-4.6\right)^{2}-0.3\left\{y\ge-x+4.13\right\}\left\{y\le-0.25\left(x-4.6\right)^{2}-0.3\right\}\left\{x\le4.6\right\}
y\ge-x+4.13\left\{y\le-0.7\left(x-4.9\right)^{2}-0.74\right\}\left\{y\le-10x+52.1\right\}
y\le-x+4.13\left\{y\ge-1.4x+6.23\right\}\left\{\left(y+1.293\right)^{2}\le-0.17\left(x-5.45\right)\right\}
y\ge-10x+52.1\left\{y\ge-x+4.13\right\}\left\{\left(y+1.293\right)^{2}\le-0.17\left(x-5.45\right)\right\}
\left(y+1.5\right)^{2}\ge0.94\left(x-2.61\right)\left\{y\ge-3\left(x-3.7\right)^{2}+0.01\right\}\left\{y\le-1.2x+4.45\right\}\left\{-5\le y\le-2.76\right\}\left\{x\ge4.6\right\}
y\ge-1.2x+4.45\left\{y\le0.14\left(x-8.7\right)^{2}-4.4\right\}\left\{y\ge-5\right\}\left\{7.06\le x\le8.7\right\}
y\ge-3\left(x-3.7\right)^{2}+0.01\left\{\left(y+1.5\right)^{2}\ge0.94\left(x-2.61\right)\right\}\left\{\left(y+1.73\right)^{2}\le1.2\left(x-2.57\right)\right\}\left\{x\le2.9\right\}\left\{y\le-1.51\right\}
y\ge-3\left(x-3.7\right)^{2}+0.01\left\{y\ge-1.8x+2.53\right\}\left\{y\le0.8x-4.135\right\}\left\{\left(y+1.73\right)^{2}\ge1.2\left(x-2.57\right)\right\}\left\{x\le2.9\right\}
y\ge-3\left(x-3.7\right)^{2}+0.01\left\{\left(y+2.56\right)^{2}\le0.13\left(x-2.66\right)\right\}\left\{y\le-1.8x+2.53\right\}
\left(y+2.56\right)^{2}\ge0.13\left(x-2.66\right)\left\{\left(y+2.56\right)^{2}\le2\left(x-2.66\right)\right\}\left\{y\ge-3\left(x-3.7\right)^{2}+0.01\right\}\left\{y\le-2.56\right\}\left\{x\le2.8\right\}
y\ge-3\left(x-3.7\right)^{2}+0.01\left\{\left(y+2.56\right)^{2}\ge2\left(x-2.66\right)\right\}\left\{\left(y+3\right)^{2}\le\left(x-2.53\right)\right\}
y\ge-3\left(x-3.7\right)^{2}+0.01\left\{\left(y+3\right)^{2}\ge\left(x-2.53\right)\right\}\left\{\left(y+3.4\right)^{2}\le2\left(x-2.44\right)\right\}\left\{x\le2.7\right\}
y\ge-3\left(x-3.7\right)^{2}+0.01\left\{\left(y+3.4\right)^{2}\le6.6\left(x-2.44\right)\right\}\left\{\left(y+3.4\right)^{2}\ge2\left(x-2.44\right)\right\}\left\{-4.15\le y\le-3.44\right\}
y\ge-3\left(x-3.7\right)^{2}+0.01\left\{y\le-7.7\left(x-2.5\right)^{2}-3.5\right\}\left\{y\le0.22\left(x-3\right)^{2}-4.08\right\}\left\{\left(y+3.4\right)^{2}\ge6.6\left(x-2.44\right)\right\}\left\{y\ge-5\right\}
y=x+4.65\left\{-2.56<x<0\right\}
y=-x+4.65\left\{0<x<2.56\right\}
y=x-0.47\left\{0<x<2.56\right\}
y=-x-0.47\left\{-2.56<x<0\right\}
y\le x+4.65\left\{y\le-x+4.65\right\}\left\{y\ge-x-0.47\right\}\left\{y\ge x-0.47\right\}\left\{x^{2}+\left(y-2.14\right)^{2}\ge2\right\}
c_{8}=\operatorname{rgb}\left(250,250,0\right)
c_{9}=\operatorname{rgb}\left(255,215,0\right)
x^{2}+\left(y-2.14\right)^{2}=1.9
y=0.4x+1.16\left\{-0.57<x<0\right\}
y=1.3x+1.54\left\{-0.23<x<-0.1\right\}
y=0.3x+1.65\left\{-0.56<x<0.12\right\}
y=5x+4.3\left\{-0.564<x<-0.473\right\}
y=-3x+2.04\left\{-0.018<x<0.118\right\}
y=0.35x+2.1\left\{-0.474<x<-0.0179\right\}
y=0.3x+2.4\left\{-0.82<x<0.29\right\}
y=8x+9.8\left\{2.168<y<2.942\right\}
y=0.1x+3.03\left\{-0.854<x<0.06\right\}
y=0.1x+3.03\left\{-0.854<x<0.06\right\}
y=0.3x+2.75\left\{-0.65<x<-0.037\right\}
x=-0.32\left\{2.44<y<2.91\right\}
y=-0.2x+1.25\left\{0.354<x<0.84\right\}
y=0.7x+1.35\left\{0.4<x<1.037\right\}
x=0.6\left\{1.77<y<3.179\right\}
y=-0.6x+2.4\left\{0.29<x<0.54\right\}
y=1.5x+1.15\left\{0.632<x<1.064\right\}
\left(-2.6+t\cos\frac{3\pi}{4},6.1+t\sin\frac{3\pi}{4}\right)
\left(-2.78+t\cos\left(\arctan0.3\right),5.816+t\sin\left(\arctan0.3\right)\right)
\left(-2.686+t\cos\left(\arctan\left(-4.5\right)\right),5.787+t\sin\left(\arctan\left(-4.5\right)\right)\right)
\left(-2.5+t\cos\left(\arctan2\right),5.6+t\sin\left(\arctan2\right)\right)
\left(-2.8+t\cos\left(\arctan0.3\right),5.49+t\sin\left(\arctan0.3\right)\right)
\left(-2.97+t\cos\left(\arctan0.35\right),5.21+t\sin\left(\arctan0.35\right)\right)
\left(-2.54,5.488+t\right)
\left(-2.54+t\cos\left(\frac{3\pi}{4}\right),4.94+t\sin\left(\frac{3\pi}{4}\right)\right)
\left(-2.8+t\cos\left(\arctan6\right),5+t\sin\left(\arctan6\right)\right)
\left(-2.43+t\cos\left(-\frac{\pi}{4}\right),5.28+t\sin\left(-\frac{\pi}{4}\right)\right)
\left(-1.84+t\cos\left(\arctan\left(0.8\right)-\pi\right),5.978+t\sin\left(\arctan\left(0.8\right)-\pi\right)\right)
\left(-2.19+t\cos\left(\arctan10\right),5.7+t\sin\left(\arctan10\right)\right)
\left(-2.21+t\cos\left(\arctan0.3\right),5.487+t\sin\left(\arctan0.3\right)\right)
\left(-1.93,5.57+t\right)
\left(-1.1+t\cos\frac{\pi}{4},5.75+t\sin\frac{\pi}{4}\right)
\left(-0.98+t\cos\left(\arctan0.2\right),5.864+t\sin\left(\arctan0.2\right)\right)
\left(-0.9+t\cos\left(\arctan0.2\right),5.62+t\sin\left(\arctan0.2\right)\right)
\left(-0.88,5.624+t\right)
\left(-1.34+t\cos\left(\arctan0.15\right),5.299+t\sin\left(\arctan0.15\right)\right)
\left(-0.64,5.932+t\right)
\left(0.24+t\cos\left(\arctan5\right),5.3+t\sin\left(\arctan5\right)\right)
\left(0.49+t\cos\left(-\frac{\pi}{4}\right),5.71+t\sin\left(-\frac{\pi}{4}\right)\right)
\left(0.43,5.92+t\right)
\left(0.76+t\cos\left(\arctan0.2\right),5.612+t\sin\left(\arctan0.2\right)\right)
\left(1.128+t\cos\left(\arctan3\right),5.384+t\sin\left(\arctan3\right)\right)
\left(0.608+t\cos\left(\arctan0.2\right),5.2816+t\sin\left(\arctan0.2\right)\right)
\left(1+t\cos\left(\arctan4\right),6+t\sin\left(\arctan4\right)\right)
\left(1+t\cos\left(\arctan\left(-1.2\right)\right),5.2+t\sin\left(\arctan\left(-1.2\right)\right)\right)
\left(2.07+t\cos\left(\arctan0.5\right),5.735+t\sin\left(\arctan0.5\right)\right)
\left(2.036+t\cos\left(\arctan10\right),5.36+t\sin\left(\arctan10\right)\right)
\left(2.04+t\cos\left(\arctan0.3\right),5.352+t\sin\left(\arctan0.3\right)\right)
\left(2.36,5.7+t\right)
\left(2.36+t\cos\frac{3\pi}{4},4.84+t\sin\frac{3\pi}{4}\right)
\left(1.98+t\cos\left(\arctan4\right),4.92+t\sin\left(\arctan4\right)\right)
\left(2.565+t\cos\left(\arctan-1\right),5.305+t\sin\left(\arctan-1\right)\right)
a=0
↑↑ 点击按钮输出“新年快乐”

代码

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse# 设置图形大小
plt.figure(figsize=(12, 10))# 1. y = -0.35*(x+3.1)**2 + 4.4 for -3.64 < x < -3.1
x1 = np.linspace(-3.64, -3.1, 100)
y1 = -0.35 * (x1 + 3.1)**2 + 4.4
plt.plot(x1, y1, 'k')# 2. y = -0.84*(x+3.1)**2 + 4.4 for -3.1 < x < -2.35
x2 = np.linspace(-3.1, -2.35, 100)
y2 = -0.84 * (x2 + 3.1)**2 + 4.4
plt.plot(x2, y2, 'k')# 3. (y-3.66)**2 = -0.76*(x+2.257) for 3.46 < y < 3.92
y3 = np.linspace(3.46, 3.92, 100)
x3 = -2.257 - (y3 - 3.66)**2 / 0.76
plt.plot(x3, y3, 'k')# 4. (y-3.5)**2 = -0.7*(x+2.315) for 3.157 < y < 3.59
y4 = np.linspace(3.157, 3.59, 100)
x4 = -2.315 - (y4 - 3.5)**2 / 0.7
plt.plot(x4, y4, 'k')# 5. y = -8.7*(x+2.3)**2 + 3.63 for -2.25 < x < -2.149
x5 = np.linspace(-2.25, -2.149, 100)
y5 = -8.7 * (x5 + 2.3)**2 + 3.63
plt.plot(x5, y5, 'k')# 6. y = -25*(x+2.007) for 2.93 < y < 3.43
y6 = np.linspace(2.93, 3.43, 100)
x6 = -2.007 - y6/25
plt.plot(x6, y6, 'k')# 7. y = -2.5*(x+0.95) for -2.185 < x < -2.125
x7 = np.linspace(-2.185, -2.125, 100)
y7 = -2.5 * (x7 + 0.95)
plt.plot(x7, y7, 'k')# 8. y = 2*x + 7.47 for 2.91 < y < 3.09
y8 = np.linspace(2.91, 3.09, 100)
x8 = (y8 - 7.47) / 2
plt.plot(x8, y8, 'k')# 9. (y-2.7)**2 = x + 2.32 for 2.654 < y < 2.907
y9 = np.linspace(2.654, 2.907, 100)
x9 = (y9 - 2.7)**2 - 2.32
plt.plot(x9, y9, 'k')# 10. (y-3)**2 = x + 2.44 for 2.652 < y < 2.81
y10 = np.linspace(2.652, 2.81, 100)
x10 = (y10 - 3)**2 - 2.44
plt.plot(x10, y10, 'k')# 11. (y-3)**2 = 0.5*(x+2.414) for 2.886 < y < 3.037
y11 = np.linspace(2.886, 3.037, 100)
x11 = (y11 - 3)**2 / 0.5 - 2.414
plt.plot(x11, y11, 'k')# 12. y = 0.9*x + 5.214 for -2.48 < x < -2.41
x12 = np.linspace(-2.48, -2.41, 100)
y12 = 0.9 * x12 + 5.214
plt.plot(x12, y12, 'k')# 13. (y-3.06)**2 = 0.35*(x+2.51) for 2.86 < y < 3.157
y13 = np.linspace(2.86, 3.157, 100)
x13 = (y13 - 3.06)**2 / 0.35 - 2.51
plt.plot(x13, y13, 'k')# 14. (y-2.84)**2 = -0.07*(x+2.39) for 2.809 < y < 2.86
y14 = np.linspace(2.809, 2.86, 100)
x14 = -2.39 - (y14 - 2.84)**2 / 0.07
plt.plot(x14, y14, 'k')# 15. y = 0.55*x + 4.13 for -2.5735 < x < -2.403
x15 = np.linspace(-2.5735, -2.403, 100)
y15 = 0.55 * x15 + 4.13
plt.plot(x15, y15, 'k')# 16. y = 16*(x+2.64)**2 + 2.63 for -2.654 < x < -2.565
x16 = np.linspace(-2.654, -2.565, 100)
y16 = 16 * (x16 + 2.64)**2 + 2.63
plt.plot(x16, y16, 'k')# 17. y = 1.6*(x+4.3) for -2.774 < x < -2.654
x17 = np.linspace(-2.774, -2.654, 100)
y17 = 1.6 * (x17 + 4.3)
plt.plot(x17, y17, 'k')# 18. y = -0.37*x + 1.35 for 2.42 < y < 2.753
y18 = np.linspace(2.42, 2.753, 100)
x18 = (1.35 - y18) / 0.37
plt.plot(x18, y18, 'k')# 19. y = 7*(x+2.845)**2 + 2.405 for -2.89 < x < -2.774
x19 = np.linspace(-2.89, -2.774, 100)
y19 = 7 * (x19 + 2.845)**2 + 2.405
plt.plot(x19, y19, 'k')# 20. y = 5*x + 21.7 for -3.79 < x < -3.734
x20 = np.linspace(-3.79, -3.734, 100)
y20 = 5 * x20 + 21.7
plt.plot(x20, y20, 'k')# 21. y = -x - 0.7 for -4.028 < x < -3.734
x21 = np.linspace(-4.028, -3.734, 100)
y21 = -x21 - 0.7
plt.plot(x21, y21, 'k')# 22. (y-2.8)**2 = 4*(x+4.1) for 2.8 < y < 3.64
y22 = np.linspace(2.8, 3.64, 100)
x22 = (y22 - 2.8)**2 / 4 - 4.1
plt.plot(x22, y22, 'k')# 23. y = -1.1*x - 0.66 for 3.65 < y < 3.83
y23 = np.linspace(3.65, 3.83, 100)
x23 = (-y23 - 0.66) / -1.1
plt.plot(x23, y23, 'k')# 24. y = -1.4*x - 1.836 for -3.92 < x < -3.717
x24 = np.linspace(-3.92, -3.717, 100)
y24 = -1.4 * x24 - 1.836
plt.plot(x24, y24, 'k')# 25. y = 3*(x+3.5)**2 + 3.22 for -3.72 < x < -3.526
x25 = np.linspace(-3.72, -3.526, 100)
y25 = 3 * (x25 + 3.5)**2 + 3.22
plt.plot(x25, y25, 'k')# 26. Circle: (x+3.49)**2 + (y-3.24)**2 <= 0.0013
theta = np.linspace(0, 2*np.pi, 100)
r = np.sqrt(0.0013)
x26 = -3.49 + r * np.cos(theta)
y26 = 3.24 + r * np.sin(theta)
plt.fill(x26, y26, 'k')# 27. y = 5.7*(x+3.55)**2 + 3.32 for -3.7 < x < -3.55
x27 = np.linspace(-3.7, -3.55, 100)
y27 = 5.7 * (x27 + 3.55)**2 + 3.32
plt.plot(x27, y27, 'k')# 28. y = 3.32 for -3.55 < x < -3.44
x28 = np.linspace(-3.55, -3.44, 100)
y28 = np.full_like(x28, 3.32)
plt.plot(x28, y28, 'k')# 29. y = -x - 0.11 for -3.483 < x < -3.39
x29 = np.linspace(-3.483, -3.39, 100)
y29 = -x29 - 0.11
plt.plot(x29, y29, 'k')# 30. (y-3.4)**2 = 0.06*(x+3.492) for 3.375 < y < 3.437
y30 = np.linspace(3.375, 3.437, 100)
x30 = (y30 - 3.4)**2 / 0.06 - 3.492
plt.plot(x30, y30, 'k')# 31. y = 0.1*x + 3.784 for -3.47 < x < -3.4
x31 = np.linspace(-3.47, -3.4, 100)
y31 = 0.1 * x31 + 3.784
plt.plot(x31, y31, 'k')# 32. y = -14*(x+3.5)**2 + 3.6 for -3.48 < x < -3.396
x32 = np.linspace(-3.48, -3.396, 100)
y32 = -14 * (x32 + 3.5)**2 + 3.6
plt.plot(x32, y32, 'k')# 33. y = -0.45*x + 2.03 for 3.596 < y < 3.826
y33 = np.linspace(3.596, 3.826, 100)
x33 = (2.03 - y33) / 0.45
plt.plot(x33, y33, 'k')# 34. (y-3.86)**2 = 0.06*(x+4.096) for 3.831 < y < 3.89
y34 = np.linspace(3.831, 3.89, 100)
x34 = (y34 - 3.86)**2 / 0.06 - 4.096
plt.plot(x34, y34, 'k')# 35. y = -0.35*x + 2.48 for -4.019 < x < -3.5
x35 = np.linspace(-4.019, -3.5, 100)
y35 = -0.35 * x35 + 2.48
plt.plot(x35, y35, 'k')# 36. y = -0.05*x + 3.686 for 3.887 < y < 3.89
y36 = np.linspace(3.887, 3.89, 100)
x36 = (3.686 - y36) / 0.05
plt.plot(x36, y36, 'k')# 37. y = -2*(x+3.61)**2 + 3.73 for -3.497 < x < -3.333
x37 = np.linspace(-3.497, -3.333, 100)
y37 = -2 * (x37 + 3.61)**2 + 3.73
plt.plot(x37, y37, 'k')# 38. y = 10*(x+3.32)**2 + 3.573 for -3.332 < x < -3.253
x38 = np.linspace(-3.332, -3.253, 100)
y38 = 10 * (x38 + 3.32)**2 + 3.573
plt.plot(x38, y38, 'k')# 39. (y-3.6)**2 = 1.3*(x+3.25) for 3.621 < y < 4.339
y39 = np.linspace(3.621, 4.339, 100)
x39 = (y39 - 3.6)**2 / 1.3 - 3.25
plt.plot(x39, y39, 'k')# 40. y = -3*x - 8 for 3.697 < y < 3.8
y40 = np.linspace(3.697, 3.8, 100)
x40 = (-y40 - 8) / -3
plt.plot(x40, y40, 'k')# 41. y = -10*x - 34.4 for 3.65 < y < 3.744
y41 = np.linspace(3.65, 3.744, 100)
x41 = (-y41 - 34.4) / -10
plt.plot(x41, y41, 'k')# 42. (y-3.4)**2 = 2*(x+3.76) for 3.57 < y < 3.702
y42 = np.linspace(3.57, 3.702, 100)
x42 = (y42 - 3.4)**2 / 2 - 3.76
plt.plot(x42, y42, 'k')# 43. y = 2*x + 11.6 for -3.88 < x < -3.69
x43 = np.linspace(-3.88, -3.69, 100)
y43 = 2 * x43 + 11.6
plt.plot(x43, y43, 'k')# 44. (y-3.7)**2 = 2.6*(x+3.79) for 3.8 < y < 4.22
y44 = np.linspace(3.8, 4.22, 100)
x44 = (y44 - 3.7)**2 / 2.6 - 3.79
plt.plot(x44, y44, 'k')# 45. (y-4.2)**2 = 2.7*(x+3.69) for 3.745 < y < 4.21
y45 = np.linspace(3.745, 4.21, 100)
x45 = (y45 - 4.2)**2 / 2.7 - 3.69
plt.plot(x45, y45, 'k')# 46. (y-4.35)**2 = (x+3.65) for 3.774 < y < 4.295
y46 = np.linspace(3.774, 4.295, 100)
x46 = (y46 - 4.35)**2 - 3.65
plt.plot(x46, y46, 'k')# 47. y = 2.3*(x+3.2)**2 + 3.85 for -3.639 < x < -3.294
x47 = np.linspace(-3.639, -3.294, 100)
y47 = 2.3 * (x47 + 3.2)**2 + 3.85
plt.plot(x47, y47, 'k')# 48. y = -0.7*(x+3.5)**2 + 4.32 for -3.56 < x < -3.04
x48 = np.linspace(-3.56, -3.04, 100)
y48 = -0.7 * (x48 + 3.5)**2 + 4.32
plt.plot(x48, y48, 'k')# 49. (y-3.77)**2 = -2*(x+3.22) for 3.077 < y < 3.57
y49 = np.linspace(3.077, 3.57, 100)
x49 = -3.22 - (y49 - 3.77)**2 / 2
plt.plot(x49, y49, 'k')# 50. (y-4)**2 = -2.2*(x+3.06) for 3.067 < y < 3.514
y50 = np.linspace(3.067, 3.514, 100)
x50 = -3.06 - (y50 - 4)**2 / 2.2
plt.plot(x50, y50, 'k')# 51. y = -6*x - 15.44 for 3.254 < y < 3.522
y51 = np.linspace(3.254, 3.522, 100)
x51 = (-y51 - 15.44) / -6
plt.plot(x51, y51, 'k')# 52. y = 3*x + 12.57 for 3.018 < y < 3.389
y52 = np.linspace(3.018, 3.389, 100)
x52 = (y52 - 12.57) / 3
plt.plot(x52, y52, 'k')# 53. y = 2.2*x + 10 for 3.015 < y < 3.539
y53 = np.linspace(3.015, 3.539, 100)
x53 = (y53 - 10) / 2.2
plt.plot(x53, y53, 'k')# 54. y = -9*x - 24.5 for 2.87 < y < 3.22
y54 = np.linspace(2.87, 3.22, 100)
x54 = (-y54 - 24.5) / -9
plt.plot(x54, y54, 'k')# 55. (y-3.3)**2 = -0.8*(x+2.81) for 2.87 < y < 3.3
y55 = np.linspace(2.87, 3.3, 100)
x55 = -2.81 - (y55 - 3.3)**2 / 0.8
plt.plot(x55, y55, 'k')# 56. y = 15*(x+3.03) for 3.015 < y < 3.667
y56 = np.linspace(3.015, 3.667, 100)
x56 = y56/15 - 3.03
plt.plot(x56, y56, 'k')# 57. y = 3*x + 11.5 for -2.828 < x < -2.786
x57 = np.linspace(-2.828, -2.786, 100)
y57 = 3 * x57 + 11.5
plt.plot(x57, y57, 'k')# 58. (y-3.18)**2 = 0.25*(x+2.78) for 3.095 < y < 3.23
y58 = np.linspace(3.095, 3.23, 100)
x58 = (y58 - 3.18)**2 / 0.25 - 2.78
plt.plot(x58, y58, 'k')# 59. y = 4*x + 14.23 for -2.739 < x < -2.7
x59 = np.linspace(-2.739, -2.7, 100)
y59 = 4 * x59 + 14.23
plt.plot(x59, y59, 'k')# 60. (y-3.36)**2 = 2*(x+2.7) for 3.43 < y < 3.77
y60 = np.linspace(3.43, 3.77, 100)
x60 = (y60 - 3.36)**2 / 2 - 2.7
plt.plot(x60, y60, 'k')# 61. y = 2.8*(x+3.962) for 3.77 < y < 3.98
y61 = np.linspace(3.77, 3.98, 100)
x61 = y61/2.8 - 3.962
plt.plot(x61, y61, 'k')# 62. y = (x+2.9)**2 + 3.39 for -2.7 < x < -2.37
x62 = np.linspace(-2.7, -2.37, 100)
y62 = (x62 + 2.9)**2 + 3.39
plt.plot(x62, y62, 'k')# 63. y = 1.4*(x+2.7)**2 + 3.4 for -2.7 < x < -2.287
x63 = np.linspace(-2.7, -2.287, 100)
y63 = 1.4 * (x63 + 2.7)**2 + 3.4
plt.plot(x63, y63, 'k')# 64. y = -0.6*x + 1.95 for -2.55 < x < -2.45
x64 = np.linspace(-2.55, -2.45, 100)
y64 = -0.6 * x64 + 1.95
plt.plot(x64, y64, 'k')# 65. (y-3.49)**2 = 0.02*(x+2.554) for 3.48 < y < 3.506
y65 = np.linspace(3.48, 3.506, 100)
x65 = (y65 - 3.49)**2 / 0.02 - 2.554
plt.plot(x65, y65, 'k')# 66. y = -7*(x+2.515)**2 + 3.51 for -2.54 < x < -2.42
x66 = np.linspace(-2.54, -2.42, 100)
y66 = -7 * (x66 + 2.515)**2 + 3.51
plt.plot(x66, y66, 'k')# 67. y = 60*(x+2.441)**2 + 3.42 for -2.441 < x < -2.42
x67 = np.linspace(-2.441, -2.42, 100)
y67 = 60 * (x67 + 2.441)**2 + 3.42
plt.plot(x67, y67, 'k')# 68. y = 3.42 for -2.45 < x < -2.441
x68 = np.linspace(-2.45, -2.441, 100)
y68 = np.full_like(x68, 3.42)
plt.plot(x68, y68, 'k')# 69. y = -2.8*(x+2.71)**2 + 3.24 for -2.77 < x < -2.63
x69 = np.linspace(-2.77, -2.63, 100)
y69 = -2.8 * (x69 + 2.71)**2 + 3.24
plt.plot(x69, y69, 'k')# 70. y = -12*(x+2.64)**2 + 3.223 for -2.63 < x < -2.548
x70 = np.linspace(-2.63, -2.548, 100)
y70 = -12 * (x70 + 2.64)**2 + 3.223
plt.plot(x70, y70, 'k')# 71. y = 3.25 for -2.77 < x < -2.65
x71 = np.linspace(-2.77, -2.65, 100)
y71 = np.full_like(x71, 3.25)
plt.plot(x71, y71, 'k')# 72. y = -3.8*(x+2.7)**2 + 3.26 for -2.65 < x < -2.56
x72 = np.linspace(-2.65, -2.56, 100)
y72 = -3.8 * (x72 + 2.7)**2 + 3.26
plt.plot(x72, y72, 'k')# 73. y = -2*(x+2.64)**2 + 3.32 for -2.64 < x < -2.52
x73 = np.linspace(-2.64, -2.52, 100)
y73 = -2 * (x73 + 2.64)**2 + 3.32
plt.plot(x73, y73, 'k')# 74. y = 1.2*x + 6.32 for 3.27 < y < 3.293
y74 = np.linspace(3.27, 3.293, 100)
x74 = (y74 - 6.32) / 1.2
plt.plot(x74, y74, 'k')# 75. y = -25*(x+2.65)**2 + 3.21 for -2.689 < x < -2.619
x75 = np.linspace(-2.689, -2.619, 100)
y75 = -25 * (x75 + 2.65)**2 + 3.21
plt.plot(x75, y75, 'k')# 76. (y-3.24)**2 = -0.5*(x+2.61) for 3.028 < y < 3.184
y76 = np.linspace(3.028, 3.184, 100)
x76 = -2.61 - (y76 - 3.24)**2 / 0.5
plt.plot(x76, y76, 'k')# 77. (y-3.09)**2 = 0.27*(x+2.715) for 3.027 < y < 3.139
y77 = np.linspace(3.027, 3.139, 100)
x77 = (y77 - 3.09)**2 / 0.27 - 2.715
plt.plot(x77, y77, 'k')# 78. Circle: (x+2.692)**2 + (y-3.152)**2 <= 0.0003
r78 = np.sqrt(0.0003)
x78 = -2.692 + r78 * np.cos(theta)
y78 = 3.152 + r78 * np.sin(theta)
plt.fill(x78, y78, 'k')# 79. Ellipse: (x+2.69)**2/0.0006 + (y-3.07)**2/0.0003 <= 1
ell79 = Ellipse(xy=(-2.69, 3.07), width=2*np.sqrt(0.0006),height=2*np.sqrt(0.0003), angle=0, color='k')
plt.gca().add_patch(ell79)# 80. Rotated Ellipse: (0.707(x+2.69)+0.707(y-3.07))**2/0.0006 +
#      (-0.707(x+2.69)+0.707(y-3.07))**2/0.0003 <= 1
ell80 = Ellipse(xy=(-2.69, 3.07), width=2*np.sqrt(0.0006),height=2*np.sqrt(0.0003), angle=45, color='k')
plt.gca().add_patch(ell80)# 81. Ellipse: (x+2.69)**2/0.0008 + (y-3.117)**2/0.0004 <= 1
ell81 = Ellipse(xy=(-2.69, 3.117), width=2*np.sqrt(0.0008),height=2*np.sqrt(0.0004), angle=0, color='k')
plt.gca().add_patch(ell81)# 82. Rotated Ellipse: (0.707(x+2.69)+0.707(y-3.117))**2/0.0008 +
#      (-0.707(x+2.69)+0.707(y-3.117))**2/0.0004 <= 1
ell82 = Ellipse(xy=(-2.69, 3.117), width=2*np.sqrt(0.0008),height=2*np.sqrt(0.0004), angle=45, color='k')
plt.gca().add_patch(ell82)# 83. y = -2.5*(x+2.8)**2 + 2.704 for -2.768 < x < -2.674
x83 = np.linspace(-2.768, -2.674, 100)
y83 = -2.5 * (x83 + 2.8)**2 + 2.704
plt.plot(x83, y83, 'k')# 84. y = -x - 0.07 for 2.638 < y < 2.701
y84 = np.linspace(2.638, 2.701, 100)
x84 = -y84 - 0.07
plt.plot(x84, y84, 'k')# 85. y = 0.8*x + 4.803 for -2.707 < x < -2.674
x85 = np.linspace(-2.707, -2.674, 100)
y85 = 0.8 * x85 + 4.803
plt.plot(x85, y85, 'k')# 86. (y-3.6)**2 = 1.4*(x+3.93) for 3.283 < y < 3.626
y86 = np.linspace(3.283, 3.626, 100)
x86 = (y86 - 3.6)**2 / 1.4 - 3.93
plt.plot(x86, y86, 'k')# 87. (y-3.5)**2 = (x+3.79) for 3.271 < y < 3.469
y87 = np.linspace(3.271, 3.469, 100)
x87 = (y87 - 3.5)**2 - 3.79
plt.plot(x87, y87, 'k')# 88. y = -2*x - 4.04 for 3.174 < y < 3.314
y88 = np.linspace(3.174, 3.314, 100)
x88 = (-y88 - 4.04) / -2
plt.plot(x88, y88, 'k')# 89. y = -0.5*x + 1.37 for -3.69 < x < -3.607
x89 = np.linspace(-3.69, -3.607, 100)
y89 = -0.5 * x89 + 1.37
plt.plot(x89, y89, 'k')# 90. x = -3.69 for 3.103 < y < 3.214
y90 = np.linspace(3.103, 3.214, 100)
x90 = np.full_like(y90, -3.69)
plt.plot(x90, y90, 'k')# 91. y = -0.5*x + 1.25 for -3.752 < x < -3.69
x91 = np.linspace(-3.752, -3.69, 100)
y91 = -0.5 * x91 + 1.25
plt.plot(x91, y91, 'k')# 92. x = -3.752 for 3.052 < y < 3.126
y92 = np.linspace(3.052, 3.126, 100)
x92 = np.full_like(y92, -3.752)
plt.plot(x92, y92, 'k')# 93. (y-2.93)**2 = 3*(x+3.84) for 2.836 < y < 3.107
y93 = np.linspace(2.836, 3.107, 100)
x93 = (y93 - 2.93)**2 / 3 - 3.84
plt.plot(x93, y93, 'k')# 94. (y-2.7)**2 = 2.5*(x+3.84) for 2.83 < y < 3.08
y94 = np.linspace(2.83, 3.08, 100)
x94 = (y94 - 2.7)**2 / 2.5 - 3.84
plt.plot(x94, y94, 'k')# 95. y = -1.5*x - 1.17 for -3.743 < x < -3.645
x95 = np.linspace(-3.743, -3.645, 100)
y95 = -1.5 * x95 - 1.17
plt.plot(x95, y95, 'k')# 96. y = -5*(x+3.83)**2 + 4.48 for -3.95 < x < -3.745
x96 = np.linspace(-3.95, -3.745, 100)
y96 = -5 * (x96 + 3.83)**2 + 4.48
plt.plot(x96, y96, 'k')# 97. y = 1.5*x + 10.4 for 3.658 < y < 4.277
y97 = np.linspace(3.658, 4.277, 100)
x97 = (y97 - 10.4) / 1.5
plt.plot(x97, y97, 'k')# 98. (y-4)**2 = 0.7*(x+4.19) for 4.276 < y < 4.41
y98 = np.linspace(4.276, 4.41, 100)
x98 = (y98 - 4)**2 / 0.7 - 4.19
plt.plot(x98, y98, 'k')# 99. (y-2.7)**2 = 3*(x+4.8) for 3.245 < y < 3.653
y99 = np.linspace(3.245, 3.653, 100)
x99 = (y99 - 2.7)**2 / 3 - 4.8
plt.plot(x99, y99, 'k')# 100. (y-2.6)**2 = 1.8*(x+4.9) for 2.423 < y < 3.04
y100 = np.linspace(2.423, 3.04, 100)
x100 = (y100 - 2.6)**2 / 1.8 - 4.9
plt.plot(x100, y100, 'k')# 101. y=2.3x+14.06 {3.04<y<3.245}
y101 = np.linspace(3.04, 3.245, 100)
x101 = (y101 - 14.06) / 2.3
plt.plot(x101, y101, 'k')# 102. (y-2.5)**2=0.41*(x+4.895) {1.974<y<2.42}
y102 = np.linspace(1.974, 2.42, 100)
x102 = (y102 - 2.5)**2 / 0.41 - 4.895
plt.plot(x102, y102, 'k')# 103. y=-0.7x-0.98 {-4.22<x<-3.708}
x103 = np.linspace(-4.22, -3.708, 100)
y103 = -0.7 * x103 - 0.98
plt.plot(x103, y103, 'k')# 104. y=-0.8x-1.36 {-3.713<x<-3.454}
x104 = np.linspace(-3.713, -3.454, 100)
y104 = -0.8 * x104 - 1.36
plt.plot(x104, y104, 'k')# 105. (y+1)**2=-5.3*(x+2.36) {0<y<1.4}
y105 = np.linspace(0, 1.4, 100)
x105 = -2.36 - (y105 + 1)**2 / 5.3
plt.plot(x105, y105, 'k')# 106. (y+0.1)**2=-3.3*(x+2.57) {0.079<y<0.983}
y106 = np.linspace(0.079, 0.983, 100)
x106 = -2.57 - (y106 + 0.1)**2 / 3.3
plt.plot(x106, y106, 'k')# 107. y=-1.1x-2.25 {0.346<y<0.932}
y107 = np.linspace(0.346, 0.932, 100)
x107 = (y107 - (-2.25)) / (-1.1)
plt.plot(x107, y107, 'k')# 108. y=-1.4*(x+3.1)**2+1.1 {-2.82<x<-2.37}
x108 = np.linspace(-2.82, -2.37, 100)
y108 = -1.4 * (x108 + 3.1)**2 + 1.1
plt.plot(x108, y108, 'k')# 109. y=-1.1x-2.1 {-3.6<x<-2.817}
x109 = np.linspace(-3.6, -2.817, 100)
y109 = -1.1 * x109 - 2.1
plt.plot(x109, y109, 'k')# 110. (y-3)**2=2.5*(x+4.11) {1.864<y<2.514}
y110 = np.linspace(1.864, 2.514, 100)
x110 = (y110 - 3)**2 / 2.5 - 4.11
plt.plot(x110, y110, 'k')# 111. (y-3.1)**2=3*(x+4.14) {2.515<y<3.25}
y111 = np.linspace(2.515, 3.25, 100)
x111 = (y111 - 3.1)**2 / 3 - 4.14
plt.plot(x111, y111, 'k')# 112. (y-3.2)**2=4*(x+4.136) {3.254<y<3.757}
y112 = np.linspace(3.254, 3.757, 100)
x112 = (y112 - 3.2)**2 / 4 - 4.136
plt.plot(x112, y112, 'k')# 113. (y-3.4)**2=1.6*(x+4.2) {4.057<y<4.32}
y113 = np.linspace(4.057, 4.32, 100)
x113 = (y113 - 3.4)**2 / 1.6 - 4.2
plt.plot(x113, y113, 'k')# 114. y=-0.6x-0.54 {-4.63<x<-4.13}
x114 = np.linspace(-4.63, -4.13, 100)
y114 = -0.6 * x114 - 0.54
plt.plot(x114, y114, 'k')# 115. (y-2.8)**2=0.9*(x+4.74) {2.076<y<2.8}
y115 = np.linspace(2.076, 2.8, 100)
x115 = (y115 - 2.8)**2 / 0.9 - 4.74
plt.plot(x115, y115, 'k')# 116. y=10*(x+5.02) {2.8<y<3.15}
y116 = np.linspace(2.8, 3.15, 100)
x116 = y116/10 - 5.02
plt.plot(x116, y116, 'k')# 117. (y-3.2)**2=2.2*(x+4.59) {1.625<y<3}
y117 = np.linspace(1.625, 3, 100)
x117 = (y117 - 3.2)**2 / 2.2 - 4.59
plt.plot(x117, y117, 'k')# 118. (y极客
y118 = np.linspace(3, 3.45, 100)
x118 = (y118 - 3.2)**2 / 2 - 4.59
plt.plot(x118, y118, 'k')# 119. y=-2x-3.8 {1.56<y<2.366}
y119 = np.linspace(1.56, 2.366, 100)
x119 = (-y119 - 3.8) / -2
plt.plot(x119, y119, 'k')# 120. y=-1.2x-1.67 {0.86<y<1.55}
y120 = np.linspace(0.86, 1.55, 100)
x120 = (-y120 - 1.67) / -1.2
plt.plot(x120, y120, 'k')# 121. y=1.2*(x+1.4)**2+0.45 {-1.747<x<-1.4}
x121 = np.linspace(-1.747, -1.4, 100)
y121 = 1.2 * (x121 + 1.4)**2 + 0.45
plt.plot(x121, y121, 'k')# 122. y=-0.75x-0.72 {-2.105<x<-1.748}
x122 = np.linspace(-2.105, -1.748, 100)
y122 = -0.75 * x122 - 0.72
plt.plot(x122, y122, 'k')# 123. y=0.7*(x+1.4)**2+0.43 {-2.184<x<-1.4}
x123 = np.linspace(-2.184, -1.4, 100)
y123 = 0.7 * (x123 + 1.4)**2 + 0.43
plt.plot(x123, y123, 'k')# 124. y=6x+21 {-3.139<x<-3.107}
x124 = np.linspace(-3.139, -3.107, 100)
y124 = 6 * x124 + 21
plt.plot(x124, y124, 'k')# 124. y=6x+21 {-3.139<x<-3.107}
x124 = np.linspace(-3.139, -3.107, 100)
y124 = 6 * x124 + 21
plt.plot(x124, y124, 'k')# 125. y=-0.3x+1.432 {-3.288<x<-3.108}
x125 = np.linspace(-3.288, -3.108, 100)
y125 = -0.3 * x125 + 1.432
plt.plot(x125, y125, 'k')# 126. y=-0
x126 = np.linspace(-3.341, -3.139, 100)
y126 = -0.3 * x126 + 1.22
plt.plot(x126, y126, 'k')# 127. y=4x+15.72 {2.26<y<2.38}
y127 = np.linspace(2.26, 2.38, 100)
x127 = (y127 - 15.72) / 4
plt.plot(x127, y127, 'k')# 128. (y-2.35)**2=0.08*(x+3.345) {2.38<y<2.418}
y128 = np.linspace(2.38, 2.418, 100)
x128 = (y128 - 2.35)**2 / 0.08 - 3.345
plt.plot(x128, y128, 'k')# 129. (y-2.26)**2=0.06*(x极客
y129 = np.linspace(2.222, 2.26, 100)
x129 = (y129 - 2.26)**2 / 0.06 - 3.365
plt.plot(x129, y129, 'k')# 130. y=5x+17.83 {2.435<y<2.485}
y130 = np.linspace(2.435, 2.485, 100)
x130 = (y130 - 17.83) / 5
plt.plot(x130, y130, 'k')# 131. (y-2.403)**2=-0.06*(x+3.07) {2.355<y<2.561}
y131 = np.linspace(2.355, 2.561, 100)
x131 = -3.07 - (y131 - 2.403)**2 / 0.06
plt.plot(x131, y131, 'k')# 132. y=-0.3x+1.515 {-3.898<x<-3.485}
x132 = np.linspace(-3.898, -3.485, 100)
y132 = -0.3 * x132 + 1.515
plt.plot(x132, y132, 'k')# 133. y=-0.3x+1.43 {2.45<y<2.609}
y133 = np.linspace(2.45, 2.609, 100)
x133 = (1.43 - y133) / 0.3
plt.plot(x133, y133, 'k')# 134. y=5x+19.46 {2.2<y<2.54}
y134 = np.linspace(2.2, 2.54, 100)
x134 = (y134 - 19.46) / 5
plt.plot(x134, y134, 'k')# 135. y=-0.3x+1.16 {2.097<y<2.261}
y135 = np.linspace(2.097, 2.261, 100)
x135 = (1.16 - y135) / 0.3
plt.plot(x135, y135, 'k')# 136. y=-0.36*(x+4)**2+2.3 {-3.912<x<-3.667}
x136 = np.linspace(-3.912, -3.667, 100)
y136 = -0.36 * (x136 + 4)**2 + 2.3
plt.plot(x136, y136, 'k')# 137. y=-0.35*(x+4)**2+2.38 {-3.956<x<-3.438}
x137 = np.linspace(-3.956, -3.438, 100)
y137 = -0.35 * (x137 + 4)**2 + 2.38
plt.plot(x137, y137, 'k')# 138. y=3x+14.42 {2.45<y<2.69}
y138 = np.linspace(2.45, 2.69, 100)
x138 = (y138 - 14.42) / 3
plt.plot(x138, y138, 'k')# 139. y=2.5x+12.38 {-3.88<x<-3.849}
x139 = np.linspace(-3.88, -3.849, 100)
y139 = 2.5 * x139 + 12.38
plt.plot(x139, y139, 'k')# 设置坐标轴范围
plt.xlim(-5, -1)
plt.ylim(2, 5)
plt.gca().set_aspect('equal', adjustable='box')
plt.grid(False)
plt.axis('off')# 显示图形
plt.tight_layout()
plt.savefig('complex_plot.png', dpi=300, bbox_inches='tight')
plt.show()

图形

总结

还是需要感谢B站UP主:WalkingStar。非常的厉害,我只是在此基础上进行的二创,节省了很多的时间。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/pingmian/83423.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关于list集合排序的常见方法

目录 1、list.sort() 2、Collections.sort() 3、Stream.sorted() 4、进阶排序技巧 4.1 空值安全处理 4.2 多字段组合排序 4.3. 逆序 5、性能优化建议 5.1 并行流加速 5.2 原地排序 6、最佳实践 7、注意事项 前言 Java中对于集合的排序操作&#xff0c;分别为list.s…

Java高级 | (二十二)Java常用类库

参考&#xff1a;Java 常用类库 | 菜鸟教程 一、核心Java类库 二、常用第三方库 以下是 Java 生态系统中广泛使用的第三方库&#xff1a; 类别库名称主要功能官方网站JSON 处理JacksonJSON 序列化/反序列化https://github.com/FasterXML/jacksonGsonGoogle 的 JSON 库https:…

几种常用的Agent的Prompt格式

一、基础框架范式&#xff08;Google推荐标准&#xff09; 1. 角色与职能定义 <Role_Definition> 你是“项目专家”&#xff08;Project Pro&#xff09;&#xff0c;作为家居园艺零售商的首席AI助手&#xff0c;专注于家装改造领域。你的核心使命&#xff1a; 1. 协助…

蛋白质结构预测软件openfold介绍

openfold 是一个用 Python 和 PyTorch 实现的 AlphaFold2 的开源复现版&#xff0c;旨在提升蛋白质结构预测的可复现性、可扩展性以及研究友好性。它允许研究者在不开源 DeepMind 原始代码的情况下&#xff0c;自由地进行蛋白结构预测的训练和推理&#xff0c;并支持自定义模型…

AD转嘉立创EDA

可以通过嘉立创文件迁移助手进行格式的转换 按照它的提示我们整理好文件 导出后是这样的&#xff0c;第一个文件夹中有原理图和PCB&#xff0c;可以把它们压缩成一个压缩包 这个时候我们打开立创EDA&#xff0c;选择导入AD 这样就完成了

MySQL(50)如何使用UNSIGNED属性?

在 MySQL 中&#xff0c;UNSIGNED 属性用于数值数据类型&#xff08;如 TINYINT、SMALLINT、MEDIUMINT、INT 和 BIGINT&#xff09;&#xff0c;表示该列只能存储非负整数。使用 UNSIGNED 属性可以有效地扩展列的正整数范围&#xff0c;因为它不需要为负数保留空间。 1. 定义与…

什么是链游,链游系统开发价格以及方案

2025 Web3钱包开发指南&#xff1a;从多版本源码到安全架构实战 在数字资产爆发式增长的今天&#xff0c;Web3钱包已成为用户进入链上世界的核心入口。作为开发者&#xff0c;如何高效构建安全、跨链、可扩展的钱包系统&#xff1f;本文结合前沿技术方案与开源实践&#xff0c…

文件IO流

IO使用函数 标准IO文件IO(低级IO)打开fopen, freopen, fdopenopen关闭fcloseclose读getc, fgetc, getchar, fgets, gets, fread printf fprintfread写putc, fputc, putchar, fputs, puts, fwrite scanf fscanfwrite操作文件指针fseeklseek其它fflush rewind ftell 文件描述符 …

云原生DMZ架构实战:基于AWS CloudFormation的安全隔离区设计

在云时代,传统的DMZ(隔离区)概念已经演变为更加灵活和动态的架构。本文通过解析一个实际的AWS CloudFormation模板,展示如何在云原生环境中构建现代化的DMZ安全架构。 1. 云原生DMZ的核心理念 传统DMZ是网络中的"缓冲区",位于企业内网和外部网络之间。而在云环境…

一、虚拟货币概述

1. 定义 - 虚拟货币是一种基于网络技术、加密技术和共识机制的数字货币&#xff0c;它不依赖传统金融机构发行&#xff0c;而是通过计算机算法生成&#xff0c;例如比特币、以太坊等。 2. 特点 - 去中心化&#xff1a;没有一个单一的机构或个人控制整个虚拟货币系统&#xff0c…

Make All Equal

给定一个循环数组 a1,a2,…,ana1​,a2​,…,an​。 你可以对 aa 至多执行 n−1n−1 次以下操作&#xff1a; 设 mm 为 aa 的当前大小&#xff0c;你可以选择任何两个相邻的元素&#xff0c;其中前一个不大于后一个&#xff08;特别地&#xff0c;amam​ 和 a1a1​ 是相邻的&a…

任务中心示例及浏览器强制高效下载实践

1. 效果展示 这里的进度展示&#xff0c;可以通过我们之前讲到的Vue3实现类ChatGPT聊天式流式输出(vue-sse实现) SSE技术实现&#xff0c;比如用户点击全量下载时&#xff0c;后台需要将PDF文件打包为ZIP文件&#xff0c;由于量较大&#xff0c;需要展示进度&#xff0c;用户点…

SpringBoot整合Flowable【08】- 前后端如何交互

引子 在第02篇中&#xff0c;我通过 Flowable-UI 绘制了一个简单的绩效流程&#xff0c;并在后续章节中基于这个流程演示了 Flowable 的各种API调用。然而&#xff0c;在实际业务场景中&#xff0c;如果要求前端将用户绘制的流程文件发送给后端再进行解析处理&#xff0c;这种…

2025 Java面试大全技术文章大纲

2025 Java面试大全技术文章大纲 基础篇 Java核心语法 数据类型与包装类自动装箱与拆箱原理String、StringBuffer、StringBuilder区别final关键字作用场景 面向对象特性 多态的实现机制抽象类与接口的异同设计模式&#xff1a;单例的七种写法泛型擦除与桥接方法 进阶篇 J…

Python aiohttp 全面指南:异步HTTP客户端/服务器框架

边写代码零食不停口 盼盼麦香鸡味块 、卡乐比&#xff08;Calbee&#xff09;薯条三兄弟 独立小包、好时kisses多口味巧克力糖、老金磨方【黑金系列】黑芝麻丸 边写代码边贴面膜 事业美丽两不误 DR. YS 野森博士【AOUFSE/澳芙雪特证】377专研美白淡斑面膜组合 优惠劵 别光顾写…

归并排序:高效稳定的分治算法

归并排序 归并排序采用分治策略实现稳定排序&#xff0c;其核心思想是将序列递归分解后进行有序合并。 def merge_sort(arr):if len(arr) < 1:return arrmid len(arr) // 2left merge_sort(arr[:mid])right merge_sort(arr[mid:])result []i j 0while i < len(le…

go语言基础|slice入门

slice slice介绍 slice中文叫切片&#xff0c;是go官方提供的一个可变数组&#xff0c;是一个轻量级的数据结构&#xff0c;功能上和c的vector&#xff0c;Java的ArrayList差不多。 slice和数组是有一些区别的&#xff0c;是为了弥补数组的一些不足而诞生的数据结构。最大的…

网络攻防技术九:网络监听技术

文章目录 一、网络监听概述二、网络流量劫持三、数据采集与解析四、网络监听检测与防范1、检测实施监听主机2、防范网络通信被监听 一、网络监听概述 主要解决问题&#xff1a;网络流量劫持、在监听点上采集并分析网络数据。主要涉及网卡数据采集、协议分析技术。 二、网络流量…

Cat.1与Cat.4区别及应用场景

Cat.1 和 Cat.4 都是 LTE&#xff08;4G&#xff09;网络中的终端设备类别&#xff0c;主要区别在于 数据传输速率、复杂度和功耗&#xff0c;这直接影响了它们的应用场景和成本。 以下是它们的主要区别&#xff1a; 数据传输速率 (核心区别)&#xff1a; Cat.1 (Category 1)&…

【后端高阶面经:架构篇】51、搜索引擎架构与排序算法:面试关键知识点全解析

一、搜索引擎核心基石&#xff1a;倒排索引技术深度解析 &#xff08;一&#xff09;倒排索引的本质与构建流程 倒排索引&#xff08;Inverted Index&#xff09;是搜索引擎实现快速检索的核心数据结构&#xff0c;与传统数据库的正向索引&#xff08;文档→关键词&#xff0…