文章目录
- STL- 函数对象
- 函数对象
- 函数对象使用
- 谓词
- 一元谓词
- 二元谓词
- 内建函数对象
- 算术仿函数
- 关系仿函数
- STL- 常用算法
- 常用遍历算法
- for_each
- transform
- 常用查找算法
- find
- find_if
- adjacent_find
- binary_search
- count
- count_if
- 常用排序算法
- sort
- random_shuffle
- merge
- reverse
- 常用拷贝和替换算法
- copy
- replace
- replace_if
- swap
- 常用算术生成算法
- accumulate
- fill
- 常用集合算法
- set_intersection
- set_union
- set_difference
STL- 函数对象
函数对象
重载函数调用操作符的类,其对象常称为函数对象
函数对象使用重载的()时,行为类似函数调用,也叫仿函数
本质:函数对象(仿函数)是一个类,不是一个函数
函数对象使用
特点:
- 函数对象在使用时,可以像普通函数那样调用, 可以有参数,可以有返回值
- 函数对象超出普通函数的概念,函数对象可以有自己的状态
- 函数对象可以作为参数传递
#include <string>//1、函数对象在使用时,可以像普通函数那样调用, 可以有参数,可以有返回值
class MyAdd{
public :int operator()(int v1,int v2){return v1 + v2;}
};void test01(){MyAdd myAdd;cout << myAdd(10, 10) << endl;
}//2、函数对象可以有自己的状态
class MyPrint{
public:MyPrint(){count = 0;}void operator()(string test){cout << test << endl;count++; //统计使用次数}int count; //内部自己的状态
};
void test02(){MyPrint myPrint;myPrint("hello world");myPrint("hello world");myPrint("hello world");cout << "myPrint调用次数为: " << myPrint.count << endl;
}//3、函数对象可以作为参数传递
void doPrint(MyPrint &mp , string test){mp(test);
}void test03(){MyPrint myPrint;doPrint(myPrint, "Hello C++");
}
总结:
仿函数写法非常灵活,可以作为参数进行传递。
谓词
返回bool类型的仿函数称为谓词
如果operator()接受一个参数,那么叫做一元谓词
如果operator()接受两个参数,那么叫做二元谓词
一元谓词
#include <vector>
#include <algorithm>//1.一元谓词
struct GreaterFive{bool operator()(int val) {return val > 5;}
};void test01() {vector<int> v;for (int i = 0; i < 10; i++){v.push_back(i);}vector<int>::iterator it = find_if(v.begin(), v.end(), GreaterFive());if (it == v.end()) {cout << "没找到!" << endl;}else {cout << "找到:" << *it << endl;}
}
总结:参数只有一个的谓词,称为一元谓词
二元谓词
#include <vector>
#include <algorithm>
//二元谓词
class MyCompare{
public:bool operator()(int num1, int num2){return num1 > num2;}
};void test01(){vector<int> v;v.push_back(10);v.push_back(40);v.push_back(20);v.push_back(30);v.push_back(50);//默认从小到大sort(v.begin(), v.end());for (vector<int>::iterator it = v.begin(); it != v.end(); it++){cout << *it << " ";}cout << endl;cout << "----------------------------" << endl;//使用函数对象改变算法策略,排序从大到小sort(v.begin(), v.end(), MyCompare());for (vector<int>::iterator it = v.begin(); it != v.end(); it++){cout << *it << " ";}cout << endl;
}
总结:参数只有两个的谓词,称为二元谓词
内建函数对象
STL内建了一些函数对象
分类:
- 算术仿函数
- 关系仿函数
- 逻辑仿函数(了解即可)
用法:
- 这些仿函数所产生的对象,用法和一般函数完全相同
- 使用内建函数对象,需要引入头文件
#include<functional>
算术仿函数
功能描述:
- 实现四则运算
- 其中negate是一元运算,其他都是二元运算
仿函数原型:
template<class T> T plus<T>
//加法仿函数template<class T> T minus<T>
//减法仿函数template<class T> T multiplies<T>
//乘法仿函数template<class T> T divides<T>
//除法仿函数template<class T> T modulus<T>
//取模仿函数template<class T> T negate<T>
//取反仿函数
#include <functional>
//negate
void test01(){negate<int> n;cout << n(50) << endl;
}//plus
void test02(){plus<int> p;cout << p(10, 20) << endl;
}
总结:使用内建函数对象时,需要引入头文件 #include <functional>
关系仿函数
实现关系对比
仿函数原型:
template<class T> bool equal_to<T>
//等于template<class T> bool not_equal_to<T>
//不等于template<class T> bool greater<T>
//大于template<class T> bool greater_equal<T>
//大于等于template<class T> bool less<T>
//小于template<class T> bool less_equal<T>
//小于等于
#include <functional>
#include <vector>
#include <algorithm>class MyCompare{
public:bool operator()(int v1,int v2){return v1 > v2;}
};
void test01(){vector<int> v;v.push_back(10);v.push_back(30);v.push_back(50);v.push_back(40);v.push_back(20);for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {cout << *it << " ";}cout << endl;//自己实现仿函数//sort(v.begin(), v.end(), MyCompare());//STL内建仿函数 大于仿函数sort(v.begin(), v.end(), greater<int>());for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {cout << *it << " ";}cout << endl;
}
总结:关系仿函数中最常用的就是greater<>大于
STL- 常用算法
算法主要是由头文件<algorithm>
<functional>
<numeric>
组成。
<algorithm>
是所有STL头文件中最大的一个,范围涉及到比较、 交换、查找、遍历操作、复制、修改等等<numeric>
体积很小,只包括几个在序列上面进行简单数学运算的模板函数<functional>
定义了一些模板类,用以声明函数对象。
常用遍历算法
算法简介:
for_each
//遍历容器transform
//搬运容器到另一个容器中
for_each
实现遍历容器
函数原型:
for_each(iterator beg, iterator end, _func);
// 遍历算法 遍历容器元素// beg 开始迭代器// end 结束迭代器// _func 函数或者函数对象`
示例:
#include <algorithm>
#include <vector>//普通函数
void print01(int val) {cout << val << " ";
}
//函数对象
class print02 {public:void operator()(int val) {cout << val << " ";}
};//for_each算法基本用法
void test01() {vector<int> v;for (int i = 0; i < 10; i++) {v.push_back(i);}//遍历算法for_each(v.begin(), v.end(), print01);cout << endl;for_each(v.begin(), v.end(), print02());cout << endl;
}
总结:for_each在实际开发中是最常用遍历算法,需要熟练掌握
transform
搬运容器到另一个容器中
函数原型:
transform(iterator beg1, iterator end1, iterator beg2, _func);
//beg1 源容器开始迭代器
//end1 源容器结束迭代器
//beg2 目标容器开始迭代器
//_func 函数或者函数对象
#include<vector>
#include<algorithm>//常用遍历算法 搬运 transformclass TransForm{
public:int operator()(int val){return val;}};class MyPrint{
public:void operator()(int val){cout << val << " ";}
};void test01(){vector<int>v;for (int i = 0; i < 10; i++){v.push_back(i);}vector<int>vTarget; //目标容器vTarget.resize(v.size()); // 目标容器需要提前开辟空间transform(v.begin(), v.end(), vTarget.begin(), TransForm());for_each(vTarget.begin(), vTarget.end(), MyPrint());
}
总结: 搬运的目标容器必须要提前开辟空间,否则无法正常搬运
常用查找算法
算法简介:
find
//查找元素find_if
//按条件查找元素adjacent_find
//查找相邻重复元素binary_search
//二分查找法count
//统计元素个数count_if
//按条件统计元素个数
find
查找指定元素,找到返回指定元素的迭代器,找不到返回结束迭代器end()
函数原型:
find(iterator beg, iterator end, value);
// 按值查找元素,找到返回指定位置迭代器,找不到返回结束迭代器位置// beg 开始迭代器// end 结束迭代器// value 查找的元素
#include <algorithm>
#include <vector>
#include <string>
void test01() {vector<int> v;for (int i = 0; i < 10; i++) {v.push_back(i + 1);}//查找容器中是否有 5 这个元素vector<int>::iterator it = find(v.begin(), v.end(), 5);if (it == v.end()) {cout << "没有找到!" << endl;}else {cout << "找到:" << *it << endl;}
}class Person {
public:Person(string name, int age) {this->m_Name = name;this->m_Age = age;}//重载==bool operator==(const Person& p) {if (this->m_Name == p.m_Name && this->m_Age == p.m_Age) {return true;}return false;}public:string m_Name;int m_Age;
};void test02() {vector<Person> v;//创建数据Person p1("aaa", 10);Person p2("bbb", 20);Person p3("ccc", 30);Person p4("ddd", 40);v.push_back(p1);v.push_back(p2);v.push_back(p3);v.push_back(p4);vector<Person>::iterator it = find(v.begin(), v.end(), p2);if (it == v.end()) {cout << "没有找到!" << endl;}else {cout << "找到姓名:" << it->m_Name << " 年龄: " << it->m_Age << endl;}
}
总结: 利用find可以在容器中找指定的元素,返回值是迭代器
find_if
按条件查找元素
函数原型:
find_if(iterator beg, iterator end, _Pred);
// 按值查找元素,找到返回指定位置迭代器,找不到返回结束迭代器位置// beg 开始迭代器// end 结束迭代器// _Pred 函数或者谓词(返回bool类型的仿函数)
#include <algorithm>
#include <vector>
#include <string>//内置数据类型
class GreaterFive{
public:bool operator()(int val){return val > 5;}
};void test01() {vector<int> v;for (int i = 0; i < 10; i++) {v.push_back(i + 1);}vector<int>::iterator it = find_if(v.begin(), v.end(), GreaterFive());if (it == v.end()) {cout << "没有找到!" << endl;}else {cout << "找到大于5的数字:" << *it << endl;}
}//自定义数据类型
class Person {
public:Person(string name, int age){this->m_Name = name;this->m_Age = age;}
public:string m_Name;int m_Age;
};class Greater20{
public:bool operator()(Person &p){return p.m_Age > 20;}};void test02() {vector<Person> v;//创建数据Person p1("aaa", 10);Person p2("bbb", 20);Person p3("ccc", 30);Person p4("ddd", 40);v.push_back(p1);v.push_back(p2);v.push_back(p3);v.push_back(p4);vector<Person>::iterator it = find_if(v.begin(), v.end(), Greater20());if (it == v.end()){cout << "没有找到!" << endl;}else{cout << "找到姓名:" << it->m_Name << " 年龄: " << it->m_Age << endl;}
}
总结:find_if按条件查找使查找更加灵活,提供的仿函数可以改变不同的策略
adjacent_find
查找相邻重复元素
函数原型:
adjacent_find(iterator beg, iterator end);
// 查找相邻重复元素,返回相邻元素的第一个位置的迭代器// beg 开始迭代器// end 结束迭代器
#include <algorithm>
#include <vector>void test01(){vector<int> v;v.push_back(1);v.push_back(2);v.push_back(5);v.push_back(2);v.push_back(4);v.push_back(4);v.push_back(3);//查找相邻重复元素vector<int>::iterator it = adjacent_find(v.begin(), v.end());if (it == v.end()) {cout << "找不到!" << endl;} else {cout << "找到相邻重复元素为:" << *it << endl;}
}
总结:面试题中如果出现查找相邻重复元素,记得用STL中的adjacent_find算法
binary_search
- 查找指定元素是否存在
函数原型:
bool binary_search(iterator beg, iterator end, value);
// 查找指定的元素,查到 返回true 否则false// 注意: 在**无序序列中不可用**// beg 开始迭代器// end 结束迭代器// value 查找的元素
示例:
#include <algorithm>
#include <vector>void test01(){vector<int>v;for (int i = 0; i < 10; i++){v.push_back(i);}//二分查找bool ret = binary_search(v.begin(), v.end(),2);if (ret){cout << "找到了" << endl;}else{cout << "未找到" << endl;}
}
总结:二分查找法查找效率很高,值得注意的是查找的容器中元素必须的有序序列
count
统计元素个数
函数原型:
count(iterator beg, iterator end, value);
// 统计元素出现次数// beg 开始迭代器// end 结束迭代器// value 统计的元素
#include <algorithm>
#include <vector>//内置数据类型
void test01(){vector<int> v;v.push_back(1);v.push_back(2);v.push_back(4);v.push_back(5);v.push_back(3);v.push_back(4);v.push_back(4);int num = count(v.begin(), v.end(), 4);cout << "4的个数为: " << num << endl;
}//自定义数据类型
class Person
{
public:Person(string name, int age){this->m_Name = name;this->m_Age = age;}bool operator==(const Person & p){if (this->m_Age == p.m_Age){return true;}else{return false;}}string m_Name;int m_Age;
};void test02(){vector<Person> v;Person p1("刘备", 35);Person p2("关羽", 35);Person p3("张飞", 35);Person p4("赵云", 30);Person p5("曹操", 25);v.push_back(p1);v.push_back(p2);v.push_back(p3);v.push_back(p4);v.push_back(p5);Person p("诸葛亮",35);int num = count(v.begin(), v.end(), p);cout << "num = " << num << endl;
}
总结: 统计自定义数据类型时候,需要配合重载 operator==
count_if
按条件统计元素个数
函数原型:
count_if(iterator beg, iterator end, _Pred);
// 按条件统计元素出现次数// beg 开始迭代器// end 结束迭代器// _Pred 谓词
#include <algorithm>
#include <vector>class Greater4{
public:bool operator()(int val){return val >= 4;}
};//内置数据类型
void test01(){vector<int> v;v.push_back(1);v.push_back(2);v.push_back(4);v.push_back(5);v.push_back(3);v.push_back(4);v.push_back(4);int num = count_if(v.begin(), v.end(), Greater4());cout << "大于4的个数为: " << num << endl;
}//自定义数据类型
class Person{
public:Person(string name, int age){this->m_Name = name;this->m_Age = age;}string m_Name;int m_Age;
};class AgeLess35{
public:bool operator()(const Person &p){return p.m_Age < 35;}
};
void test02(){vector<Person> v;Person p1("刘备", 35);Person p2("关羽", 35);Person p3("张飞", 35);Person p4("赵云", 30);Person p5("曹操", 25);v.push_back(p1);v.push_back(p2);v.push_back(p3);v.push_back(p4);v.push_back(p5);int num = count_if(v.begin(), v.end(), AgeLess35());cout << "小于35岁的个数:" << num << endl;
}
**总结:**按值统计用count,按条件统计用count_if
常用排序算法
算法简介:
sort
//对容器内元素进行排序random_shuffle
//洗牌 指定范围内的元素随机调整次序merge
// 容器元素合并,并存储到另一容器中reverse
// 反转指定范围的元素
sort
对容器内元素进行排序
函数原型:
sort(iterator beg, iterator end, _Pred);
// 按值查找元素,找到返回指定位置迭代器,找不到返回结束迭代器位置// beg 开始迭代器// end 结束迭代器// _Pred 谓词
#include <algorithm>
#include <vector>void myPrint(int val){cout << val << " ";
}void test01() {vector<int> v;v.push_back(10);v.push_back(30);v.push_back(50);v.push_back(20);v.push_back(40);//sort默认从小到大排序sort(v.begin(), v.end());for_each(v.begin(), v.end(), myPrint);cout << endl;//从大到小排序sort(v.begin(), v.end(), greater<int>());for_each(v.begin(), v.end(), myPrint);cout << endl;
}
总结:sort属于开发中最常用的算法之一,需熟练掌握
random_shuffle
- 洗牌 指定范围内的元素随机调整次序
函数原型:
random_shuffle(iterator beg, iterator end);
// 指定范围内的元素随机调整次序// beg 开始迭代器// end 结束迭代器
#include <algorithm>
#include <vector>
#include <ctime>class myPrint{
public:void operator()(int val){cout << val << " ";}
};void test01(){srand((unsigned int)time(NULL));vector<int> v;for(int i = 0 ; i < 10;i++){v.push_back(i);}for_each(v.begin(), v.end(), myPrint());cout << endl;//打乱顺序random_shuffle(v.begin(), v.end());for_each(v.begin(), v.end(), myPrint());cout << endl;
}
总结:
random_shuffle
洗牌算法比较实用,使用时记得加随机数种子
merge
两个容器元素合并,并存储到另一容器中
函数原型:
merge(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);
// 容器元素合并,并存储到另一容器中// 注意: 两个容器必须是**有序的**// beg1 容器1开始迭代器// end1 容器1结束迭代器// beg2 容器2开始迭代器// end2 容器2结束迭代器// dest 目标容器开始迭代器
#include <algorithm>
#include <vector>class myPrint{
public:void operator()(int val){cout << val << " ";}
};void test01(){vector<int> v1;vector<int> v2;for (int i = 0; i < 10 ; i++) {v1.push_back(i);v2.push_back(i + 1);}vector<int> vtarget;//目标容器需要提前开辟空间vtarget.resize(v1.size() + v2.size());//合并 需要两个有序序列merge(v1.begin(), v1.end(), v2.begin(), v2.end(), vtarget.begin());for_each(vtarget.begin(), vtarget.end(), myPrint());cout << endl;
}
总结:
merge
合并的两个容器必须的有序序列
reverse
- 将容器内元素进行反转
函数原型:
reverse(iterator beg, iterator end);
// 反转指定范围的元素// beg 开始迭代器// end 结束迭代器
#include <algorithm>
#include <vector>class myPrint{
public:void operator()(int val){cout << val << " ";}
};void test01(){vector<int> v;v.push_back(10);v.push_back(30);v.push_back(50);v.push_back(20);v.push_back(40);cout << "反转前: " << endl;for_each(v.begin(), v.end(), myPrint());cout << endl;cout << "反转后: " << endl;reverse(v.begin(), v.end());for_each(v.begin(), v.end(), myPrint());cout << endl;
}
总结:reverse反转区间内元素,面试题可能涉及到
常用拷贝和替换算法
- 掌握常用的拷贝和替换算法
算法简介:
copy
// 容器内指定范围的元素拷贝到另一容器中replace
// 将容器内指定范围的旧元素修改为新元素replace_if
// 容器内指定范围满足条件的元素替换为新元素swap
// 互换两个容器的元素
copy
- 容器内指定范围的元素拷贝到另一容器中
函数原型:
copy(iterator beg, iterator end, iterator dest);
// 按值查找元素,找到返回指定位置迭代器,找不到返回结束迭代器位置// beg 开始迭代器// end 结束迭代器// dest 目标起始迭代器
#include <algorithm>
#include <vector>class myPrint{
public:void operator()(int val){cout << val << " ";}
};void test01(){vector<int> v1;for (int i = 0; i < 10; i++) {v1.push_back(i + 1);}vector<int> v2;v2.resize(v1.size());copy(v1.begin(), v1.end(), v2.begin());for_each(v2.begin(), v2.end(), myPrint());cout << endl;
}
总结:利用copy算法在拷贝时,目标容器记得提前开辟空间
replace
将容器内指定范围的旧元素修改为新元素
函数原型:
replace(iterator beg, iterator end, oldvalue, newvalue);
// 将区间内旧元素 替换成 新元素// beg 开始迭代器// end 结束迭代器// oldvalue 旧元素// newvalue 新元素
#include <algorithm>
#include <vector>class myPrint{
public:void operator()(int val){cout << val << " ";}
};void test01(){vector<int> v;v.push_back(20);v.push_back(30);v.push_back(20);v.push_back(40);v.push_back(50);v.push_back(10);v.push_back(20);cout << "替换前:" << endl;for_each(v.begin(), v.end(), myPrint());cout << endl;//将容器中的20 替换成 2000cout << "替换后:" << endl;replace(v.begin(), v.end(), 20,2000);for_each(v.begin(), v.end(), myPrint());cout << endl;
}
总结:replace会替换区间内满足条件的元素
replace_if
将区间内满足条件的元素,替换成指定元素
函数原型:
replace_if(iterator beg, iterator end, _pred, newvalue);
// 按条件替换元素,满足条件的替换成指定元素// beg 开始迭代器// end 结束迭代器// _pred 谓词// newvalue 替换的新元素
#include <algorithm>
#include <vector>class myPrint{
public:void operator()(int val){cout << val << " ";}
};class ReplaceGreater30{
public:bool operator()(int val){return val >= 30;}};void test01(){vector<int> v;v.push_back(20);v.push_back(30);v.push_back(20);v.push_back(40);v.push_back(50);v.push_back(10);v.push_back(20);cout << "替换前:" << endl;for_each(v.begin(), v.end(), myPrint());cout << endl;//将容器中大于等于的30 替换成 3000cout << "替换后:" << endl;replace_if(v.begin(), v.end(), ReplaceGreater30(), 3000);for_each(v.begin(), v.end(), myPrint());cout << endl;
}
总结:replace_if按条件查找,可以利用仿函数灵活筛选满足的条件
swap
互换两个容器的元素
函数原型:
swap(container c1, container c2);
// 互换两个容器的元素// c1容器1// c2容器2
示例:
#include <algorithm>
#include <vector>class myPrint{
public:void operator()(int val){cout << val << " ";}
};void test01(){vector<int> v1;vector<int> v2;for (int i = 0; i < 10; i++) {v1.push_back(i);v2.push_back(i+100);}cout << "交换前: " << endl;for_each(v1.begin(), v1.end(), myPrint());cout << endl;for_each(v2.begin(), v2.end(), myPrint());cout << endl;cout << "交换后: " << endl;swap(v1, v2);for_each(v1.begin(), v1.end(), myPrint());cout << endl;for_each(v2.begin(), v2.end(), myPrint());cout << endl;
}
总结:swap交换容器时,注意交换的容器要同种类型
常用算术生成算法
注意:算术生成算法属于小型算法,使用时包含的头文件为
#include <numeric>
算法简介:
-
accumulate
// 计算容器元素累计总和 -
fill
// 向容器中添加元素
accumulate
计算区间内 容器元素累计总和
函数原型:
accumulate(iterator beg, iterator end, value);
// 计算容器元素累计总和// beg 开始迭代器// end 结束迭代器// value 起始值
示例:
#include <numeric>
#include <vector>
void test01(){vector<int> v;for (int i = 0; i <= 100; i++) {v.push_back(i);}int total = accumulate(v.begin(), v.end(), 0);cout << "total = " << total << endl;
}
总结:accumulate使用时头文件注意是 numeric,这个算法很实用
fill
向容器中填充指定的元素
函数原型:
fill(iterator beg, iterator end, value);
// 向容器中填充元素// beg 开始迭代器// end 结束迭代器// value 填充的值
#include <numeric>
#include <vector>
#include <algorithm>class myPrint{
public:void operator()(int val){cout << val << " ";}
};void test01(){vector<int> v;v.resize(10);//填充fill(v.begin(), v.end(), 100);for_each(v.begin(), v.end(), myPrint());cout << endl;
}
总结:利用fill可以将容器区间内元素填充为 指定的值
常用集合算法
算法简介:
-
set_intersection
// 求两个容器的交集 -
set_union
// 求两个容器的并集 -
set_difference
// 求两个容器的差集
set_intersection
求两个容器的交集
注意:两个集合必须是有序序列
函数原型:
set_intersection(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);
// 求两个集合的交集// beg1 容器1开始迭代器// end1 容器1结束迭代器// beg2 容器2开始迭代器// end2 容器2结束迭代器// dest 目标容器开始迭代器
#include <vector>
#include <algorithm>class myPrint{
public:void operator()(int val){cout << val << " ";}
};void test01(){vector<int> v1;vector<int> v2;for (int i = 0; i < 10; i++){v1.push_back(i);v2.push_back(i+5);}vector<int> vTarget;//取两个里面较小的值给目标容器开辟空间vTarget.resize(min(v1.size(), v2.size()));//返回目标容器的最后一个元素的迭代器地址vector<int>::iterator itEnd = set_intersection(v1.begin(), v1.end(), v2.begin(), v2.end(), vTarget.begin());for_each(vTarget.begin(), itEnd, myPrint());cout << endl;
}
总结:
- 求交集的两个集合必须的有序序列
- 目标容器开辟空间需要从两个容器中取小值
- set_intersection返回值既是交集中最后一个元素的位置
set_union
求两个集合的并集
注意:两个集合必须是有序序列
函数原型:
set_union(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);
// 求两个集合的并集// beg1 容器1开始迭代器// end1 容器1结束迭代器// beg2 容器2开始迭代器// end2 容器2结束迭代器// dest 目标容器开始迭代器
#include <vector>
#include <algorithm>class myPrint{
public:void operator()(int val){cout << val << " ";}
};void test01(){vector<int> v1;vector<int> v2;for (int i = 0; i < 10; i++) {v1.push_back(i);v2.push_back(i+5);}vector<int> vTarget;//取两个容器的和给目标容器开辟空间vTarget.resize(v1.size() + v2.size());//返回目标容器的最后一个元素的迭代器地址vector<int>::iterator itEnd = set_union(v1.begin(), v1.end(), v2.begin(), v2.end(), vTarget.begin());for_each(vTarget.begin(), itEnd, myPrint());cout << endl;
}
总结:
- 求并集的两个集合必须的有序序列
- 目标容器开辟空间需要两个容器相加
- set_union返回值既是并集中最后一个元素的位置
set_difference
求两个集合的差集
注意:两个集合必须是有序序列
函数原型:
set_difference(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);
// 求两个集合的差集// beg1 容器1开始迭代器// end1 容器1结束迭代器// beg2 容器2开始迭代器// end2 容器2结束迭代器// dest 目标容器开始迭代器
#include <vector>
#include <algorithm>class myPrint{
public:void operator()(int val){cout << val << " ";}
};void test01(){vector<int> v1;vector<int> v2;for (int i = 0; i < 10; i++) {v1.push_back(i);v2.push_back(i+5);}vector<int> vTarget;//取两个里面较大的值给目标容器开辟空间vTarget.resize( max(v1.size() , v2.size()));//返回目标容器的最后一个元素的迭代器地址cout << "v1与v2的差集为: " << endl;vector<int>::iterator itEnd = set_difference(v1.begin(), v1.end(), v2.begin(), v2.end(), vTarget.begin());for_each(vTarget.begin(), itEnd, myPrint());cout << endl;cout << "v2与v1的差集为: " << endl;itEnd = set_difference(v2.begin(), v2.end(), v1.begin(), v1.end(), vTarget.begin());for_each(vTarget.begin(), itEnd, myPrint());cout << endl;
}
总结:
- 求差集的两个集合必须的有序序列
- 目标容器开辟空间需要从两个容器取较大值
- set_difference返回值既是差集中最后一个元素的位置