目录
IP协议的协议头格式
网段划分
特殊的IP地址
IP地址的数量限制
私有IP地址和公网IP地址
路由
IP协议的协议头格式
4位版本号 :指定IP协议的版本,对于IPv4,版本号就是4。
4位首部长度:表名IP协议报头的长度,单位是4字节,所以IP协议报头的最大长度是15*4=60字节。
8位服务类型:3 位优先权字段(已经弃用),,4 位 TOS 字段, 和1 位保留字段(必须置为 0)。 4 位 TOS 分别表示:最小延时,,最大吞吐量, 最高可靠性,最小成本。 这四者相互冲突,,只能选择一个。对于 ssh/telnet 这样的应用程序,最小延时比较重要; 对于 ftp 这样的程序, 最大吞吐量比较重要。
16 位总长度(total length): IP 数据报整体占多少个字节。
16 位标识(id):唯一的标识主机发送的报文。 如果 IP 报文在数据链路层被分片 了,那么每个片里面的id应该都相同。
3位标志字段: 第一位保留(保留的意思是现在不用, 但是还没想好说不定以后要用到)。第二位置为 1 表示禁止分片, 这时候如果报文长度超过 MTU,IP 模块就会丢弃报文。 第三位表示"更多分片", 如果分片了的话, 最后一个分片置为 0, 其他是 1。 类似于一个结束标记。
13 位分片偏移(framegament offset): 是分片相对于原始 IP 报文开始处的偏移。其实就是在表示当前分片在原报文中处在哪个位置。实际偏移的字节数是这个值 乘8得到的。 因此, 除了最后一个报文之外,其他报文的长度必须是 8 的整数倍(否则报文就不连续了)。
8 位生存时间(Time To Live, TTL):数据报到达目的地的最大报文跳数。 一般是64, 每次经过一个路由,TTL -= 1, 一直减到 0 还没到达, 那么就丢弃了。 这个字段主要是用来防止出现路由循环。
8 位协议: 表示上层协议的类型,TCP/UDP/...
16 位头部校验和: 使用 CRC 进行校验, 来鉴别头部是否损坏。
32 位源地址和 32 位目标地址::表示发送端和接收端。
网段划分
IP地址分为两部分:网络号和主机号
网络号: 保证相互连接的两个网段具有不同的标识;
主机号: 同一网段内,主机之间具有相同的网络号,但是必须有不同的主机号;
不同的子网其实就是把网络号相同的主机放到一起。
如果在子网中新增一台主机,则这台主机的网络号和这个子网的网络号一致, 但
是主机号必须不能和子网中的其他主机重复。
通过合理设置主机号和网络号,就可以保证在相互连接的网络中,每台主机的 IP 地址都
不相同。
那么问题来了, 手动管理子网内的 IP,是一个相当麻烦的事情。
- 有一种技术叫做 DHCP,能够自动的给子网内新增主机节点分配 IP 地址, 避免了手动管理 IP 的不便。
- 一般的路由器都带有 DHCP 功能,因此路由器也可以看做一个 DHCP 服务器。
第一种划分方式,把所有的IP地址分为5类,如下图:
- A 类 0.0.0.0 到 127.255.255.255
- B 类 128.0.0.0 到 191.255.255.255
- C 类 192.0.0.0 到 223.255.255.255
- D 类 224.0.0.0 到 239.255.255.255
- E 类 240.0.0.0 到 247.255.255.255
随着 Internet 的飞速发展,这种划分方案的局限性很快显现出来,大多数组织都申请 B 类
网络地址, 导致 B 类地址很快就分配完了, 而 A 类却浪费了大量地址;
例如, 申请了一个 B 类地址, 理论上一个子网内能允许 6 万 5 千多个主机。 A 类地址的子网内的主机数更多。
然而实际网络架设中, 不会存在一个子网内有这么多的情况,因此大量的 IP 地址都被浪费掉了。
针对这种情况提出了新的划分方案, 称为 CIDR(Classless Interdomain Routing):
- 引入一个额外的子网掩码(subnet mask)来区分网络号和主机号;
- 子网掩码也是一个 32 位的正整数, 通常用一串 "0" 来结尾;
- 将 IP 地址和子网掩码进行 "按位与" 操作, 得到的结果就是网络号;
- 网络号和主机号的划分与这个 IP 地址是 A 类、B 类还是 C 类无关;
IP 地址和子网掩码还有一种更简洁的表示方法,例如 140.252.20.68/24,表示 IP 地址为
140.252.20.68,子网掩码的高 24 位是 1,也就是 255.255.255.0
特殊的IP地址
将 IP 地址中的主机地址全部设为 0,就成为了网络号,代表这个局域网;
将 IP 地址中的主机地址全部设为 1,就成为了广播地址, 用于给同一个链路中相互连接的所有主机发送数据包;
127.*的 IP 地址用于本机环回(loop back)测试,通常是 127.0.0.1;
IP地址的数量限制
我们知道,IP 地址(IPv4)是一个 4 字节 32 位的正整数。 那么一共只有 2 的 32 次方 个 IP
地址,大概是 43 亿左右。而TCP/IP 协议规定,每个主机都需要有一个 IP 地址。
这意味着,一共只有 43 亿台主机能接入网络吗???
- 实际上,由于一些特殊的 IP 地址的存在,数量远不足 43 亿;另外 IP 地址并非是按照主机台数来配置的,而是每一个网卡都需要配置一个或多个 IP 地址。
- CIDR 在一定程度上缓解了 IP 地址不够用的问题(提高了利用率,减少了浪费,但是 IP地址的绝对上限并没有增加),仍然不是很够用。
这时候有三种方式来解决:
- 动态分配 IP 地址:只给接入网络的设备分配 IP 地址,因此同一个 MAC 地址的设备,每次接入互联网中,得到的 IP 地址不一定是相同的;
- NAT 技术(数据链路层介绍);
- IPv6:IPv6 并不是 IPv4 的简单升级版。这是互不相干的两个协议,彼此并不兼容;IPv6 用 16 字节 128 位来表示一个 IP 地址;但是目前 IPv6 还没有普及;
私有IP地址和公网IP地址
如果一个组织内部组建局域网,IP 地址只用于局域网内的通信,而不直接连到 Internet 上,理论上 使用任意的 IP 地址都可以,但是 RFC 1918 规定了用于组建局域网的私有 IP 地址。
- 10.*:前 8 位是网络号,共16,777,216 个地址
- 172.16.*到 172.31.*:前 12 位是网络号,共 1,048,576 个地址
- 192.168.*:前 16 位是网络号,共 65,536 个地址
包含在这个范围中的,都称为私有 IP,其余的则称为全局 IP(或公网 IP)。
- 一个路由器可以配置两个 IP 地址,一个是 WAN 口 IP,一个是 LAN 口 IP(子网IP)。
- 路由器 LAN 口连接的主机,都从属于当前这个路由器的子网中。
- 不同的路由器,子网 IP 其实都是一样的(通常都是 192.168.1.1)。子网内的主机 IP 地址不能重复。 但是子网之间的 IP 地址就可以重复了。
- 每一个家用路由器,其实又作为运营商路由器的子网中的一个节点。这样的运营商路由器可能会有很多级,最外层的运营商路由器,WAN 口 IP 就是一个公网 IP 了。
- 子网内的主机需要和外网进行通信时,路由器将 IP 首部中的 IP 地址进行替换(替换成 WAN 口 IP),这样逐级替换,最终数据包中的 IP 地址成为一个公网 IP。这种技术称为 NAT(Network Address Translation,网络地址转换)。
路由
在复杂的网络结构中,找出一条通往终点的路线;路由的过程, 就是这样一跳一跳(Hop by Hop) "问路" 的过程。
所谓 "一跳" 就是数据链路层中的一个区间,具体在以太网中指从源 MAC 地址到目的
MAC 地址之间的帧传输区间。
IP 数据包的传输过程也和问路一样。
- 当 IP 数据包,到达路由器时,路由器会先查看目的 IP;
- 路由器决定这个数据包是能直接发送给目标主机,还是需要发送给下一个路由器;
- 依次反复,一直到达目标 IP 地址;
那么如何判定当前这个数据包该发送到哪里呢? 这个就依靠每个节点内部维护一个路由表;
- 路由表可以使用 route 命令查看。
- 如果目的 IP 命中了路由表,就直接转发即可;
- 路由表中的最后一行,主要由下一跳地址和发送接口两部分组成,当目的地址与路由表中其它行都不匹配时,就按缺省路由条目规定的接口发送到下一跳地址。
路由表的 Destination 是目的网络地址,Genmask 是子网掩码,Gateway 是下一跳地址,Iface 是发送接口,Flags 中的 U 标志表示此条目有效(可以禁用某些 条目),G标志表示此条目的下一跳地址是某个路由器的地址,没有 G 标志的条目表示目的网络地址是与本机接口直接相连的网络,不必经路由器转发;