LeetCode刷题 -- 542. 01矩阵 基于 DFS 更新优化的多源最短路径实现

LeetCode刷题 – 542. 01矩阵 基于 DFS 更新优化的多源最短路径实现


题目描述简述

给定一个 m x n 的二进制矩阵 mat,其中:

  • 每个元素为 0 或 1
  • 返回一个同样大小的矩阵 ans,其中 ans[i][j] 表示 mat[i][j] 到最近 0 的最短曼哈顿距离

算法思路概览

本题本质是一个多源最短路径问题,我们需要从所有的 0 作为起点,向四周扩展,寻找每个 1 到任一 0 的最小距离。

经典的解法通常是 BFS。本实现采用改进的 DFS+DP 结合方式,通过自定义 updateAll() 函数递归地传播距离,并利用 ans 数组记录中间结果,控制条件防止冗余计算。


代码解析与设计说明

关键宏定义

#define MY_MIN(a, b) ((a) < (b) ? (a) : (b))

简单的最小值宏定义,用于更新当前单元格的最短距离。


核心递归函数 updateAll

void updateAll(int **mat, int rowsize, int colsize, int x, int y, int *ans, char *map_visited, int last_dis);

功能:

  • 递归探索四个方向的相邻 1 节点
  • 如果当前节点未被访问且不是 0,并且其距离不合理,则更新 ans 值并继续传播

关键逻辑详解:

if (map_visited[x * colsize + y] == 1) return;
map_visited[x * colsize + y] = 1;if (mat[x][y] == 0) return;

然后判断当前 ans[x][y] 是否需要更新:

if (abs(ans[x][y] - last_dis) > 1)

如果与传入路径的距离差值大于 1,说明不是“最优路径”,需要更新为更近的 last_dis+1,并继续传播。


主函数 updateMatrix

int** updateMatrix(int** mat, int matSize, int* matColSize, int* returnSize, int** returnColumnSizes);

步骤拆解:

  1. 初始化变量
int row = matSize;
int col = matColSize[0];
int *ans = malloc(row * col * sizeof(int));
  1. 初始化辅助数组
char *map_visited = malloc(row * col);
  1. 遍历所有格子
  • 若是 0,从它出发进行 updateAll 递归
  • 否则尝试向上、向左推断当前格子的最小距离
if (mat[x][y] == 0) {ans[x * col + y] = 0;...updateAll(...);
} else {if (x > 0) min_dis = MY_MIN(...);if (y > 0) min_dis = MY_MIN(...);ans[x * col + y] = min_dis;
}

举个例子理解执行流程

输入矩阵:

mat = [[0, 0, 1],[1, 1, 1],[1, 1, 0]]

执行后输出矩阵:

ans = [[0, 0, 1],[1, 1, 1],[2, 1, 0]]

所有 0 首先被标记为 0,然后向周围 1 递归传播距离+1,遇到更远的路径时进行更新。

C代码

#define MY_MIN(a, b) ((a) < (b) ? (a) : (b))void updateAll(int **mat, int rowsize, int colsize, int x, int y, int *ans, char *map_visited, int last_dis) {if (x < 0 || y < 0 || x >= rowsize || y >= colsize) {return;}if (map_visited[x * colsize + y] == 1) {return;}map_visited[x * colsize + y] = 1;if (mat[x][y] == 0) {return;}if (((ans[x * colsize + y] > last_dis) && ((ans[x * colsize + y] - last_dis) > 1)) || ((ans[x * colsize + y] < last_dis) && (last_dis - ans[x * colsize + y] > 1))) {ans[x * colsize + y] = last_dis + 1;updateAll(mat, rowsize, colsize, x - 1, y, ans, map_visited, last_dis + 1); // topupdateAll(mat, rowsize, colsize, x, y - 1, ans, map_visited, last_dis + 1); // leftupdateAll(mat, rowsize, colsize, x, y + 1, ans, map_visited, last_dis + 1); // right}
}/*** Return an array of arrays of size *returnSize.* The sizes of the arrays are returned as *returnColumnSizes array.* Note: Both returned array and *columnSizes array must be malloced, assume caller calls free().*/
int** updateMatrix(int** mat, int matSize, int* matColSize, int* returnSize, int** returnColumnSizes) {int x = 0, y = 0;int row = matSize;int col = matColSize[0];int min_dis;*returnColumnSizes = (int *)malloc(sizeof(int) * row);memcpy(*returnColumnSizes, matColSize, sizeof(int) * row);*returnSize = row;int *ans = (int *)malloc(sizeof(int) * row * col);memset(ans, 0, sizeof(int) * row * col);char *map_visited = (char *)malloc(sizeof(char) * row * col);memset(map_visited, 0, sizeof(char) * row * col);for (x = 0; x < row; x++) {for (y = 0; y < col; y++) {min_dis = row - 1 + col - 1; //1. 注意点:初始化的距离值应该每个都一样,一定要是最大距离值,方便当逼近右下角的情况,并且右下角不为0的情况;if (mat[x][y] == 0) {ans[x * col + y] = 0;memset(map_visited, 0, sizeof(char) * row * col);map_visited[x * col + y] = 1;updateAll(mat, row, col, x - 1, y, ans, map_visited, 0); // topupdateAll(mat, row, col, x, y - 1, ans, map_visited, 0); // leftupdateAll(mat, row, col, x, y + 1, ans, map_visited, 0); // right} else {if (x > 0) {min_dis = MY_MIN(ans[(x - 1) * col + y] + 1, min_dis);}if (y > 0) {min_dis = MY_MIN(ans[x * col + (y - 1)] + 1, min_dis);}ans[x * col + y] = min_dis;}}}// 构造二维 int** 返回结果int **result = (int **)malloc(sizeof(int *) * row);for (int i = 0; i < row; i++) {result[i] = ans + i * col;  // 指向 ans 中的每一行}free(map_visited);return result;
}

时间与空间复杂度分析

时间复杂度:

  • 最坏情况下,每个点可能被访问多次(由于无记忆剪枝,可能存在重复递归)
  • 时间复杂度略高于 O(m × n),不如标准 BFS 稳定

空间复杂度:

  • ans 和 map_visited 占用 O(m × n) 空间
  • 递归栈空间最坏深度为 O(m + n)

该解法的优缺点总结

优点:

  • 结构清晰、代码易理解
  • 利用 ans 记录中间状态实现 DP 剪枝
  • 对边界控制处理较好

缺点:

  • 递归深度不受控,大数据易栈溢出
  • 没有使用队列优化,效率略逊于多源 BFS
  • 存在轻微冗余计算

改进建议

  1. 若数据量较大,应优先采用标准多源 BFS + 队列方案,控制每个点仅访问一次

  2. 若坚持递归风格,可考虑:

    • 加入更强的剪枝策略
    • 使用 stack 模拟递归避免栈溢出
    • 结合两次扫描的 DP 法进一步优化初值

总结

该实现展示了一种不使用队列、通过自定义递归传播实现多源最短路径的方式,适合对递归熟悉的开发者理解与优化,同时也为理解 BFS 与 DP 的结合提供了一个有趣的案例。虽然在最坏情况性能不如 BFS,但在面试或教学中极具启发性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/web/82830.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL用户远程访问权限设置

mysql相关指令 一. MySQL给用户添加远程访问权限1. 创建或者修改用户权限方法一&#xff1a;创建用户并授予远程访问权限方法二&#xff1a;修改现有用户的访问限制方法三&#xff1a;授予特定数据库的特定权限 2. 修改 MySQL 配置文件3. 安全最佳实践4. 测试远程连接5. 撤销权…

如何使用 BPF 分析 Linux 内存泄漏,Linux 性能调优之 BPF 分析内核态、用户态内存泄漏

写在前面 博文内容为 通过 BCC 工具集 memleak 进行内存泄漏分析的简单认知包括 memleak 脚本简单认知,内核态(内核模块)、用户态(Java,Python,C)内存跟踪泄漏分析 Demo理解不足小伙伴帮忙指正 😃,生活加油知其不可奈何而安之若命,德之至也。----《庄子内篇人间世》 …

谷歌Sign Gemma: AI手语翻译,沟通从此无界!

嘿&#xff0c;朋友们&#xff01;想象一下&#xff0c;语言不再是交流的障碍&#xff0c;每个人都能顺畅表达与理解。这听起来是不是很酷&#xff1f;谷歌最新发布的Sign Gemma AI模型&#xff0c;正朝着这个激动人心的未来迈出了一大步&#xff01;它就像一位随身的、不知疲倦…

全生命周期的智慧城市管理

前言 全生命周期的智慧城市管理。未来&#xff0c;城市将在 实现从基础设施建设、日常运营到数据管理的 全生命周期统筹。这将避免过去智慧城市建设 中出现的“碎片化”问题&#xff0c;实现资源的高效配 置和项目的协调发展。城市管理者将运用先进 的信息技术&#xff0c;如物…

最新Spring Security实战教程(十七)企业级安全方案设计 - 多因素认证(MFA)实现

&#x1f337; 古之立大事者&#xff0c;不惟有超世之才&#xff0c;亦必有坚忍不拔之志 &#x1f390; 个人CSND主页——Micro麦可乐的博客 &#x1f425;《Docker实操教程》专栏以最新的Centos版本为基础进行Docker实操教程&#xff0c;入门到实战 &#x1f33a;《RabbitMQ》…

logstash拉取redisStream的流数据,并存储ES

先说结论&#xff0c; window验证logstash截至2025-06-06 是没有原生支持的。 为啥考虑用redisStream呢&#xff1f;因为不想引入三方的kafka等组件&#xff0c; 让服务部署轻量化&#xff0c; 所以使用现有的redis来实现&#xff0c; 为啥不用list呢&#xff1f; 已经用strea…

IEC 61347-1:2015 灯控制装置安全通用要求详解

IEC 61347-1:2015 灯控制装置安全通用要求详解 IEC 61347-1:2015《灯控制装置 第1部分&#xff1a;一般要求和安全要求》是国际电工委员会&#xff08;IEC&#xff09;制定的关于灯控制装置安全性能的核心基础标准。它为各类用于启动和稳定工作电流的灯控制装置&#xff08;如…

26、跳表

在C标准库中&#xff0c;std::map 和 std::set 是使用红黑树作为底层数据结构的容器。 红黑树是一种自平衡二叉搜索树&#xff0c;能够保证插入、删除和查找操作的时间复杂度为O(log n)。 以下是一些使用红黑树的C标准库容器&#xff1a; std::map&#xff1a;一种关联容器&a…

LabVIEW音频测试分析

LabVIEW通过读取指定WAV 文件&#xff0c;实现对音频信号的播放、多维度测量分析功能&#xff0c;为音频设备研发、声学研究及质量检测提供专业工具支持。 主要功能 文件读取与播放&#xff1a;支持持续读取示例数据文件夹内的 WAV 文件&#xff0c;可实时播放音频以监听被测信…

JUC并发编程(二)Monitor/自旋/轻量级/锁膨胀/wait/notify/锁消除

目录 一 基础 1 概念 2 卖票问题 3 转账问题 二 锁机制与优化策略 0 Monitor 1 轻量级锁 2 锁膨胀 3 自旋 4 偏向锁 5 锁消除 6 wait /notify 7 sleep与wait的对比 8 join原理 一 基础 1 概念 临界区 一段代码块内如果存在对共享资源的多线程读写操作&#xf…

Doris 与 Elasticsearch:谁更适合你的数据分析需求?

一、Doris 和 Elasticsearch 的基本概念 &#xff08;一&#xff09;Doris 是什么&#xff1f; Doris 是一个用于数据分析的分布式 MPP&#xff08;大规模并行处理&#xff09;数据库。它主要用于存储和分析大量的结构化数据&#xff08;比如表格数据&#xff09;&#xff0c…

使用Virtual Serial Port Driver+com2tcp(tcp2com)进行两台电脑的串口通讯

使用Virtual Serial Port Drivercom2tcp或tcp2com进行两台电脑的串口通讯 问题说明解决方案方案三具体操作流程网上教程软件安装拓扑图准备工作com2tcp和tcp2com操作使用串口助手进行验证 方案三存在的问题数据错误通讯延时 问题说明 最近想进行串口通讯的一个测试&#xff0c…

transformer和 RNN以及他的几个变体区别 改进

Transformer、RNN 及其变体&#xff08;LSTM/GRU&#xff09;是深度学习中处理序列数据的核心模型&#xff0c;但它们的架构设计和应用场景有显著差异。以下从技术原理、优缺点和适用场景三个维度进行对比分析&#xff1a; 核心架构对比 模型核心机制并行计算能力长序列依赖处…

CSS6404L 在物联网设备中的应用优势:低功耗高可靠的存储革新与竞品对比

物联网设备对存储芯片的需求聚焦于低功耗、小尺寸、高可靠性与传输效率&#xff0c;Cascadeteq 的 CSS6404L 64Mb Quad-SPI Pseudo-SRAM 凭借差异化技术特性&#xff0c;在同类产品中展现显著优势。以下从核心特性及竞品对比两方面解析其应用价值。 一、CSS6404L 核心产品特性…

go语言map扩容

map是什么&#xff1f; ​在Go语言中&#xff0c;map是一种内置的无序key/value键值对的集合&#xff0c;可以根据key在O(1)的时间复杂度内取到value&#xff0c;有点类似于数组或者切片结构&#xff0c;可以把数组看作是一种特殊的map&#xff0c;数组的key为数组的下标&…

2025年SDK游戏盾实战深度解析:防御T级攻击与AI反作弊的终极方案

一、引言&#xff1a;游戏安全的“生死防线” 2025年&#xff0c;全球游戏行业因DDoS攻击日均损失3.2亿元&#xff0c;攻击峰值突破8Tbps&#xff0c;且70% 的攻击为混合型&#xff08;DDoSCC&#xff09;。传统高防IP因延迟高、成本贵、协议兼容性差&#xff0c;已无法满足实…

【Linux】LInux下第一个程序:进度条

前言&#xff1a; 在前面的文章中我们学习了LInux的基础指令 【Linux】初见&#xff0c;基础指令-CSDN博客【Linux】初见&#xff0c;基础指令&#xff08;续&#xff09;-CSDN博客 学习了vim编辑器【Linux】vim编辑器_linux vim insert-CSDN博客 学习了gcc/g【Linux】编译器gc…

Web前端基础

### 一、浏览器 火狐浏览器、谷歌浏览器(推荐)、IE浏览器 推荐谷歌浏览器原因&#xff1a; 1、简洁大方,打开速度快 2、开发者调试工具&#xff08;右键空白处->检查&#xff0c;打开调试模式&#xff09; ### 二、开发工具 核心IDE工具 1. Visual Studio Code (VS Code)‌…

C++调试(肆):WinDBG分析Dump文件汇总

目录 1.前言 2.WinDBG中常用的指令 3.分析异常时要关注的信息 4.心得 前言 本篇博客主要针如何使用WinDBG工具调试Dump文件的流程进行一个讲解&#xff0c;具体捕获的Dump文件也是前两节例子中生成的Dump文件。 WinDBG中常用的指令 关于WinDBG调试时常用的指令主要分为以下几种…

SOC-ESP32S3部分:33-声学前端模型ESP-SR

飞书文档https://x509p6c8to.feishu.cn/wiki/YnbmwtqI5iBwE3kHA7AcZ3yTnLf ESP-SR 是乐鑫官方开发的一个音频组件&#xff0c;支持以下模块&#xff1a; 声学前端算法 AFE唤醒词检测 WakeNet命令词识别 MultiNet语音合成&#xff08;目前只支持中文&#xff09; 组件地址&am…