Day40 训练和测试的规范写法

目录

一、彩色和灰度图片测试和训练的规范写法:封装在函数中

单通道图片的规范写法

彩色图片的规范写法

二、展平操作:除第一个维度batchsize外全部展平

图像任务中的张量形状

NLP任务中的张量形状

1. Flatten操作

2. view/reshape操作

总结

三、dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout


一、彩色和灰度图片测试和训练的规范写法:封装在函数中

图像数据的格式以及模型定义的过程,和之前结构化数据的略有不同,主要差异体现在2处

  1. 模型定义的时候需要展平图像
  2. 由于数据过大,需要将数据集进行分批次处理,这往往涉及到了dataset和dataloader来规范代码的组织

现在把注意力放在训练和测试代码的规范写法上

单通道图片的规范写法

# 先继续之前的代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader , Dataset # DataLoader 是 PyTorch 中用于加载数据的工具
from torchvision import datasets, transforms # torchvision 是一个用于计算机视觉的库,datasets 和 transforms 是其中的模块
import matplotlib.pyplot as plt
import warnings
# 忽略警告信息
warnings.filterwarnings("ignore")
# 设置随机种子,确保结果可复现
torch.manual_seed(42)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")

 

# 1. 数据预处理
transform = transforms.Compose([transforms.ToTensor(),  # 转换为张量并归一化到[0,1]transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差
])# 2. 加载MNIST数据集
train_dataset = datasets.MNIST(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.MNIST(root='./data',train=False,transform=transform
)# 3. 创建数据加载器
batch_size = 64  # 每批处理64个样本
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义模型、损失函数和优化器
class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten()  # 将28x28的图像展平为784维向量self.layer1 = nn.Linear(784, 128)  # 第一层:784个输入,128个神经元self.relu = nn.ReLU()  # 激活函数self.layer2 = nn.Linear(128, 10)  # 第二层:128个输入,10个输出(对应10个数字类别)def forward(self, x):x = self.flatten(x)  # 展平图像x = self.layer1(x)   # 第一层线性变换x = self.relu(x)     # 应用ReLU激活函数x = self.layer2(x)   # 第二层线性变换,输出logitsreturn x# 初始化模型
model = MLP()
model = model.to(device)  # 将模型移至GPU(如果可用)# from torchsummary import summary  # 导入torchsummary库
# print("\n模型结构信息:")
# summary(model, input_size=(1, 28, 28))  # 输入尺寸为MNIST图像尺寸criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数,适用于多分类问题
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器
# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):model.train()  # 设置为训练模式# 新增:记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号(从1开始)for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):# enumerate() 是 Python 内置函数,用于遍历可迭代对象(如列表、元组)并同时获取索引和值。# batch_idx:当前批次的索引(从 0 开始)# (data, target):当前批次的样本数据和对应的标签,是一个元组,这是因为dataloader内置的getitem方法返回的是一个元组,包含数据和标签。# 只需要记住这种固定写法即可data, target = data.to(device), target.to(device)  # 移至GPU(如果可用)optimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失(注意:这里直接使用单 batch 损失,而非累加平均)iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)  # iteration 序号从1开始# 统计准确率和损失running_loss += loss.item() #将loss转化为标量值并且累加到running_loss中,计算总损失_, predicted = output.max(1) # output:是模型的输出(logits),形状为 [batch_size, 10](MNIST 有 10 个类别)# 获取预测结果,max(1) 返回每行(即每个样本)的最大值和对应的索引,这里我们只需要索引total += target.size(0) # target.size(0) 返回当前批次的样本数量,即 batch_size,累加所有批次的样本数,最终等于训练集的总样本数correct += predicted.eq(target).sum().item() # 返回一个布尔张量,表示预测是否正确,sum() 计算正确预测的数量,item() 将结果转换为 Python 数字# 每100个批次打印一次训练信息(可选:同时打印单 batch 损失)if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 测试、打印 epoch 结果epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totalepoch_test_loss, epoch_test_acc = test(model, test_loader, criterion, device)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)# 保留原 epoch 级曲线(可选)# plot_metrics(train_losses, test_losses, train_accuracies, test_accuracies, epochs)return epoch_test_acc  # 返回最终测试准确率

 之前用mlp训练鸢尾花数据集的时候并没有用函数的形式来封装训练和测试过程,这样写会让代码更加具有逻辑-----隔离参数和内容。

  1. 后续直接修改参数就行,不需要去找到对应操作的代码
  2. 方便复用,未来有多模型对比时,就可以复用这个函数

这里先不写早停策略,因为规范的早停策略需要用到验证集,一般还需要划分测试集

  1. 划分数据集:训练集(用于训练)、验证集(用于早停和调参)、测试集(用于最终报告性能)。
  2. 在训练过程中,使用验证集触发早停。
  3. 训练结束后,仅用测试集运行一次测试函数,得到最终准确率。

测试函数和绘图函数均被封装在了train函数中,但是test和绘图函数在定义train函数之后,这是因为在 Python 中,函数定义的顺序不影响调用,只要在调用前已经完成定义即可。

# 6. 测试模型(不变)
def test(model, test_loader, criterion, device):model.eval()  # 设置为评估模式test_loss = 0correct = 0total = 0with torch.no_grad():  # 不计算梯度,节省内存和计算资源for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()avg_loss = test_loss / len(test_loader)accuracy = 100. * correct / totalreturn avg_loss, accuracy  # 返回损失和准确率

如果打印每一个bitchsize的损失和准确率,会看的更加清晰,更加直观 

# 7. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()
# 8. 执行训练和测试(设置 epochs=2 验证效果)
epochs = 2  
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

 

 下面是所有代码的整合版本

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 1. 数据预处理
transform = transforms.Compose([transforms.ToTensor(),  # 转换为张量并归一化到[0,1]transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差
])# 2. 加载MNIST数据集
train_dataset = datasets.MNIST(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.MNIST(root='./data',train=False,transform=transform
)# 3. 创建数据加载器
batch_size = 64  # 每批处理64个样本
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义模型、损失函数和优化器
class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten()  # 将28x28的图像展平为784维向量self.layer1 = nn.Linear(784, 128)  # 第一层:784个输入,128个神经元self.relu = nn.ReLU()  # 激活函数self.layer2 = nn.Linear(128, 10)  # 第二层:128个输入,10个输出(对应10个数字类别)def forward(self, x):x = self.flatten(x)  # 展平图像x = self.layer1(x)   # 第一层线性变换x = self.relu(x)     # 应用ReLU激活函数x = self.layer2(x)   # 第二层线性变换,输出logitsreturn x# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 初始化模型
model = MLP()
model = model.to(device)  # 将模型移至GPU(如果可用)criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数,适用于多分类问题
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):model.train()  # 设置为训练模式# 新增:记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号(从1开始)for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)  # 移至GPU(如果可用)optimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失(注意:这里直接使用单 batch 损失,而非累加平均)iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)  # iteration 序号从1开始# 统计准确率和损失(原逻辑保留,用于 epoch 级统计)running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次打印一次训练信息(可选:同时打印单 batch 损失)if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 原 epoch 级逻辑(测试、打印 epoch 结果)不变epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totalepoch_test_loss, epoch_test_acc = test(model, test_loader, criterion, device)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)# 保留原 epoch 级曲线(可选)# plot_metrics(train_losses, test_losses, train_accuracies, test_accuracies, epochs)return epoch_test_acc  # 返回最终测试准确率# 6. 测试模型
def test(model, test_loader, criterion, device):model.eval()  # 设置为评估模式test_loss = 0correct = 0total = 0with torch.no_grad():  # 不计算梯度,节省内存和计算资源for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()avg_loss = test_loss / len(test_loader)accuracy = 100. * correct / totalreturn avg_loss, accuracy  # 返回损失和准确率# 7.绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 8. 执行训练和测试(设置 epochs=2 验证效果)
epochs = 2  
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

 

 

彩色图片的规范写法

彩色的通道也是在第一步被直接展平,其他代码一致

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 1. 数据预处理
transform = transforms.Compose([transforms.ToTensor(),                # 转换为张量transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 标准化处理
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=transform
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义MLP模型(适应CIFAR-10的输入尺寸)
class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten()  # 将3x32x32的图像展平为3072维向量self.layer1 = nn.Linear(3072, 512)  # 第一层:3072个输入,512个神经元self.relu1 = nn.ReLU()self.dropout1 = nn.Dropout(0.2)  # 添加Dropout防止过拟合self.layer2 = nn.Linear(512, 256)  # 第二层:512个输入,256个神经元self.relu2 = nn.ReLU()self.dropout2 = nn.Dropout(0.2)self.layer3 = nn.Linear(256, 10)  # 输出层:10个类别def forward(self, x):# 第一步:将输入图像展平为一维向量x = self.flatten(x)  # 输入尺寸: [batch_size, 3, 32, 32] → [batch_size, 3072]# 第一层全连接 + 激活 + Dropoutx = self.layer1(x)   # 线性变换: [batch_size, 3072] → [batch_size, 512]x = self.relu1(x)    # 应用ReLU激活函数x = self.dropout1(x) # 训练时随机丢弃部分神经元输出# 第二层全连接 + 激活 + Dropoutx = self.layer2(x)   # 线性变换: [batch_size, 512] → [batch_size, 256]x = self.relu2(x)    # 应用ReLU激活函数x = self.dropout2(x) # 训练时随机丢弃部分神经元输出# 第三层(输出层)全连接x = self.layer3(x)   # 线性变换: [batch_size, 256] → [batch_size, 10]return x  # 返回未经过Softmax的logits# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 初始化模型
model = MLP()
model = model.to(device)  # 将模型移至GPU(如果可用)criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):model.train()  # 设置为训练模式# 记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)  # 移至GPUoptimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计准确率和损失running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次打印一次训练信息if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 计算当前epoch的平均训练损失和准确率epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / total# 测试阶段model.eval()  # 设置为评估模式test_loss = 0correct_test = 0total_test = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testprint(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)return epoch_test_acc  # 返回最终测试准确率# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 7. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# # 保存模型
# torch.save(model.state_dict(), 'cifar10_mlp_model.pth')
# # print("模型已保存为: cifar10_mlp_model.pth")

 

二、展平操作:除第一个维度batchsize外全部展平

在PyTorch中处理张量(Tensor)时,以下是关于展平(Flatten)、维度调整(如view/reshape)等操作的关键点,这些操作通常不会影响第一个维度(即批量维度batch_size):

图像任务中的张量形状

输入张量的形状通常为:
(batch_size, channels, height, width)
例如:(batch_size, 3, 28, 28)
其中,batch_size 代表一次输入的样本数量。

NLP任务中的张量形状

输入张量的形状可能为:
(batch_size, sequence_length)
此时,batch_size 同样是第一个维度。

1. Flatten操作

  • 功能:将张量展平为一维数组,但保留批量维度。
  • 示例
    • 输入形状(batch_size, 3, 28, 28)(图像数据)
    • Flatten后形状(batch_size, 3×28×28) = (batch_size, 2352)
    • 说明:第一个维度batch_size不变,后面的所有维度被展平为一个维度。

2. view/reshape操作

  • 功能:调整张量维度,但必须显式保留或指定批量维度。
  • 示例
    • 输入形状(batch_size, 3, 28, 28)
    • 调整为(batch_size, -1)
    • 结果:展平为两个维度,保留batch_size,第二个维度自动计算为3×28×28=2352

总结

  • 批量维度不变性:无论进行flatten、view还是reshape操作,第一个维度batch_size通常保持不变。
  • 动态维度指定:使用-1让PyTorch自动计算该维度的大小,但需确保其他维度的指定合理,避免形状不匹配错误。

三、dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout

由于深度mlp的参数过多,为了避免过拟合在这里引入了dropout这个操作,他可以在训练阶段随机丢弃一些神经元,避免过拟合情况。dropout的取值也是超参数。

在测试阶段,由于开启了eval模式,会自动关闭dropout。

可以继续调用这个函数来复用(继续彩色图片)

# 7. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

此时会发现MLP(多层感知机)在图像任务上表现较差(即使增加深度和轮次也只能达到 50-55% 准确率),主要原因与图像数据的空间特性和MLP 的结构缺陷密切相关。

  1. MLP 的每一层都是全连接层,输入图像会被展平为一维向量(如 CIFAR-10 的 32x32x3 图像展平为 3072 维向量)。图像中相邻像素通常具有强相关性(如边缘、纹理),但 MLP 将所有像素视为独立特征,无法利用局部空间结构。例如,识别 “汽车轮胎” 需要邻近像素的组合信息,而 MLP 需通过大量参数单独学习每个像素的关联,效率极低。
  2. 深层 MLP 的参数规模呈指数级增长,容易过拟合

所以接下来将会学习CNN架构,CNN架构的参数规模相对较小,且训练速度更快,而且CNN架构可以解决图像识别问题,而MLP不能。

@浙大疏锦行 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/web/84832.shtml
繁体地址,请注明出处:http://hk.pswp.cn/web/84832.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux 文件 I/O 与标准 I/O 缓冲机制详解

一、什么是标准 I/O?(FILE* 接口) 标准 I/O 是 C 标准库为我们提供的一套高级文件操作接口,核心基于结构体 FILE,常见函数如: fopen() / fclose() fread() / fwrite() fprintf() / fscanf() fflush() /…

C++的前世今生-C++11

C98(ISO/IEC 14882:1998) C98 是 C 的第一个标准化版本(ISO/IEC 14882:1998),它正式确立了 C 的核心语言特性和标准库。以下是 C98 的主要特性总结: 一、核心语言特性** 模板(Templates&…

词编码模型怎么进行训练的,输出输入是什么,标签是什么

词编码模型怎么进行训练的,输出输入是什么,标签是什么 词编码模型的训练本质是通过数据驱动的方式,将离散的文本符号映射为连续的语义向量。 一、训练机制:从符号到向量的映射逻辑 1. 核心目标 将单词/子词(Token)映射为低维向量,使语义相关的词在向量空间中距离更近…

【Linux指南】文件管理高级操作(复制、移动、查找)

引言 在Linux系统管理中,文件的复制、移动与查找是比基础操作更进阶的核心技能,它们构成了高效管理文件系统的"三驾马车"。当我们需要备份重要数据、重构目录结构或在庞大的文件系统中定位目标文件时,cp、mv、find等命令将成为最得…

【栈】-----【小C的记事本】

小C的记事本 题目描述 小C最近学会了 Java 小程序的开发,他很开心,于是想做一个简单的记事本程序练练手。 他希望他的记事本包含以下功能: append(str):向记事本插入字符串 str(英文字符)。delete(k)&am…

技能系统详解(2)——特效表现

特效会有个EffectManager用于统一管理所有特效,技能特效只是各类特效中的一种 EffectManager需要提供特效的创建,返回被封装为EffectHandle 每类特效都有各种不同的配置参数,这些配置参数会传递给EffectManager用于生成EffectHandler 为支…

12.OpenCV—基础入门

01读取图像 02创建空白图像 03保存图像 04更改图像亮度 05更改图像对比度 06灰度直方图均衡 07彩色直方图均衡 08五种滤波方式 09形态学操作 10仿射变换 11角度缩放仿射变换 12透视变换 13坐标映射 14模板匹配 15多模板匹配 16查找轮廓线 17轮廓线匹配 17绘制…

【Python】Python之什么是生成器?什么是迭代器?

目录 专栏导读前言什么是迭代器(Iterator)?迭代器的定义迭代器协议可迭代对象 vs 迭代器自定义迭代器迭代器的优势 什么是生成器(Generator)?生成器的定义生成器函数生成器表达式复杂的生成器示例生成器的状…

Python中实现简单爬虫并处理数据

在当今数据驱动的时代,能够从互联网上高效地抓取信息变得越来越重要。Python因其简洁易学的特性,成为了编写网络爬虫的首选语言之一。接下来,我将介绍如何使用Python来实现一个基础的网络爬虫,并对收集到的数据进行初步处理。 首先…

免费wordpress主题网

免费WordPress主题网 WP模板牛 WP模板牛是一个提供免费WordPress主题的网站,用户可以在这里找到大量高质量的模板,适用于各种网站类型。该网站致力于为用户提供简单、高效的建站体验。 官网链接: https://wpniu.com 建站哥模板 建站哥模板…

为什么需要MyBatis-Plus条件构造器?

目录 前言 一、传统SQL编写的痛点 二、条件构造器的核心优势 1. 防SQL注入(安全性) 2. 面向对象编程(可读性) 3. 动态条件构建(灵活性) 4. 数据库无关性(可移植性) 三、典型应…

【从零学习JVM|第九篇】常见的垃圾回收算法和垃圾回收器

前言: 我们知道在堆内存中,会有自动的垃圾回收功能,那今天这篇文章将会向你介绍,这个功能实现的方式,还有实现的对象,接下来就由我来给你们详细介绍垃圾回收的算法和实现算法的回收器。 目录 前言&#…

品牌窜货治理解决方案

在渠道网络的暗潮中,窜货犹如隐秘的漩涡,某知名白酒品牌曾因区域窜货导致终端价格体系崩溃,半年内损失超3亿元。窜货行为不仅破坏市场秩序,更会引发信任危机。随着电商平台的多元化与分销层级的复杂化,品牌方亟需构建一…

车载电子电器架构 --- 法律和标准对电子电气架构的影响

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 做到欲望极简,了解自己的真实欲望,不受外在潮流的影响,不盲从,不跟风。把自己的精力全部用在自己。一是去掉多余,凡事找规律,基础是诚信;二是…

一种通用跨平台实现SEH的解决方案

一. 前言 众所周知,在软件的代码中,处理软件本身的逻辑只要大约1/3的代码,另外2/3的代码实际上是在处理各种各样的异常情况。 这些异常情况一方面是因为不同用户之间不同的硬件软件环境要处理。另一方面是程序中可能出现的bug。比较典型的情…

25.6.19学习总结

什么是堆(Heap)? 堆是一种特殊的树形数据结构,它满足以下两个主要属性: 结构性(完全二叉树): 堆总是一个完全二叉树 (Complete Binary Tree)。这意味着,除了最后一层&am…

【前后前】导入Excel文件闭环模型:Vue3前端上传Excel文件,【Java后端接收、解析、返回数据】,Vue3前端接收展示数据

【前后前】导入Excel文件闭环模型&#xff1a;Vue3前端上传Excel文件&#xff0c;【Java后端接收、解析、返回数据】&#xff0c;Vue3前端接收展示数据 一、Vue3前端上传&#xff08;导入&#xff09;Excel文件 ReagentInDialog.vue <script setup lang"ts" na…

网络基础入门:从OSI模型到TCP/IP协议详解

网络基础入门&#xff1a;从OSI模型到TCP/IP协议详解 一、网络基础概念与OSI七层模型 1.1 网络通信的本质 计算机网络的核心是将抽象语言转换为二进制数据进行传输与计算&#xff0c;这一过程涉及多层抽象与转换&#xff1a; 应用层&#xff1a;人机交互—抽象语言------编…

Linux致命漏洞CVE-2025-6018和CVE-2025-6019

Qualys 最近披露了两个影响主流 Linux 发行版的本地权限提升 (LPE) 漏洞&#xff0c;分别是 CVE-2025-6018 和 CVE-2025-6019。这两个漏洞可以被串联利用&#xff0c;使得非特权用户在几秒钟内获得系统的 root 权限&#xff0c;从而实现对系统的完全控制。 一、漏洞详情 这两…

【Docker基础】Docker镜像管理:docker push详解

目录 引言 1 Docker镜像推送基础概念 1.1 什么是Docker镜像推送 1.2 镜像仓库概述 1.3 镜像标签与版本控制 2 docker push命令详解 2.1 基本语法 2.2 常用参数选项 2.3 实际命令示例 2.4 推送流程 2.5 步骤描述 3 镜像推送实践示例 3.1 登录管理 3.2 标签管理 3…