C56-亲自实现字符串拷贝函数

一 strcpy简介

功能:将源字符串(包括 \0)复制到目标地址。

原型

char *strcpy(char *dest, const char *src);
  • 参数:
    • dest:目标地址(需足够大)。
    • src:源字符串(以 \0 结尾)。
  • 返回值:返回 dest 的指针。

示例

char src[] = "ABC";
char dest[10];
strcpy(dest, src); // dest 变为 "ABC"

风险:不检查 dest 空间,可能溢出(如 srcdest 长)

一句话总结:快速复制字符串,但需确保目标空间足够,否则用安全替代函数。

二 封装自己的strcpy函数

  • 代码示例:
#include <stdio.h>
#include <string.h>//依据"strcpy"函数原型封装一个函数用于实现其功能
char *MyStrcpy(char *dest,char *string)
{   //正式操作前进行安全性检查if(dest==NULL||string==NULL){return NULL;}//函数的主体char *back=dest;    //对目标指针进行保存while(*string!='\0'){*dest=*string;dest++;string++;}*dest='\0';return back;
}int main()
{char str[128]={'\0'};char *p="Hello Word!";MyStrcpy(str,p);printf("%s",str);return 0;
}
  • 成果展示:

image-20250531184324253

三 strncpy简介

功能:安全复制字符串,限制长度防溢出

用法

char *strncpy(char *dest, const char *src, size_t n);
  • 参数:

    • dest:目标缓冲区(存储复制结果)。
    • src:源字符串(以 \0 结尾)。
    • n:最多复制的字符数(包括 \0)。
  • 返回值:返回 dest 的指针。

  • 最多复制 n 个字符到 dest

  • src 较短,剩余空间补 \0

  • src 较长,不会自动加 \0

注意

  1. 需确保 dest 足够大

  2. 建议手动补\0

    dest[n-1] = '\0';
    

示例

char dest[5];
strncpy(dest, "hello", 5);
dest[4] = '\0';  // 安全终止

特点

  • strcpy 安全
  • 需自行处理字符串终止

四 封装自己的strncpy函数

  • 代码示例:
#include <stdio.h>
#include <string.h>//依据"strncpy"函数原型封装一个函数用于实现其功能
char *MyStrncpy(char *dest,char *string,int count)
{   //正式操作前进行安全性检查if(dest==NULL||string==NULL){return NULL;}//函数的主体char *back=dest;    //对目标指针进行保存while(*string!='\0'&&count>0){*dest=*string;dest++;string++;count--;}if(count>0){while(count>0){count--;*dest++='\0';}return dest;}*dest='\0';return back;
}int main()
{char str[128]={'\0'};char *p="Hello Word!";MyStrncpy(str,p,6);printf("%s",str);return 0;
}
  • 成果展示:

image-20250531191052594

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/bicheng/83222.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设计模式——适配器设计模式(结构型)

摘要 本文详细介绍了适配器设计模式&#xff0c;包括其定义、核心思想、角色、结构、实现方式、适用场景及实战示例。适配器模式是一种结构型设计模式&#xff0c;通过将一个类的接口转换成客户端期望的另一个接口&#xff0c;解决接口不兼容问题&#xff0c;提高系统灵活性和…

java 开发中 nps的内网穿透 再git 远程访问 以及第三放支付接口本地调试中的作用

在Java开发中&#xff0c;NPS内网穿透、Git远程访问和第三方支付接口的本地调试结合使用&#xff0c;可以有效提升开发效率和调试能力。以下是它们的具体作用及协作场景&#xff1a; 第一&#xff1a;为什么需要nps内网穿透 1. NPS内网穿透的作用 NPS&#xff08;内网穿透工具…

换ip是换网络的意思吗?怎么换ip地址

在数字化时代&#xff0c;IP地址作为我们在网络世界的"身份证"&#xff0c;其重要性不言而喻。许多人常将"换IP"与"换网络"混为一谈&#xff0c;实际上两者虽有联系却存在本质区别。本文将澄清这一概念误区&#xff0c;并详细介绍多种更换IP地址…

云游戏混合架构

云游戏混合架构通过整合本地计算资源与云端能力&#xff0c;形成了灵活且高性能的技术体系&#xff0c;其核心架构及技术特征可概括如下&#xff1a; 一、混合架构的典型模式 分层混合模式‌ 前端应用部署于公有云&#xff08;如渲染流化服务&#xff09;&#xff0c;后端逻辑…

Docker常用命令操作指南(一)

Docker常用命令操作指南-1 一、Docker镜像相关命令1.1 搜索镜像&#xff08;docker search&#xff09;1.2 拉取镜像&#xff08;docker pull&#xff09;1.3 查看本地镜像&#xff08;docker images&#xff09;1.4 删除镜像&#xff08;docker rmi&#xff09; 二、Docker容器…

软件性能之CPU

性能是个宏大而驳杂话题&#xff0c;从代码&#xff0c;到网络&#xff0c;到实施&#xff0c;方方面面都会涉及到性能问题&#xff0c;网上对性能讲解的文章多如牛毛&#xff0c;从原理到方法再到工具都有详细的介绍&#xff0c;本文虽不能免俗&#xff0c;但期望能从另外一个…

[SC]SystemC在CPU/GPU验证中的应用(三)

SystemC在CPU/GPU验证中的应用(三) 摘要:下面分享50个逐步升级SystemC编程能力的示例及建议的学习路线图。您可以一次一批地完成它们——从前五个基础的例子开始,然后转向channels, TLM, bus models, simple CPU/GPU kernels等等。在每个阶段掌握之后,再进行下一组…

如何设计高效的数据湖架构:存储策略、Schema 演进与数据生命周期管理

本文围绕现代数据湖架构的核心设计理念与实践展开,重点讨论如何高效组织数据存储、支持 Schema 演进与版本管理、实现冷热数据分层存储和生命周期治理,确保数据湖在性能、成本、演进和治理能力上的全面可控。 🧭 一、数据湖架构演进概览 传统数据仓库面对高频更新、Schema…

建筑兔零基础人工智能自学记录101|Transformer(1)-14

Transformer 谷歌提出&#xff0c;一组编码-解码器 可以同时处理&#xff0c;通过位置编码来处理单词 实质是token词语接龙&#xff08;只是有不同的概率&#xff09; token对应向量 Transformer简述 文生图就需要用到transformer黑箱 token 内部层次 中间主要是embedding…

Unity基础学习(十二)Unity 物理系统之范围检测

目录 一、关于范围检测的主要API&#xff1a; 1. 盒状范围检测 Physics.OverlapBox 2. 球形范围检测 Physics.OverlapSphere 3. 胶囊范围检测 Physics.OverlapCapsule 4. 盒状检测 NonAlloc 版 5. 球形检测 NonAlloc 版 6. 胶囊检测 NonAlloc 版 二、关于API中的两个重…

构建安全高效的邮件网关ngx_mail_ssl_module

一、快速上手&#xff1a;最小配置示例 worker_processes auto;mail {server {# 监听 IMAP over TLSlisten 993 ssl;protocol imap;# TLS 协议与密码套件ssl_protocols TLSv1.2 TLSv1.3;ssl_ciphers HIGH:!aNULL:!MD5;# 证书与私钥ssl_…

打卡day41

知识回顾 数据增强卷积神经网络定义的写法batch归一化&#xff1a;调整一个批次的分布&#xff0c;常用与图像数据特征图&#xff1a;只有卷积操作输出的才叫特征图调度器&#xff1a;直接修改基础学习率 卷积操作常见流程如下&#xff1a; 1. 输入 → 卷积层 → Batch归一化层…

MySQL高级查询技巧:分组、聚合、子查询与分页【MySQL系列】

本文将深入探讨 MySQL 高级查询技巧&#xff0c;重点讲解 GROUP BY、HAVING、各种聚合函数、子查询以及分页查询&#xff08;LIMIT 语法&#xff09;的使用。文章内容涵盖实际应用中最常见的报表需求和分页实现技巧&#xff0c;适合有一定 SQL 基础的开发者进一步提升技能。 一…

现代 CSS 高阶技巧:实现平滑内凹圆角的工程化实践

通过 数学计算 CSS mask 复合遮罩 实现的真正几何内凹效果&#xff1a; 背景是一张图片&#xff0c;用来证明中间的凹陷是透明的。 完整代码&#xff1a; app.js import FormPage from "./pages/formPage"; import "./App.css"; const App () > {re…

Qt不同布局添加不同控件

对于这种 不同布局添加不同控件 的情况,可以采用以下几种简化方法: 方法 1:使用 std::pair 或 std::tuple 配对(C++17 推荐) for (auto [layout, widget] : {std::pair{m_layoutMistakeCalibrate,

MySQL 事务解析

1. 事务简介 事务&#xff08;Transaction&#xff09; 是一组操作的集合&#xff0c;它是一个不可分割的工作单位&#xff0c;事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求&#xff0c;即这些操作要么同时成功&#xff0c;要么同时失败。 经典案例&#xff1…

PyTorch中 torch.utils.data.DataLoader 的详细解析和读取点云数据示例

一、DataLoader 是什么&#xff1f; torch.utils.data.DataLoader 是 PyTorch 中用于加载数据的核心接口&#xff0c;它支持&#xff1a; 批量读取&#xff08;batch&#xff09;数据打乱&#xff08;shuffle&#xff09;多线程并行加载&#xff08;num_workers&#xff09;自…

在MDK中自动部署LVGL,在stm32f407ZGT6移植LVGL-8.4,运行demo,显示label

在MDK中自动部署LVGL&#xff0c;在stm32f407ZGT6移植LVGL-8.4 一、硬件平台二、实现功能三、移植步骤1、下载LVGL-8.42、MDK中安装LVGL-8.43、配置RTE4、配置头文件 lv_conf_cmsis.h5、配置lv_port_disp_template 四、添加心跳相关文件1、在STM32CubeMX中配置TIM7的参数2、使能…

德思特新闻 | 德思特与es:saar正式建立合作伙伴关系

德思特新闻 2025年5月9日&#xff0c;德思特科技有限公司&#xff08;以下简称“德思特”&#xff09;与德国嵌入式系统专家es:saar GmbH正式达成合作伙伴关系。此次合作旨在将 es:saar 的先进嵌入式开发与测试工具引入中国及亚太市场&#xff0c;助力本地客户提升产品开发效率…

fork函数小解

学了好久终于搞懂fork函数的一些作用 1. fork函数作用&#xff1a;用于创建新的子进程 这是fork最根本的功能&#xff0c;在父进程里创建新的子进程、 但是创建新的子进程之后呢&#xff1f; 子进程和父进程的关系是什么样的&#xff1f; 为什么fork得到的子进程返回值为0&am…