国产安路FPGA实现图像视频采集转HDMI输出,提供5套TD工程源码和技术支持

目录

  • 1、前言
    • 工程概述
    • 免责声明
  • 2、相关方案推荐
    • 我已有的所有工程源码总目录----方便你快速找到自己喜欢的项目
    • 国产安路FPGA相关方案推荐
  • 3、设计思路框架
    • 工程设计原理框图
    • 输入Sensor之-->GC0308摄像头
    • 输入Sensor之-->OV7725摄像头
    • 输入Sensor之-->OV5640摄像头
    • 输入Sensor之-->AR0135摄像头
    • 输入Sensor之-->ADV7611芯片解码的HDMI
    • FDMA图像缓存
    • HDMI视频输出架构
    • 工程源码架构
  • 4、TD工程源码1详解:GC0308输入版本
  • 5、TD工程源码2详解:OV7725输入版本
  • 6、TD工程源码3详解:OV5640输入版本
  • 7、TD工程源码4详解:AR0135输入版本
  • 8、TD工程源码5详解:HDMI输入版本
  • 9、上板调试验证并演示
    • 准备工作
    • 国产安路FPGA视频采集效果演示
  • 10、工程源码

国产安路FPGA实现图像视频采集转HDMI输出,提供5套TD工程源码和技术支持

1、前言

国产FPGA现状:

“苟利国家生死以,岂因祸福避趋之!”大洋彼岸的我优秀地下档员,敏锐地洞察到祖国的短板在于先进制程半导体的制造领域,于是本着为中华民族伟大复兴的中国梦贡献绵薄之力的初心,懂先生站在高略高度和长远角度谋划,宁愿背当代一世之骂名也要为祖国千秋万世谋,2018年7月,懂先生正式打响毛衣战,随后又使出恰勃纸战术,旨在为祖国先进制程半导体领域做出自主可控的战略推动;2019年初我刚出道时,还是Xilinx遥遥领先的时代(现在貌似也是),那时的国产FPGA还处于黑铁段位;然而才短短7年,如今的国产FPGA属于百家争鸣、百花齐放、八仙过海、神仙打架、方兴未艾、得陇望蜀、友商都是XX的喜极而泣之局面,此情此景,不得不吟唱老人家的诗句:魏武挥鞭,东临碣石有遗篇,萧瑟秋风今又是,换了人间。。。
目前对于国产FPGA优势有以下几点:
1:性价比高,与同级别国外大厂芯片相比,价格相差几倍甚至十几倍;
2:自主可控,国产FPGA拥有完整自主知识产权的产业链,从芯片到相关EDA工具;
3:响应迅速,FAE技术支持比较到位,及时解决开发过程中遇到的问题,毕竟中文数据手册;
4:采购方便,产业链自主可控,采购便捷;

工程概述

本文使用国产安路的PH1系列FPGA做基础的图像视频采集系统;视频输入源有多种,一种是板载的HDMI输入接口,另一种是传统摄像头,包括OV7725、OV5640和AR0135;如果你的FPGA开发板没有视频输入接口,或者你的手里没有摄像头时,可以使用FPGA逻辑实现的动态彩条模拟输入视频,代码里通过parametr参数选择视频源,默认不使用动态彩条;FPGA首先对摄像头进行i2c初始化配置,然后采集摄像头视频;然后视频送入本博主常用的FDMA图像缓存架构实现视频3帧缓存功能,本设计使用DDR3作为缓存介质;然后Native视频时序控制图像缓存架构从DDR3中读取视频,并做Native视频时序同步,输出RGB888视频;然后视频送入安路官方提供的RGB转HDMI IP实现RGB转HDMI功能;最后视频通过板载HDMI输出接口送显示器显示即可;针对市场主流需求,本设计提供5套PDS工程源码,具体如下:
在这里插入图片描述
现对上述3套工程源码做如下解释,方便读者理解:

工程源码1

开发板FPGA型号为国产安路–PH1A90SBG484-3;输入视频为GC0308摄像头或者动态彩条,默认使用GC0308;FPGA首先使用纯Verilog实现的i2c总线对摄像头进行初始化配置,分辨率配置为640x480@30Hz;然后采集输入视频,将输入的两个时钟传输一个RGB565像素的视频采集为一个时钟传输一个RGB888像素的视频;然后视频送入本博主常用的FDMA图像缓存架构实现视频3帧缓存功能,本设计使用DDR3作为缓存介质;然后Native视频时序控制图像缓存架构从DDR3中读取视频,并做Native视频时序同步,输出RGB888视频,输出分辨率为640x480@60Hz,然后视频送入安路官方提供的RGB转HDMI IP实现RGB转HDMI功能;最后视频通过板载HDMI输出接口送显示器显示即可;该工程适用于国产安路FPGA实现图像视频采集系统应用;

工程源码2

开发板FPGA型号为国产安路–PH1A90SBG484-3;输入视频为OV7725摄像头或者动态彩条,默认使用OV7725;FPGA首先使用纯Verilog实现的i2c总线对摄像头进行初始化配置,分辨率配置为640x480@30Hz;然后采集输入视频,将输入的两个时钟传输一个RGB565像素的视频采集为一个时钟传输一个RGB888像素的视频;然后视频送入本博主常用的FDMA图像缓存架构实现视频3帧缓存功能,本设计使用DDR3作为缓存介质;然后Native视频时序控制图像缓存架构从DDR3中读取视频,并做Native视频时序同步,输出RGB888视频,输出分辨率为640x480@60Hz,然后视频送入安路官方提供的RGB转HDMI IP实现RGB转HDMI功能;最后视频通过板载HDMI输出接口送显示器显示即可;该工程适用于国产安路FPGA实现图像视频采集系统应用;

工程源码3

开发板FPGA型号为国产安路–PH1A90SBG484-3;输入视频为OV5640摄像头或者动态彩条,默认使用OV5640;FPGA首先使用纯Verilog实现的i2c总线对摄像头进行初始化配置,分辨率配置为1280x720@30Hz;然后采集输入视频,将输入的两个时钟传输一个RGB565像素的视频采集为一个时钟传输一个RGB888像素的视频;然后视频送入本博主常用的FDMA图像缓存架构实现视频3帧缓存功能,本设计使用DDR3作为缓存介质;然后Native视频时序控制图像缓存架构从DDR3中读取视频,并做Native视频时序同步,输出RGB888视频,输出分辨率为1280x720@60Hz,然后视频送入安路官方提供的RGB转HDMI IP实现RGB转HDMI功能;最后视频通过板载HDMI输出接口送显示器显示即可;该工程适用于国产安路FPGA实现图像视频采集系统应用;

工程源码4

开发板FPGA型号为国产安路–PH1A90SBG484-3;输入视频为AR0135全局曝光工业相机或者动态彩条,默认使用AR0135;FPGA首先使用纯Verilog实现的i2c总线对摄像头进行初始化配置,分辨率配置为1280x720@60Hz;然后采集输入视频,将输入的两个时钟传输一个RGB565像素的视频采集为一个时钟传输一个RGB888像素的视频;然后视频送入本博主常用的FDMA图像缓存架构实现视频3帧缓存功能,本设计使用DDR3作为缓存介质;然后Native视频时序控制图像缓存架构从DDR3中读取视频,并做Native视频时序同步,输出RGB888视频,输出分辨率为1280x720@60Hz,然后视频送入安路官方提供的RGB转HDMI IP实现RGB转HDMI功能;最后视频通过板载HDMI输出接口送显示器显示即可;该工程适用于国产安路FPGA实现图像视频采集系统应用;

工程源码5

开发板FPGA型号为国产安路–PH1A90SBG484-3;输入视频为HDMI视频,用笔记本电脑模拟,笔记本电脑通过HDMI线连接FPGA开发板的HDMI输入接口,板载的ADV7611芯片实现HDMI视频解码,FPGA使用纯Verilog实现的i2c总线对ADV7611进行初始化配置,分辨率配置为1920x1080@60Hz,输出RGB888视频给FPGA;然后视频送入本博主常用的FDMA图像缓存架构实现视频3帧缓存功能,本设计使用DDR3作为缓存介质;然后Native视频时序控制图像缓存架构从DDR3中读取视频,并做Native视频时序同步,输出RGB888视频,输出分辨率为1920x1080@60Hz,然后视频送入安路官方提供的RGB转HDMI IP实现RGB转HDMI功能;最后视频通过板载HDMI输出接口送显示器显示即可;该工程适用于国产安路FPGA实现图像视频采集系统应用;

本博客描述了国产安路FPGA实现图像视频采集系统的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

我已有的所有工程源码总目录----方便你快速找到自己喜欢的项目

其实一直有朋友反馈,说我的博客文章太多了,乱花渐欲迷人,自己看得一头雾水,不方便快速定位找到自己想要的项目,所以本博文置顶,列出我目前已有的所有项目,并给出总目录,每个项目的文章链接,当然,本博文实时更新。。。以下是博客地址:
点击直接前往

国产安路FPGA相关方案推荐

鉴于国产FPGA的优异表现和市场需求,我专门开设了一个人国产安路FPGA专栏,里面收录了基于国产安路FPGA的图像处理、UDP网络通信、GT高速接口、PCIE等博客,感兴趣的可以去看看,博客地址:
点击直接前往

3、设计思路框架

工程设计原理框图

工程设计原理框图如下:
在这里插入图片描述

输入Sensor之–>GC0308摄像头

输入Sensor是本工程的输入设备,其一为GC0308摄像头,此外本博主在工程中还设计了动态彩条模块,彩条由FPGA内部逻辑产生,且是动态移动的,完全可模拟Sensor,输入源选择Sensor还是彩条,通过Sensor模块的顶层参数配置,默认选择Sensor输入;Sensor模块如下:
在这里插入图片描述
SENSOR_TYPE=0;则输出GC0308摄像头采集的视频;
SENSOR_TYPE=1;则输出动态彩条的视频;

GC0308摄像头需要i2c初始化配置,本设计配置为640x480@30Hz分辨率,本设计提供纯verilog代码实现的i2c模块实现配置功能;此外,GC0308摄像头还需要图像采集模块实现两个时钟输出一个RGB565的视频转换为一个时钟输出一个RGB888视频,本设计提供纯verilog代码实现的图像采集模块实现配置功能;动态彩条则由FPGA内部逻辑实现,由纯verilog代码编写;将GC0308摄像头配置采集和动态彩条进行代码封装,形成helai_OVsensor.v的顶层模块,整个模块代码架构如下:
在这里插入图片描述

输入Sensor之–>OV7725摄像头

输入Sensor是本工程的输入设备,其一为OV7725摄像头,此外本博主在工程中还设计了动态彩条模块,彩条由FPGA内部逻辑产生,且是动态移动的,完全可模拟Sensor,输入源选择Sensor还是彩条,通过Sensor模块的顶层参数配置,默认选择Sensor输入;Sensor模块如下:
在这里插入图片描述
SENSOR_TYPE=0;则输出OV7725摄像头采集的视频;
SENSOR_TYPE=1;则输出动态彩条的视频;

OV7725摄像头需要i2c初始化配置,本设计配置为640x480@60Hz分辨率,本设计提供纯verilog代码实现的i2c模块实现配置功能;此外,OV7725摄像头还需要图像采集模块实现两个时钟输出一个RGB565的视频转换为一个时钟输出一个RGB888视频,本设计提供纯verilog代码实现的图像采集模块实现配置功能;动态彩条则由FPGA内部逻辑实现,由纯verilog代码编写;将OV7725摄像头配置采集和动态彩条进行代码封装,形成helai_OVsensor.v的顶层模块,整个模块代码架构如下:
在这里插入图片描述

输入Sensor之–>OV5640摄像头

输入Sensor是本工程的输入设备,其一为OV5640摄像头,此外本博主在工程中还设计了动态彩条模块,彩条由FPGA内部逻辑产生,且是动态移动的,完全可模拟Sensor,输入源选择Sensor还是彩条,通过Sensor模块的顶层参数配置,默认选择Sensor输入;Sensor模块如下:
在这里插入图片描述
SENSOR_TYPE=0;则输出OV5640摄像头采集的视频;
SENSOR_TYPE=1;则输出动态彩条的视频;

OV5640摄像头需要i2c初始化配置,本设计配置为1280x720@30Hz分辨率,本设计提供纯verilog代码实现的i2c模块实现配置功能;此外,OV5640摄像头还需要图像采集模块实现两个时钟输出一个RGB565的视频转换为一个时钟输出一个RGB888视频,本设计提供纯verilog代码实现的图像采集模块实现配置功能;动态彩条则由FPGA内部逻辑实现,由纯verilog代码编写;将OV5640摄像头配置采集和动态彩条进行代码封装,形成helai_OVsensor.v的顶层模块,整个模块代码架构如下:
在这里插入图片描述

输入Sensor之–>AR0135摄像头

输入Sensor是本工程的输入设备,其一为AR0135摄像头,此外本博主在工程中还设计了动态彩条模块,彩条由FPGA内部逻辑产生,且是动态移动的,完全可模拟Sensor,输入源选择Sensor还是彩条,通过Sensor模块的顶层参数配置,默认选择Sensor输入;Sensor模块如下:
在这里插入图片描述
SENSOR_TYPE=0;则输出OV5640摄像头采集的视频;
SENSOR_TYPE=1;则输出动态彩条的视频;

AR0135摄像头需要i2c初始化配置,本设计配置为1280x720@60Hz分辨率,本设计提供纯verilog代码实现的i2c模块实现配置功能;动态彩条则由FPGA内部逻辑实现,由纯verilog代码编写;将AR0135摄像头配置采集和动态彩条进行代码封装,形成helai_OVsensor.v的顶层模块,整个模块代码架构如下:
在这里插入图片描述

输入Sensor之–>ADV7611芯片解码的HDMI

输入Sensor是本工程的输入设备,其一为板载的HDMI输入接口;输入源为板载的HDMI输入接口或动态彩条,分辨率为1920x1080@60Hz,使用笔记本电脑接入HDMI输入接口,以模拟输入Sensor;HDMI解码方案为芯片解码,使用ADV7611,可将输入的HDMI视频解码为RGB888视频;FPGA纯verilog实现的i2c配置模块完成对ADV7611芯片的配置,分辨率配置为1920x1080@60Hz;可以通过Sensor模块的顶层参数配置,默认选择Sensor输入;Sensor模块如下:
在这里插入图片描述
SENSOR_TYPE=0;则输出HDMI接口采集的视频;
SENSOR_TYPE=1;则输出动态彩条的视频;
整个模块代码架构如下:
在这里插入图片描述

FDMA图像缓存

FDMA图像缓存架构实现的功能是将输入视频缓存到板载DDR3中再读出送后续模块,目的是实现视频同步输出,实现输入视频到输出视频的跨时钟域问题,更好的呈现显示效果;由于调用了安路官方的MIG IP核作为DDR控制器,所以FDMA图像缓存架构就是实现用户数据到MIG的桥接作用;架构如下:
在这里插入图片描述
FDMA图像缓存架构由FDMA控制器+FDMA组成;FDMA实际上就是一个AXI4-FULL总线主设备,与MIG对接,MIG配置为AXI4-FULL接口;FDMA控制器实际上就是一个视频读写逻辑,以写视频为例,假设一帧图像的大小为M×N,其中M代表图像宽度,N代表图像高度;FDMA控制器每次写入一行视频数据,即每次向DDR3中写入M个像素,写N次即可完成1帧图像的缓存,读视频与之一样;同时调用两个FIFO实现输入输出视频的跨时钟域处理,使得用户可以AXI4内部代码,以简单地像使用FIFO那样操作AXI总线,从而达到读写DDR的目的,进而实现视频缓存;本设计图像缓存方式为3帧缓存;图像缓存模块代码架构如下:
在这里插入图片描述

HDMI视频输出架构

缓存图像从DDR3读出后经过Native时序生成模块输出标准的VGA时序视频,然后经过纯verilog显示的RGB转HDMI模块输出HDMI差分视频;最后送显示器显示即可;代码例化如下:
在这里插入图片描述

工程源码架构

以工程3为例,工程源码架构如下:
在这里插入图片描述

4、TD工程源码1详解:GC0308输入版本

开发板FPGA型号:国产安路–PH1A90SBG484-3;
开发环境:TangDynasty 6.0.2;
输入:GC0308摄像头或FPGA内部动态彩条,分辨率640x480@30Hz;
输出:HDMI,RTL编码,分辨率640x480@60Hz;
图像缓存方案:FDMA图像缓存,3帧缓存;
工程源码架构请参考前面第3章节中的《工程源码架构》小节;
工程作用:此工程目的是让读者掌握国产安路FPGA实现图像视频采集系统的设计能力,以便能够移植和设计自己的项目;
工程的资源消耗和功耗如下:
在这里插入图片描述

5、TD工程源码2详解:OV7725输入版本

开发板FPGA型号:国产安路–PH1A90SBG484-3;
开发环境:TangDynasty 6.0.2;
输入:OV7725摄像头或FPGA内部动态彩条,分辨率640x480@30Hz;
输出:HDMI,RTL编码,分辨率640x480@60Hz;
图像缓存方案:FDMA图像缓存,3帧缓存;
工程源码架构请参考前面第3章节中的《工程源码架构》小节;
工程作用:此工程目的是让读者掌握国产安路FPGA实现图像视频采集系统的设计能力,以便能够移植和设计自己的项目;
工程的资源消耗和功耗如下:
在这里插入图片描述

6、TD工程源码3详解:OV5640输入版本

开发板FPGA型号:国产安路–PH1A90SBG484-3;
开发环境:TangDynasty 6.0.2;
输入:OV5640摄像头或FPGA内部动态彩条,分辨率1280x720@30Hz;
输出:HDMI,RTL编码,分辨率1280x720@60Hz;
图像缓存方案:FDMA图像缓存,3帧缓存;
工程源码架构请参考前面第3章节中的《工程源码架构》小节;
工程作用:此工程目的是让读者掌握国产安路FPGA实现图像视频采集系统的设计能力,以便能够移植和设计自己的项目;
工程的资源消耗和功耗如下:
在这里插入图片描述

7、TD工程源码4详解:AR0135输入版本

开发板FPGA型号:国产安路–PH1A90SBG484-3;
开发环境:TangDynasty 6.0.2;
输入:AR0135摄像头或FPGA内部动态彩条,分辨率1280x720@60Hz;
输出:HDMI,RTL编码,分辨率1280x720@60Hz;
图像缓存方案:FDMA图像缓存,3帧缓存;
工程源码架构请参考前面第3章节中的《工程源码架构》小节;
工程作用:此工程目的是让读者掌握国产安路FPGA实现图像视频采集系统的设计能力,以便能够移植和设计自己的项目;
工程的资源消耗和功耗如下:
在这里插入图片描述

8、TD工程源码5详解:HDMI输入版本

开发板FPGA型号:国产安路–PH1A90SBG484-3;
开发环境:TangDynasty 6.0.2;
输入:HDMI或者FPGA内部动态彩条,ADV7611芯片解码方案,分辨率1920x1080@60Hz,笔记本电脑模拟输入源;
输出:HDMI,RTL编码,分辨率1920x1080@60Hz;
图像缓存方案:FDMA图像缓存,3帧缓存;
工程源码架构请参考前面第3章节中的《工程源码架构》小节;
工程作用:此工程目的是让读者掌握国产安路FPGA实现图像视频采集系统的设计能力,以便能够移植和设计自己的项目;
工程的资源消耗和功耗如下:
在这里插入图片描述

9、上板调试验证并演示

准备工作

你需要有以下装备才能移植并测试该工程代码:
1:FPGA开发板;
2:OV7725或OV5640摄像头或笔记本电脑,没有则请使用FPGA内部生成的彩条;
3:HDMI传输线;
4:HDMI显示,要求分辨率支持1920x1080;

国产安路FPGA视频采集效果演示

国产安路FPGA视频采集效果演示如下:

安路-图像采集

10、工程源码

工程源码如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/bicheng/84073.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

35 C 语言字符串转数值函数详解:strtof、strtod、strtold(含 errno 处理、ERANGE 错误)

1 strtof() 函数 1.1 函数原型 #include <stdlib.h> // 必须包含这个头文件才能使用 strtof() #include <errno.h> // 包含 errno 和 ERANGE #include <float.h> // 包含 FlOAT_MAX 和 FLOAT_MIN #include <math.h> // 包含 HUGE_VALF(inf)float…

PaddleOCR项目实战(1):Python脚本中使⽤PaddleOCR

1 项目介绍 项目架构如下&#xff1a; APP/WEB/⼩程序为OCR识别接⼝调⽤端&#xff0c;调⽤OCR接⼝&#xff0c;实现OCR功能。本项⽬我们只实现Android APP开发。Nginx反向代理和负载均衡功能&#xff0c;通过Nginx实现对外⽹暴露接⼝&#xff0c;对内负载均衡SpringBoot实现的…

Reranker + BM25 + FAISS 构建高效的多阶段知识库检索系统一

一、什么是知识库检索&#xff1f; 在构建基于大语言模型的问答系统&#xff08;如 RAG&#xff09;中&#xff0c;知识库检索&#xff08;Retrieval&#xff09; 是第一步&#xff0c;也是影响最终回答质量的关键环节。它负责从大规模文档中快速定位与用户问题最相关的 top-k…

Walle-Web:打造轻量级高效的DevOps自动化部署平台

在当今快速迭代的开发环境中,高效的代码部署工具已成为团队不可或缺的基础设施。Walle-Web作为一款免费开源的DevOps平台,专注解决"部署难、管理乱"的痛点问题,为开发团队提供了简洁而强大的自动化部署解决方案。 1. 什么是Walle-Web? Walle-Web是一款专注于代码…

力扣LeetBook数组和字符串--二维数组

1.旋转矩阵 题目链接 想了那么久的各种旋转&#xff0c;对角线&#xff0c;其实把问题搞复杂了。 旋转90度的本质无非就是转置镜像对称 转置是什么&#xff1f;&#xff1a;将矩阵的行和列互换。 镜像对称&#xff1a;把矩阵从中间对折&#xff0c;互换位置 矩阵 A A [ 1 3 0…

图论水题2

div2 361 D. Tree Requests 题意 对于一颗 n n n节点的树&#xff0c;每个节点有一个字母&#xff0c;有 m m m次询问&#xff0c;每次询问求对于顶点 v v v的子树中深度为 h h h的结点能否组成一个回文串$ (1 \leq n \leq m \leq 5 \cdot 10^5) $ 思路 关于 v v v的子树结…

Redis 过期了解

Redis 版本&#xff1a;5.0 &#xff1a; 一&#xff1a;过期监听&#xff1a; Spring Data Redis 封装了 Redis 的 Pub/Sub 功能&#xff0c;提供了对 key 过期事件的监听支持。 1. 核心类&#xff1a;KeyExpirationEventMessageListener 这个抽象类是 Spring 提供的&#x…

OA工程自动化办公系统 – 免费Java源码

概述 功能完备的OA工程自动化办公系统Java源码&#xff0c;采用主流技术栈开发&#xff0c;无论是学习SpringBoot框架还是开发企业级应用&#xff0c;都是不可多得的优质资源。 主要内容 技术架构 ​​后端技术栈​​&#xff1a; 核心框架&#xff1a;SpringBoot 2.xORM框…

嵌入式SDK技术EasyRTC音视频实时通话助力即时通信社交/教育等多场景创新应用

一、引言​ 在数字化时代&#xff0c;即时通信已成为人们生活和工作中不可或缺的部分。音视频功能作为即时通信的核心&#xff0c;能实现更加直观、高效的信息传递。EasyRTC作为一款强大的实时通信框架&#xff0c;具备诸多优势&#xff0c;为即时通信的音视频应用提供了优质解…

BEV和OCC学习-5:数据预处理流程

参考&#xff1a;自定义数据预处理流程 — MMDetection3D 1.4.0 文档 数据预处理流程的设计 预处理流程中的各项操作主要分为数据加载、预处理、格式化、测试时的数据增强。 接下来将展示一个用于 PointPillars 模型的数据集预处理流程的例子。 train_pipeline [dict(type…

OGG 23ai for DAA 部署与补丁升级

创建ogg 用户 /usr/sbin/groupadd -g 1002 dba /usr/sbin/groupadd -g 1001 oinstall /usr/sbin/groupadd -g 1003 oper useradd -u 1001 -g oinstall -G dba,oper oracle echo "oracle" |passwd oracle --stdin创建ogg安装目录 mkdir -p /u01/app/ogg/soft mkdir …

【LangchainAgent】Agent基本构建与使用

目录 一、功能简述 代码功能概括 &#x1f3af; 核心能力 二、运作流程 三、核心代码 四、运行结果 五、代码功能拆解 ✅ 1. 环境准备与依赖导入 ✅ 2. 加载网页文档并处理为向量 ✅ 3. 创建检索工具与搜索工具 ✅ 4. 初始化语言模型与 Agent ✅ 5. 封装支持多轮记…

【云安全】以Aliyun为例聊云厂商服务常见利用手段

目录 OSS-bucket_policy_readable OSS-object_public_access OSS-bucket_object_traversal OSS-Special Bucket Policy OSS-unrestricted_file_upload OSS-object_acl_writable ECS-SSRF 云攻防场景下对云厂商服务的利用大同小异&#xff0c;下面以阿里云为例 其他如腾…

完成一个可交互的k8s管理平台的页面开发

使用deepseek完成设计一个k8s管理平台&#xff0c;关键词如下&#xff1a; 完成一个可交互的k8s管理平台的页面开发Kubernetes 管理平台页面设计 下面是一个基于现代Web技术的可交互Kubernetes管理平台的页面设计方案&#xff0c;使用React作为前端框架&#xff0c;配合Ant De…

TDengine 支持的平台汇总

TDengine 服务端支持的平台列表 注&#xff1a;1) ● 表示经过官方测试验证&#xff0c; ○ 表示非官方测试验证&#xff0c;E 表示仅企业版支持。 2) 社区版仅支持主流操作系统的较新版本&#xff0c;包括 Ubuntu 18/CentOS 7/CentOS Stream/RedHat/Debian/CoreOS/FreeBSD/Op…

使用 HTML + JavaScript 实现文章逐句高亮朗读功能

在这个信息爆炸的时代&#xff0c;我们每天都要面对大量的文字阅读。无论是学习、工作还是个人成长&#xff0c;阅读都扮演着至关重要的角色。然而&#xff0c;在快节奏的生活中&#xff0c;我们往往难以找到足够的安静时间专注于阅读。本文用 HTML JavaScript 实现了一个基于…

理解非结构化文档:将 Reducto 解析与 Elasticsearch 结合使用

作者&#xff1a;来自 Elastic Adel Wu 演示如何将 Reducto 的文档处理与 Elasticsearch 集成以实现语义搜索。 Elasticsearch 与业界领先的生成式 AI 工具和提供商有原生集成。欢迎观看我们的网络研讨会&#xff0c;了解如何超越 RAG 基础&#xff0c;或使用 Elastic 向量数据…

从Copilot到Agent,AI Coding是如何进化的?

编程原本是一项具有一定门槛的技能&#xff0c;但借助 AI Coding 产品&#xff0c;新手也能写出可运行的代码&#xff0c;非专业人员如业务分析师、产品经理&#xff0c;也能在 AI 帮助下直接生成简单应用。 这一演变对软件产业产生了深远影响。当 AI 逐步参与代码生成、调试乃…

UGUI Text/TextMeshPro字体组件

UGUI Text组件的不当使用及其性能瓶颈与优化 在Unity UGUI系统中&#xff0c;Text 组件&#xff08;或其升级版 TextMeshPro&#xff09;是显示文本信息的核心元素。然而&#xff0c;如果不当使用&#xff0c;它极易成为UI性能瓶颈的罪魁祸首&#xff0c;尤其是在预制体、属性…

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…