题目
问题 7. 应用 9.1.4 小节描述的下降法,但针对二维的拉普拉斯方程,并从三维的 Coulomb 势出发
KaTeX parse error: Invalid delimiter: '{"type":"ordgroup","mode":"math","loc":{"lexer":{"input":" U_3(x,y,z) = -\\frac{1}{4\\pi}\\big{(}x^2 + y^2 + z^2\\big{)}^{-\\frac{1}{2}}, ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":33,"end":36},"body":[{"type":"atom","mode":"math","family":"open","loc":{"lexer":{"input":" U_3(x,y,z) = -\\frac{1}{4\\pi}\\big{(}x^2 + y^2 + z^2\\big{)}^{-\\frac{1}{2}}, ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":34,"end":35},"text":"("}]}' after '\big' at position 34: …ac{1}{4\pi}\big{̲(̲}̲x^2 + y^2 + z^2…
(4)
推导出二维的对数势
KaTeX parse error: Invalid delimiter: '{"type":"ordgroup","mode":"math","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi}\\log\\big{(}x^2 + y^2\\big{)}^{\\frac{1}{2}}. ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":34,"end":37},"body":[{"type":"atom","mode":"math","family":"open","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi}\\log\\big{(}x^2 + y^2\\big{)}^{\\frac{1}{2}}. ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":35,"end":36},"text":"("}]}' after '\big' at position 35: …}{2\pi}\log\big{̲(̲}̲x^2 + y^2\big{)…
(5)
提示: 你需要计算发散的积分 ∫0∞U3(x,y,z)dz \int_0^\infty U_3(x,y,z) dz ∫0∞U3(x,y,z)dz。作为替代,考虑 ∫0NU3(x,y,z)dz \int_0^N U_3(x,y,z) dz ∫0NU3(x,y,z)dz,减去一个常数(例如 ∫0NU3(1,0,z)dz \int_0^N U_3(1,0,z) dz ∫0NU3(1,0,z)dz),然后取极限 N→∞ N \to \infty N→∞。
注意: 在给定的 U2(x,y,z) U_2(x,y,z) U2(x,y,z) 中,变量 z z z 是多余的,因为二维势只依赖于 x x x 和 y y y,因此已修正为 U2(x,y) U_2(x,y) U2(x,y)。
解答问题
下降法的核心思想是通过对额外维度(此处为 z z z 轴)积分,从高维(三维)拉普拉斯方程的基本解(Coulomb 势)推导出低维(二维)的基本解(对数势)。给定三维 Coulomb 势:
U3(x,y,z)=−14π(x2+y2+z2)−1/2. U_3(x,y,z) = -\frac{1}{4\pi} (x^2 + y^2 + z^2)^{-1/2}. U3(x,y,z)=−4π1(x2+y2+z2)−1/2.
目标是推导二维对数势:
KaTeX parse error: Invalid delimiter: '{"type":"ordgroup","mode":"math","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi} \\log \\big{(} (x^2 + y^2)^{1/2} \\big{)} = \\frac{1}{2\\pi} \\log r, \\quad \\text{其中} \\quad r = \\sqrt{x^2 + y^2}. ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":36,"end":39},"body":[{"type":"atom","mode":"math","family":"open","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi} \\log \\big{(} (x^2 + y^2)^{1/2} \\big{)} = \\frac{1}{2\\pi} \\log r, \\quad \\text{其中} \\quad r = \\sqrt{x^2 + y^2}. ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":37,"end":38},"text":"("}]}' after '\big' at position 37: …2\pi} \log \big{̲(̲}̲ (x^2 + y^2)^{1…
直接积分 ∫−∞∞U3(x,y,z)dz \int_{-\infty}^{\infty} U_3(x,y,z) dz ∫−∞∞U3(x,y,z)dz 是发散的,因此需按提示进行正则化:考虑有限范围 [0,N] [0, N] [0,N] 的积分,减去一个参考常数(例如在点 (1,0) (1,0) (1,0) 处的积分),然后取 N→∞ N \to \infty N→∞。然而,由于 U3 U_3 U3 是偶函数(关于 z z z 对称),为获得正确的幅值,需考虑全对称积分范围 [−N,N] [-N, N] [−N,N](这相当于将提示中的半范围积分乘以 2)。定义:
IN(x,y)=∫−NNU3(x,y,z)dz. I_N(x,y) = \int_{-N}^{N} U_3(x,y,z) dz. IN(x,y)=∫−NNU3(x,y,z)dz.
令 r2=x2+y2 r^2 = x^2 + y^2 r2=x2+y2,则:
IN(x,y)=∫−NN−14π(r2+z2)−1/2dz. I_N(x,y) = \int_{-N}^{N} -\frac{1}{4\pi} (r^2 + z^2)^{-1/2} dz. IN(x,y)=∫−NN−4π1(r2+z2)−1/2dz.
被积函数是偶函数,因此:
IN(x,y)=−14π⋅2∫0N(r2+z2)−1/2dz=−12π∫0N(r2+z2)−1/2dz. I_N(x,y) = -\frac{1}{4\pi} \cdot 2 \int_{0}^{N} (r^2 + z^2)^{-1/2} dz = -\frac{1}{2\pi} \int_{0}^{N} (r^2 + z^2)^{-1/2} dz. IN(x,y)=−4π1⋅2∫0N(r2+z2)−1/2dz=−2π1∫0N(r2+z2)−1/2dz.
计算积分:
∫0N(r2+z2)−1/2dz=[log(z+z2+r2)]0N=log(N+N2+r2)−logr. \int_{0}^{N} (r^2 + z^2)^{-1/2} dz = \left[ \log \left( z + \sqrt{z^2 + r^2} \right) \right]_{0}^{N} = \log \left( N + \sqrt{N^2 + r^2} \right) - \log r. ∫0N(r2+z2)−1/2dz=[log(z+z2+r2)]0N=log(N+N2+r2)−logr.
所以:
IN(x,y)=−12π[log(N+N2+r2)−logr]. I_N(x,y) = -\frac{1}{2\pi} \left[ \log \left( N + \sqrt{N^2 + r^2} \right) - \log r \right]. IN(x,y)=−2π1[log(N+N2+r2)−logr].
在参考点 (x,y)=(1,0) (x,y) = (1,0) (x,y)=(1,0)(即 r=1 r = 1 r=1):
IN(1,0)=−12π[log(N+N2+1)−log1]=−12πlog(N+N2+1), I_N(1,0) = -\frac{1}{2\pi} \left[ \log \left( N + \sqrt{N^2 + 1} \right) - \log 1 \right] = -\frac{1}{2\pi} \log \left( N + \sqrt{N^2 + 1} \right), IN(1,0)=−2π1[log(N+N2+1)−log1]=−2π1log(N+N2+1),
因为 log1=0 \log 1 = 0 log1=0。
定义正则化后的势:
VN(x,y)=IN(x,y)−IN(1,0). V_N(x,y) = I_N(x,y) - I_N(1,0). VN(x,y)=IN(x,y)−IN(1,0).
代入表达式:
VN(x,y)=−12π[log(N+N2+r2)−logr]+12πlog(N+N2+1). V_N(x,y) = -\frac{1}{2\pi} \left[ \log \left( N + \sqrt{N^2 + r^2} \right) - \log r \right] + \frac{1}{2\pi} \log \left( N + \sqrt{N^2 + 1} \right). VN(x,y)=−2π1[log(N+N2+r2)−logr]+2π1log(N+N2+1).
简化:
VN(x,y)=−12π[log(N+N2+r2)−logr−log(N+N2+1)]=−12π[log(N+N2+r2N+N2+1)−logr]. V_N(x,y) = -\frac{1}{2\pi} \left[ \log \left( N + \sqrt{N^2 + r^2} \right) - \log r - \log \left( N + \sqrt{N^2 + 1} \right) \right] = -\frac{1}{2\pi} \left[ \log \left( \frac{N + \sqrt{N^2 + r^2}}{N + \sqrt{N^2 + 1}} \right) - \log r \right]. VN(x,y)=−2π1[log(N+N2+r2)−logr−log(N+N2+1)]=−2π1[log(N+N2+1N+N2+r2)−logr].
取极限 N→∞ N \to \infty N→∞。分析比值:
N+N2+r2N+N2+1. \frac{N + \sqrt{N^2 + r^2}}{N + \sqrt{N^2 + 1}}. N+N2+1N+N2+r2.
当 N→∞ N \to \infty N→∞,使用渐近展开 N2+a2=N1+(a/N)2=N(1+a22N2+O(N−4)) \sqrt{N^2 + a^2} = N \sqrt{1 + (a/N)^2} = N \left( 1 + \frac{a^2}{2N^2} + O(N^{-4}) \right) N2+a2=N1+(a/N)2=N(1+2N2a2+O(N−4)),所以:
N+N2+r2=N+N(1+r22N2+O(N−4))=2N+r22N+O(N−3), N + \sqrt{N^2 + r^2} = N + N \left( 1 + \frac{r^2}{2N^2} + O(N^{-4}) \right) = 2N + \frac{r^2}{2N} + O(N^{-3}), N+N2+r2=N+N(1+2N2r2+O(N−4))=2N+2Nr2+O(N−3),
N+N2+1=2N+12N+O(N−3). N + \sqrt{N^2 + 1} = 2N + \frac{1}{2N} + O(N^{-3}). N+N2+1=2N+2N1+O(N−3).
因此:
N+N2+r2N+N2+1=2N+r22N+O(N−3)2N+12N+O(N−3)=1+r24N2+O(N−4)1+14N2+O(N−4)=1+r2−14N2+O(N−4). \frac{N + \sqrt{N^2 + r^2}}{N + \sqrt{N^2 + 1}} = \frac{2N + \frac{r^2}{2N} + O(N^{-3})}{2N + \frac{1}{2N} + O(N^{-3})} = \frac{1 + \frac{r^2}{4N^2} + O(N^{-4})}{1 + \frac{1}{4N^2} + O(N^{-4})} = 1 + \frac{r^2 - 1}{4N^2} + O(N^{-4}). N+N2+1N+N2+r2=2N+2N1+O(N−3)2N+2Nr2+O(N−3)=1+4N21+O(N−4)1+4N2r2+O(N−4)=1+4N2r2−1+O(N−4).
取对数:
log(N+N2+r2N+N2+1)=log(1+r2−14N2+O(N−4))=r2−14N2+O(N−4)→0asN→∞. \log \left( \frac{N + \sqrt{N^2 + r^2}}{N + \sqrt{N^2 + 1}} \right) = \log \left( 1 + \frac{r^2 - 1}{4N^2} + O(N^{-4}) \right) = \frac{r^2 - 1}{4N^2} + O(N^{-4}) \to 0 \quad \text{as} \quad N \to \infty. log(N+N2+1N+N2+r2)=log(1+4N2r2−1+O(N−4))=4N2r2−1+O(N−4)→0asN→∞.
所以:
limN→∞VN(x,y)=−12π[0−logr]=12πlogr. \lim_{N \to \infty} V_N(x,y) = -\frac{1}{2\pi} \left[ 0 - \log r \right] = \frac{1}{2\pi} \log r. N→∞limVN(x,y)=−2π1[0−logr]=2π1logr.
这正是二维对数势:
KaTeX parse error: Invalid delimiter: '{"type":"ordgroup","mode":"math","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi} \\log r = \\frac{1}{2\\pi} \\log \\big{(} (x^2 + y^2)^{1/2} \\big{)}. ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":60,"end":63},"body":[{"type":"atom","mode":"math","family":"open","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi} \\log r = \\frac{1}{2\\pi} \\log \\big{(} (x^2 + y^2)^{1/2} \\big{)}. ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":61,"end":62},"text":"("}]}' after '\big' at position 61: …2\pi} \log \big{̲(̲}̲ (x^2 + y^2)^{1…
总结
通过下降法,从三维 Coulomb 势 U3(x,y,z)=−14π(x2+y2+z2)−1/2 U_3(x,y,z) = -\frac{1}{4\pi} (x^2 + y^2 + z^2)^{-1/2} U3(x,y,z)=−4π1(x2+y2+z2)−1/2 出发,考虑对称积分范围 [−N,N] [-N, N] [−N,N],正则化后取极限 N→∞ N \to \infty N→∞,成功推导出二维对数势 KaTeX parse error: Invalid delimiter: '{"type":"ordgroup","mode":"math","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi} \\log \\big{(} (x^2 + y^2)^{1/2} \\big{)} ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":36,"end":39},"body":[{"type":"atom","mode":"math","family":"open","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi} \\log \\big{(} (x^2 + y^2)^{1/2} \\big{)} ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":37,"end":38},"text":"("}]}' after '\big' at position 37: …2\pi} \log \big{̲(̲}̲ (x^2 + y^2)^{1…。正则化步骤通过减去参考点 (1,0) (1,0) (1,0) 处的积分消除了发散项,确保了极限收敛。