2025第三届黄河流域网络安全技能挑战赛--Crypto--WriteUp

2025第三届黄河流域网络安全技能挑战赛–Crypto–WriteUp

Crypto

sandwitch

task

from Crypto.Util.number import *
import gmpy2
flag = b'flag{fake_flag}'
assert len(flag) == 39
p = getPrime(512)
q = getPrime(512)
n = p * q
e = 0x3
pad1 = b'easy_problem'
pad2 = b'How_to_solve_it'
c = pow(bytes_to_long(pad1 + flag + pad2),e,n)
print(f'n = {n}')
print(f'c = {c}')'''
n = 130210658110511504736422597261591182174531847806532340762131145212035478695205314931974421838392310731226415266775095601890938846830080329061111533796518633011922277343217149648494987341818402753017296362015915834670450122261511337212801488239810623226740266516836721952886027130703886460578247562781194524199
c = 58274335440051115211211273605191310114692293785750437685473044454042062899661976407492451518086227780147882738264722645944582899451063113444881286175099872016956825274378613983870549046907444680021237171113596116147511706486372974792692071549068969896395366667516390709069131700584308236332248449116109156503
'''

analysis

注意这里e = 3,同时这里进行了填充,针对于RSA的低解密指数攻击,攻击条件为e很小,n很大。且满足 m e < n m ^ e < n me<n.

通过尝试直接开三次方转字节解出来乱码之后发现更加确定要转换思路了。

注意到这里每次的填充都是确定的,因此就提供了攻击方式。

Crypto.Util.number中的bytes_to_long函数的源码如下:

def bytes_to_long(s):return int.from_bytes(s, byteorder='big')

详细地解释一下地话就是,针对于每个字节单独转化为16进制,之后进行字符串拼接,最后转化为长整数。

因此,针对于m = bytes_to_long(pad1 + flag + pad2)而言,高位和低位已知,中位攻击,这个时候我们就要判断一下是否满足Coppersmith 攻击的条件,同时寻找一下方程式,这里注意一下,我们已经知道flag的格式,所以可以适当修改pad1pad2的内容,从而来减少参数的修改以及减少出题人卡上界的情况,下面是我的测试代码:

from Crypto.Util.number import *
import secrets
import stringdef generate_secure_string():characters = string.ascii_letters + string.digitsreturn ''.join(secrets.choice(characters) for _ in range(33))flag = generate_secure_string().encode()
p = getPrime(512)
q = getPrime(512)
n = p * q
e = 0x3
pad1 = b'easy_problemflag{'
pad2 = b'}How_to_solve_it'
# print(flag)
m = bytes_to_long(pad1 + flag + pad2)
c = pow(m, e, n)
print(f"n = {n}")
print(f"c = {c}")
"""
m = hex(bytes_to_long(pad1 + flag + pad2))
m_flag = hex(bytes_to_long(flag))
m_pad1 = hex(bytes_to_long(pad1))
m_pad2 = hex(bytes_to_long(pad2))
print(f"m.bit_length = {int(m[2:], 16).bit_length()}") 527
print(f"pad1.bit_length = {int(m_pad1[2:], 16).bit_length()}") 135
print(f"flag.bit_length = {int(m_flag[2:], 16).bit_length()}") 263
print(f"pad2.bit_length = {int(m_pad2[2:], 16).bit_length()}") 127
assert str(m) == str(m_pad1) + str(m_flag)[2:] + str(m_pad2)[2:]
print(f"m_pad1 = {m_pad1}")
print(f"m_flag = {m_flag}")
print(f"m_pad2 = {m_pad2}")
print(bytes_to_long(flag + pad2).bit_length()) 391
print(bytes_to_long(flag + pad2) == (bytes_to_long(flag) * 2 ** 128) + bytes_to_long(pad2))
print(bytes_to_long(pad1 + flag + pad2) == bytes_to_long(pad1) * 2 ** 392 + bytes_to_long(flag) * 2 ** 128 + bytes_to_long(pad2))
"""
# print(long_to_bytes(7697598481562893683054754039062418309961586143407297792188894672047410457956460))
# BzNXmZ7TTuY29XrrYOHHQTR62Xga61IPl

exp

from Crypto.Util.number import *n = 130210658110511504736422597261591182174531847806532340762131145212035478695205314931974421838392310731226415266775095601890938846830080329061111533796518633011922277343217149648494987341818402753017296362015915834670450122261511337212801488239810623226740266516836721952886027130703886460578247562781194524199
c = 58274335440051115211211273605191310114692293785750437685473044454042062899661976407492451518086227780147882738264722645944582899451063113444881286175099872016956825274378613983870549046907444680021237171113596116147511706486372974792692071549068969896395366667516390709069131700584308236332248449116109156503
pad1 = b'easy_problemflag{'
pad2 = b'}How_to_solve_it'high = bytes_to_long(pad1) * 2 ^ 392
low = bytes_to_long(pad2)PR.<x> = PolynomialRing(Zmod(n))f = (high + x * 2 ^ 128 + low) ^ 3 - c
f = f.monic()flag = f.small_roots(2 ^ 264, 0.8)[0]
print(flag)
print(b'flag{' + long_to_bytes(int(flag)) + b'}')
# 7569574234109478543028852306177716309329892009089553992550207029298310295871844
# b'flag{A_C0pper5mi1tH_4Ues7iOn_SplIt_Pad}'

因式分解

task

# 因式分解.py
from Crypto.Util.number import *
from gmpy2 import*
from secret import flag,a,b,cm = bytes_to_long(flag)
p = getPrime(256)
q = getPrime(256)
n = p * q
e = 65537
_q = int(bin(q)[2:][::-1] , 2)
c = pow(m,e,n)print('n =',n)
print('c =',c)'''
n = 7688109450918412752403544831281002390909833419780604228031807748258766149305710928557842935597759373483911172486806200079137977020089610947423466744079981
c = 6470273779347221033316093386019083111753019159457126878637258794718443144439812725263309232245307744208957171971247518708231996986359926490571921925899978
'''assert a ** 3 + b ** 3 + c ** 3 == 3 * a * b * cgift = secert ** 3 - 9 * secert + 8
print(gift)assert 3 * (p ^ _q) == a + b + c# 16174454302590604301534105361719250538317088773024913985896374029052621214070408075926265229111851489902642328975085914458074453963086159246933939207642987161923181946601656883349077418380372857072224674380642689142603970810010050
# tellasecret.py
import stringfrom secret import hint
from secret import encryptimport randomdicts = string.ascii_lowercase +"{=}"key = (''.join([random.choice(dicts) for i in range(4)])) * 8assert(len(hint) == 32)assert(len(key) == 32)cipher = encrypt(hint, key)    #Vigenereprint(cipher)# cp=wmaunapgimjfpopeblvup=aywqygb

analysis

这道题出的很有意思,但是可能由于理解能力有限或者说是出题有点过于隐晦,请教了一下出题人大大,tellasecret.py加密的明文信息的格式为tellasecretxxxx

  • 首先,针对于gift = secert ** 3 - 9 * secert + 8.我们可以使用二分逼近求解secert.

  • 之后我们去寻找tellasecret.py的明文信息,我们了解到明文空间以及密钥空间的取值集合为小写字母和{=}同时采用了明文,密钥均为32的维吉尼亚加密,但是key的密钥属于可爆破范围,所以如果知道了有意义的明文的格式,我们就可以得到提示tellasecret{a=secert}keepsilentt

  • 根据题目的名称因式分解,以及断言a ** 3 + b ** 3 + c ** 3 == 3 * a * b * c.
    a 3 + b 3 + c 3 − 3 a b c = 0 → ( a + b + c ) ( a 2 + b 2 + c 2 − a b − b c + a c ) = 0 → ( a + b + c ) 1 2 [ ( a − b ) 2 + ( b − c ) 2 + ( c − a ) 2 ] = 0 → 1 : a + b + c = 0 或 2 : a = b = c a^3+b^3+c^3-3abc=0\rightarrow (a + b + c)(a^2 + b ^2 + c ^2 - ab-bc+ac)=0\rightarrow\\ (a + b + c){1\over2}[(a-b)^2+(b-c)^2+(c-a)^2]=0\rightarrow\\ 1:a+b+c=0或2:a=b=c a3+b3+c33abc=0(a+b+c)(a2+b2+c2abbc+ac)=0(a+b+c)21[(ab)2+(bc)2+(ca)2]=01:a+b+c=02:a=b=c
    因此,我们就明白了第二个断言3 * (p ^ _q) == a + b + c,这里原来尝试了第一种情况,发现没办法求解,后面想了想,确实,毕竟费劲巴拉地去解了a

  • 最终,我们根据这里得到的p ^ _q去进行攻击即可,采用n = p * q以及这里的异或,位与位的关系,进行爆破,由于时间复杂度的关系,剪枝或者说是记忆化搜索爆破减少多于重复的遍历爆破。

    具体的原理安利糖醋小鸡块师傅的一篇博客。

exp

  • 二分逼近求解gift = secert ** 3 - 9 * secert + 8

    from Crypto.Util.number import *def find_secert(gift):if gift == 8:return 0low = 1high = 1while True:current = high ** 3 - 9 * high + 8if current >= gift:breakhigh *= 2while low <= high:mid = (low + high) // 2current = mid ** 3 - 9 * mid + 8if current == gift:return midelif current < gift:low = mid + 1else:high = mid - 1return Nonegift = 16174454302590604301534105361719250538317088773024913985896374029052621214070408075926265229111851489902642328975085914458074453963086159246933939207642987161923181946601656883349077418380372857072224674380642689142603970810010050secert = find_secert(gift)if secert is not None:assert secert ** 3 - 9 * secert + 8 == giftprint(f"secret = {secert}")
    else:print("未找到整数解")
    # secret = 25289672915296952421286820568694528489788342353673740247988495109991492893326
    # print(long_to_bytes(secert)) b'7\xe9r\x97CO\x15f\xd37\x05\xe6\xbf\x12O\xf1\xee\x1dM\xba\xba\x08\x8c\xa3Q\x9f\xc9O]\xfe:\x8e'
    # print(long_to_bytes(gift))
    
  • 爆破key维吉尼亚爆破

    import string
    from itertools import productdicts = string.ascii_lowercase + "{=}"
    cipher = "cp=wmaunapgimjfpopeblvup=aywqygb"char_to_index = {char: idx for idx, char in enumerate(dicts)}def decrypt(cipher: str, key: str) -> str:"""Vigenère 解密函数"""plain = []key_len = len(key)for i, c in enumerate(cipher):c_idx = char_to_index[c]k_idx = char_to_index[key[i % key_len]]p_idx = (c_idx - k_idx) % 29plain.append(dicts[p_idx])return ''.join(plain)for key_tuple in product(dicts, repeat=4):key_part = ''.join(key_tuple)full_key = key_part * 8plain = decrypt(cipher, full_key)if plain.startswith("tellasecret"):print("####################################")print(plain)# tellasecret{a=secert}keepsilentt
    
  • 剪枝算法进行最终的解密

    from Crypto.Util.number import *
    import sys# a = b = c
    sys.setrecursionlimit(1500)a = 25289672915296952421286820568694528489788342353673740247988495109991492893326
    n = 7688109450918412752403544831281002390909833419780604228031807748258766149305710928557842935597759373483911172486806200079137977020089610947423466744079981
    c = 6470273779347221033316093386019083111753019159457126878637258794718443144439812725263309232245307744208957171971247518708231996986359926490571921925899978
    e = 65537
    pxorq = str(bin(a)[2:]).zfill(256)def find(ph,qh,pl,ql):l = len(ph)tmp0 = ph + (256-2*l)*"0" + pltmp1 = ph + (256-2*l)*"1" + pltmq0 = qh + (256-2*l)*"0" + qltmq1 = qh + (256-2*l)*"1" + qlif(int(tmp0,2)*int(tmq0,2) > n):returnif(int(tmp1,2)*int(tmq1,2) < n):returnif(int(pl,2)*int(ql,2) % (2**(l-1)) != n % (2**(l-1))):returnif(l == 128):pp0 = int(tmp0,2)if(n % pp0 == 0):pf = pp0qf = n//pp0phi = (pf-1)*(qf-1)d = inverse(e,phi)m1 = pow(c,d,n)print(long_to_bytes(m1))exit()else:if(pxorq[l] == "1" and pxorq[255-l] == "1"):find(ph+"1",qh+"0","1"+pl,"0"+ql)find(ph+"0",qh+"0","1"+pl,"1"+ql)find(ph+"1",qh+"1","0"+pl,"0"+ql)find(ph+"0",qh+"1","0"+pl,"1"+ql)elif(pxorq[l] == "1" and pxorq[255-l] == "0"):find(ph+"1",qh+"0","0"+pl,"0"+ql)find(ph+"0",qh+"0","0"+pl,"1"+ql)find(ph+"1",qh+"1","1"+pl,"0"+ql)find(ph+"0",qh+"1","1"+pl,"1"+ql)elif(pxorq[l] == "0" and pxorq[255-l] == "1"):find(ph+"0",qh+"0","1"+pl,"0"+ql)find(ph+"0",qh+"1","0"+pl,"0"+ql)find(ph+"1",qh+"0","1"+pl,"1"+ql)find(ph+"1",qh+"1","0"+pl,"1"+ql)elif(pxorq[l] == "0" and pxorq[255-l] == "0"):find(ph+"0",qh+"0","0"+pl,"0"+ql)find(ph+"1",qh+"0","0"+pl,"1"+ql)find(ph+"0",qh+"1","1"+pl,"0"+ql)find(ph+"1",qh+"1","1"+pl,"1"+ql)find("1","1","1","1")
    # b'flag{80a59062-9bbf-99a3-6af0-a24e94032163}'
    

Happy

task

# task.py
#!/usr/bin/env python
# Simplify the problem by happy4321
import os, utils
from secret import flag
assert flag.startswith(b'flag{') and flag.endswith(b'}')seed = int(os.urandom(16).hex(), 16)
gen = utils.Gen(seed)
msg = b'Happy4321: ' + flag
enc = bytes(m ^ next(gen) for m in msg).hex()
print(enc)
# cd1dd7c7a9cfe3c0067ff64694e64c38aa759c81d1c8f48cf6f7ee1df2d1e58584da52644ea56bd24dadca6bd5a6899a92b118f57de2529670264d48
# utils.py
class Gen:def __init__(self, state):self.nbits = 128self.state = state & ((1 << self.nbits) - 1)self.mask = 109908700282042807039366676242995409413def func0(self, steps=1):for _ in range(steps):res = self.state & self.maskbit = sum([(res >> i) & 1 for i in range(self.nbits)]) & 1self.state = ((self.state << 1) ^ bit) & ((1 << self.nbits) - 1)return bitdef __next__(self):out = 0for _ in range(8):bit = self.func0(2023)out = (out << 1) ^ bitreturn out

analysis

  • 其中加密函数的思路很清晰,根据本机时间获取随机数种子作为Gen类的初始化参数,进而不断求取下一个,进行加密。

  • 类似于自己写的一个随机数类,类似于流密码产生的随机数。同时,这个也很像一个加密LFSR(反馈线性移位寄存器)加密有些类似。这里就意味着,我们针对于同样的种子会得到相同的gen的结果。因此,要么直接绕过gen直接进行明文的恢复,要么就是相当于随机数预测攻击,找到相关的种子,进行代入,逆向异或求解明文。

  • 由于直接进行爆破gen的输出结果发现并不现实,因此还得转到seed上面,这里参考了XYCTF存在不变点的那道随机数预测的题目。当作自己写了一个基于流密码的反馈线性移位寄存器,之后找到流密码随机中的定值即可。

exp

from Crypto.Util.number import *enc = 'cd1dd7c7a9cfe3c0067ff64694e64c38aa759c81d1c8f48cf6f7ee1df2d1e58584da52644ea56bd24dadca6bd5a6899a92b118f57de2529670264d48'
mask = 109908700282042807039366676242995409413
enc = bytes.fromhex(enc)
n = 128
msg = b'Happy4321: flag{'
M = matrix(GF(2), n, n)
for i in range(n):if i + 1 < n:M[i + 1, i] = 1if mask & (1 << (n - i - 1)):M[i, -1] = 1else:M[i, -1] = 0
ls = []
for i in range(128): tmp = M ^ (2023 * (i + 1))ls.append(list(tmp.column(-1)))out = ''
for i in range(16):t = enc[i] ^^ msg[i]out += bin(t)[2:].zfill(8)
out = list(out)out = [int(i) for i in out]
out = vector(GF(2),out)T = matrix(GF(2),ls).T
state = list(T.solve_left(out))
seed=''
for s in state:seed += str(s)
seed = int(seed,2)
import utils
gen = utils.Gen(seed)
flag = ''
for i in range(len(enc)):flag += chr(enc[i] ^^ next(gen))
print(flag)
# Happy4321: flag{The_matrix_is_as_charming_as_the_starry_sky}

Lattice

task

from Crypto.Util.number import *
from Crypto.Cipher import AES
import os
from secret import flag
import numpy as npdef gen(q, n, N, sigma):t = np.random.randint(0, high=q // 2, size=n)s = np.concatenate([np.ones(1, dtype=np.int32), t])A = np.random.randint(0, high=q // 2, size=(N, n))e = np.round(np.random.randn(N) * sigma**2).astype(np.int32) % qb = ((np.dot(A, t) + e).reshape(-1, 1)) % qP = np.hstack([b, -A])return P, sdef enc(P, M, q):N = P.shape[0]n = len(M)r = np.random.randint(0, 2, (n, N))Z = np.zeros((n, P.shape[1]), dtype=np.int32)Z[:, 0] = 1C = np.zeros((n, P.shape[1]), dtype=np.int32)for i in range(n):C[i] = (np.dot(P.T, r[i]) + (np.floor(q / 2) * Z[i] * M[i])) % qreturn Cq = 127
n = 3
N = int(1.1 * n * np.log(q))
sigma = 1.0P, s = gen(q, n, N, sigma)def prep(s):return np.array([int(b) for char in s for b in f"{ord(char):08b}"], dtype=np.int32)C = enc(P, prep(hint), q)
P = P.tolist()
C = C.tolist()
print(f"{P=}")
print(f"{C=}")'''
P=[[87, -27, -52, -29], [57, -41, -24, -60], [76, -17, -55, -37], [75, -46, -33, -21], [121, -55, -33, -34], [47, -4, -34, -45], [112, -33, -44, -16], [74, -44, -5, -25], [20, -21, -16, -49], [89, -21, -54, -24], [18, -23, -53, -1], [35, -40, -4, -29], [105, -54, -2, -8], [44, -24, -43, -36], [111, -15, -15, -54]]
C=[[24, 75, 81, 85], [24, 14, 85, 102], [115, 1, 5, 21], [58, 118, 104, 77], [65, 42, 101, 103], [33, 38, 50, 67], [7, 81, 38, 58], [117, 101, 54, 11], [44, 29, 81, 8], [59, 114, 70, 121], [62, 13, 9, 105], [11, 43, 97, 23], [39, 82, 75, 97], [122, 113, 14, 30], [70, 102, 116, 5], [58, 44, 61, 20], [73, 119, 59, 28], [119, 68, 57, 122], [61, 91, 83, 44], [103, 29, 1, 73], [47, 60, 120, 125], [17, 126, 14, 21], [104, 8, 78, 123], [72, 121, 54, 74], [48, 104, 49, 66], [72, 56, 27, 69], [34, 110, 41, 54], [33, 54, 74, 44], [70, 65, 11, 113], [122, 3, 69, 35], [58, 7, 39, 64], [59, 106, 49, 66], [77, 92, 87, 92], [95, 21, 96, 83], [67, 55, 30, 73], [99, 54, 18, 90], [101, 102, 126, 107], [81, 46, 104, 83], [38, 24, 94, 60], [114, 105, 76, 97], [22, 115, 20, 67], [40, 72, 110, 65], [111, 92, 106, 117], [5, 123, 21, 96], [41, 14, 23, 114], [113, 75, 43, 65], [56, 3, 61, 48], [40, 101, 16, 114], [42, 84, 95, 13], [36, 110, 91, 107], [4, 13, 60, 74], [24, 80, 125, 76], [123, 26, 27, 119], [31, 87, 6, 123], [61, 106, 73, 120], [66, 10, 36, 65], [91, 38, 46, 9], [121, 20, 106, 48], [123, 21, 78, 27], [22, 74, 55, 110], [47, 49, 118, 76], [30, 10, 16, 118], [43, 19, 52, 61], [100, 9, 37, 35], [20, 102, 111, 94], [116, 63, 55, 43], [13, 110, 42, 14], [46, 65, 71, 28], [82, 5, 76, 74], [86, 34, 117, 84], [28, 44, 82, 50], [76, 79, 77, 11], [68, 39, 51, 89], [83, 93, 95, 2], [54, 108, 101, 82], [99, 90, 122, 37], [16, 92, 79, 12], [67, 86, 24, 36], [80, 94, 106, 59], [50, 56, 95, 98], [33, 68, 89, 40], [74, 124, 14, 82], [88, 93, 54, 93], [51, 17, 124, 31], [17, 17, 45, 35], [113, 71, 76, 44], [48, 6, 120, 4], [36, 91, 108, 11], [2, 41, 58, 72], [42, 59, 51, 81], [73, 22, 79, 27], [85, 35, 29, 98], [76, 76, 37, 22], [82, 29, 42, 27], [75, 114, 37, 106], [40, 69, 53, 73], [39, 44, 33, 121], [94, 85, 92, 54], [91, 77, 124, 46], [108, 31, 101, 84], [35, 33, 97, 45], [99, 32, 17, 14], [1, 66, 11, 35], [78, 100, 95, 81], [73, 49, 14, 37], [70, 9, 107, 2], [84, 98, 92, 62], [123, 87, 87, 110], [3, 81, 111, 28], [20, 2, 91, 37], [93, 101, 77, 93], [27, 16, 31, 105], [95, 81, 87, 17], [10, 103, 21, 102], [81, 57, 118, 82], [15, 92, 60, 71], [16, 84, 126, 49], [35, 26, 2, 120], [70, 86, 45, 9], [29, 8, 40, 66], [99, 77, 14, 9], [12, 70, 50, 52], [21, 21, 85, 54], [91, 94, 100, 85], [9, 42, 47, 14], [117, 55, 17, 99], [53, 45, 4, 72], [49, 10, 27, 121], [108, 61, 73, 42], [121, 42, 41, 71], [49, 63, 50, 117], [5, 78, 24, 101], [0, 117, 21, 46], [90, 43, 47, 32], [74, 85, 118, 84], [13, 73, 18, 66], [95, 24, 120, 18], [94, 21, 111, 34], [66, 68, 80, 21], [102, 49, 57, 55], [25, 85, 107, 98], [8, 18, 88, 12], [18, 6, 86, 82], [18, 91, 126, 115], [26, 11, 30, 35], [88, 78, 76, 74], [51, 75, 76, 15], [60, 24, 72, 27], [91, 72, 44, 104], [84, 113, 39, 116], [41, 83, 91, 74], [84, 17, 94, 119], [46, 95, 85, 5], [109, 58, 71, 42], [126, 29, 114, 73], [27, 70, 7, 125], [121, 66, 97, 111], [8, 21, 10, 57], [15, 62, 65, 8], [101, 79, 32, 74], [69, 42, 38, 58], [65, 81, 72, 16], [20, 81, 1, 126], [91, 111, 69, 33], [56, 84, 65, 66], [47, 78, 43, 100], [43, 90, 80, 25], [46, 55, 10, 60], [116, 110, 49, 116], [72, 115, 38, 104], [79, 43, 74, 106], [86, 113, 84, 76], [102, 2, 119, 3], [126, 25, 83, 44], [37, 83, 46, 40], [13, 75, 101, 101], [76, 93, 3, 63], [69, 9, 84, 37], [103, 47, 106, 80], [72, 104, 85, 19], [124, 118, 34, 81], [57, 25, 52, 119], [44, 56, 63, 90], [123, 46, 124, 31], [19, 116, 23, 77], [126, 78, 37, 93], [34, 95, 43, 98], [37, 90, 32, 97], [106, 8, 80, 8], [90, 5, 113, 68], [99, 40, 39, 18], [90, 37, 48, 45], [56, 13, 76, 6], [68, 33, 52, 102], [62, 45, 29, 123], [100, 21, 73, 92], [92, 18, 118, 23], [84, 86, 42, 83], [107, 8, 71, 52], [114, 106, 78, 85], [10, 120, 115, 119], [27, 49, 124, 16], [65, 40, 48, 37], [69, 42, 8, 29], [35, 39, 55, 102], [58, 19, 41, 75], [17, 2, 113, 12], [8, 34, 72, 75], [91, 32, 19, 52], [62, 50, 109, 78], [9, 115, 35, 50], [42, 83, 78, 41], [34, 94, 97, 58], [56, 73, 25, 115], [55, 12, 16, 86], [97, 95, 30, 92], [47, 105, 70, 68], [50, 18, 51, 23], [46, 57, 80, 29], [4, 66, 123, 24], [55, 53, 26, 36], [71, 59, 104, 91], [94, 3, 1, 34], [57, 8, 85, 102], [89, 73, 115, 25], [13, 38, 81, 76], [104, 30, 81, 104], [55, 101, 95, 101], [69, 65, 5, 11], [123, 105, 84, 125], [38, 110, 4, 28], [112, 115, 92, 71], [90, 120, 112, 39], [50, 18, 107, 71], [95, 63, 118, 93], [93, 111, 59, 55], [17, 15, 2, 88], [78, 126, 37, 12], [56, 112, 53, 12], [65, 34, 82, 100], [9, 94, 72, 99], [78, 76, 43, 91], [7, 88, 107, 31], [43, 91, 97, 4], [113, 112, 36, 15], [8, 97, 23, 84], [65, 92, 31, 63], [54, 38, 119, 103], [89, 50, 57, 50], [61, 37, 87, 0], [21, 35, 44, 22], [20, 32, 95, 116], [10, 94, 103, 84], [59, 29, 7, 50], [98, 33, 87, 33], [7, 96, 36, 67], [85, 10, 35, 98], [65, 49, 19, 62], [56, 67, 14, 91], [30, 49, 111, 77], [121, 49, 108, 119], [89, 67, 115, 69], [65, 8, 0, 82], [117, 57, 117, 23], [23, 38, 2, 98], [60, 28, 94, 93], [23, 65, 8, 114], [121, 105, 122, 40], [120, 12, 21, 112], [55, 51, 2, 77], [48, 41, 113, 62], [66, 82, 117, 119], [4, 15, 5, 21], [41, 14, 12, 80], [23, 61, 106, 16], [23, 53, 122, 68], [6, 54, 5, 101], [69, 49, 7, 79], [17, 70, 64, 88], [103, 30, 76, 31], [108, 82, 90, 109], [55, 56, 113, 37], [93, 99, 126, 44], [1, 46, 105, 124], [55, 54, 35, 115], [0, 89, 53, 97], [67, 111, 107, 80], [92, 122, 40, 64], [75, 2, 126, 118], [90, 84, 43, 74], [101, 69, 60, 17], [104, 10, 4, 122], [94, 4, 115, 91], [15, 11, 111, 105], [9, 7, 32, 101], [77, 18, 55, 56], [66, 7, 117, 108], [116, 121, 33, 66], [32, 41, 83, 125], [60, 52, 70, 58], [125, 54, 93, 15], [70, 19, 10, 58], [83, 94, 61, 126], [95, 85, 80, 44], [25, 89, 117, 74], [12, 17, 63, 87], [118, 80, 96, 26], [6, 97, 79, 38], [97, 3, 107, 95], [7, 82, 106, 92], [83, 100, 119, 95], [81, 26, 99, 56], [25, 60, 51, 122], [56, 18, 22, 84], [9, 72, 107, 114], [80, 97, 92, 52], [108, 47, 58, 46], [9, 47, 7, 47], [115, 68, 91, 7], [14, 120, 87, 122], [97, 15, 40, 79], [5, 92, 85, 93], [4, 97, 73, 63], [25, 22, 92, 108], [88, 4, 34, 86], [0, 43, 21, 57], [67, 90, 36, 50], [15, 126, 37, 12], [92, 73, 96, 71], [76, 107, 27, 115], [79, 8, 68, 55], [38, 12, 120, 126], [54, 46, 7, 69], [72, 114, 93, 60], [59, 98, 27, 102], [50, 76, 87, 19], [77, 107, 29, 40], [36, 73, 21, 123], [36, 89, 82, 74], [24, 73, 118, 86], [58, 89, 115, 106], [12, 27, 33, 72], [28, 94, 21, 26], [0, 79, 48, 110], [72, 62, 82, 57], [65, 84, 114, 97], [80, 68, 52, 52], [119, 35, 103, 101], [10, 67, 68, 69], [101, 17, 54, 40], [98, 46, 21, 42], [30, 39, 56, 118], [27, 33, 77, 114], [66, 74, 61, 63], [23, 13, 14, 47], [88, 30, 122, 119], [15, 58, 55, 52], [56, 27, 47, 45], [119, 95, 59, 14], [84, 69, 5, 83], [21, 35, 39, 36], [10, 92, 68, 17], [79, 67, 111, 38], [36, 1, 4, 117], [117, 30, 5, 7], [112, 15, 115, 123], [54, 47, 18, 93], [102, 111, 3, 68], [91, 91, 5, 44], [123, 118, 57, 32], [12, 121, 31, 103], [114, 52, 105, 12], [100, 28, 117, 102], [51, 42, 12, 124], [47, 1, 42, 47], [28, 3, 22, 100], [103, 105, 119, 24], [101, 59, 13, 78], [79, 36, 61, 54], [11, 46, 75, 116], [31, 73, 118, 0], [92, 32, 0, 124], [77, 85, 25, 90], [29, 21, 74, 7], [3, 66, 11, 8], [112, 91, 50, 53], [45, 113, 99, 123], [35, 65, 85, 22], [108, 99, 42, 1], [103, 113, 116, 72], [125, 74, 112, 24], [75, 79, 80, 12], [83, 44, 94, 86], [64, 20, 0, 8], [104, 126, 31, 120], [85, 75, 61, 74], [36, 93, 36, 102], [70, 54, 101, 83], [90, 46, 109, 83], [112, 126, 114, 23], [16, 123, 97, 62], [118, 86, 108, 53], [99, 18, 2, 18], [103, 3, 38, 8], [99, 49, 123, 81], [37, 75, 89, 53], [34, 77, 27, 122], [29, 8, 40, 66], [119, 13, 64, 83], [4, 108, 116, 121], [49, 87, 1, 92], [15, 63, 80, 62], [27, 81, 100, 83], [7, 90, 16, 0], [13, 50, 61, 65], [51, 64, 76, 5], [55, 100, 106, 66], [52, 102, 105, 2], [49, 34, 89, 116], [24, 55, 11, 27], [91, 48, 73, 38], [27, 5, 1, 126], [66, 55, 80, 19], [52, 118, 104, 43], [36, 1, 111, 60], [65, 4, 34, 17], [54, 22, 0, 39], [52, 30, 64, 62], [26, 40, 32, 86], [93, 71, 41, 47], [77, 23, 15, 9], [11, 20, 51, 31], [64, 50, 37, 50], [17, 49, 80, 37], [119, 115, 115, 50], [20, 86, 27, 5], [101, 65, 17, 78], [56, 25, 125, 56], [16, 118, 2, 96], [114, 108, 69, 121], [14, 37, 76, 101], [113, 124, 121, 82], [43, 120, 35, 94], [82, 67, 23, 43], [9, 79, 47, 122], [39, 28, 110, 31], [35, 48, 27, 16], [72, 8, 115, 66], [54, 46, 122, 19], [77, 77, 30, 74], [58, 63, 81, 96], [6, 122, 75, 63], [115, 31, 119, 110], [82, 86, 89, 1], [79, 100, 6, 110], [117, 67, 15, 13], [4, 15, 63, 0], [106, 108, 122, 107], [34, 72, 0, 114], [20, 0, 32, 56], [121, 104, 66, 3], [86, 28, 76, 84], [85, 9, 60, 45], [95, 80, 78, 65], [39, 85, 50, 49], [42, 103, 36, 90], [70, 99, 116, 117], [34, 15, 40, 52], [24, 49, 19, 31], [98, 90, 95, 89], [63, 45, 40, 77], [114, 14, 30, 106], [10, 35, 116, 9], [103, 111, 112, 16], [71, 112, 71, 32], [77, 31, 105, 64], [84, 87, 24, 67], [1, 27, 123, 57], [104, 29, 87, 123], [110, 39, 67, 7], [28, 70, 108, 113], [96, 9, 101, 36], [13, 28, 6, 13], [69, 81, 89, 26], [79, 113, 77, 91], [112, 62, 104, 117], [109, 95, 55, 83], [78, 68, 98, 14], [73, 79, 96, 12], [108, 39, 97, 49], [27, 111, 106, 100], [82, 70, 9, 36], [48, 31, 90, 70], [99, 92, 45, 35], [55, 100, 31, 37], [75, 17, 69, 35], [12, 38, 119, 112], [103, 34, 63, 76], [26, 19, 91, 111], [74, 122, 12, 78], [64, 117, 16, 60], [2, 97, 122, 106], [62, 79, 56, 30], [71, 47, 13, 22], [38, 78, 116, 16], [87, 28, 94, 76], [77, 126, 94, 116], [83, 46, 104, 90], [5, 95, 13, 26], [47, 10, 46, 115], [82, 19, 91, 70], [111, 72, 49, 65], [18, 103, 59, 72], [17, 37, 56, 24], [19, 120, 24, 64], [28, 40, 11, 20], [18, 19, 80, 62], [37, 11, 74, 14], [109, 97, 75, 72], [116, 65, 52, 121], [95, 63, 82, 122], [88, 93, 54, 93], [77, 30, 65, 121], [99, 121, 42, 87], [62, 52, 44, 6], [79, 60, 55, 4], [96, 64, 6, 20], [94, 114, 90, 8], [123, 98, 29, 27], [116, 84, 31, 80], [9, 77, 45, 45], [120, 33, 63, 15], [51, 44, 66, 25], [2, 46, 72, 94], [107, 113, 50, 46], [115, 64, 126, 85], [64, 10, 28, 78], [84, 112, 64, 103], [59, 114, 15, 82], [65, 122, 104, 89], [113, 122, 21, 11], [69, 106, 19, 78], [42, 93, 125, 0], [7, 123, 82, 70], [103, 114, 62, 92], [15, 30, 78, 114], [4, 78, 111, 60], [40, 80, 34, 55], [3, 87, 120, 27], [122, 64, 3, 122], [24, 49, 31, 81], [26, 43, 100, 19], [52, 78, 2, 97], [116, 45, 15, 33], [21, 119, 92, 86], [28, 118, 71, 24], [106, 15, 0, 79], [36, 4, 52, 73], [22, 43, 8, 60], [96, 22, 9, 100], [19, 64, 26, 96], [97, 61, 22, 39], [6, 112, 76, 38], [58, 6, 97, 94], [103, 87, 87, 101], [17, 49, 80, 37], [117, 33, 26, 8], [59, 108, 78, 91], [113, 28, 30, 44], [119, 78, 72, 20], [49, 101, 77, 2], [26, 18, 35, 7], [34, 38, 99, 37], [45, 52, 90, 27], [108, 31, 118, 67], [3, 37, 29, 88], [111, 96, 12, 111], [91, 111, 106, 100], [52, 78, 117, 80], [14, 51, 87, 0], [1, 52, 116, 1], [117, 2, 33, 48], [57, 0, 48, 34], [59, 14, 84, 63], [82, 83, 8, 82], [58, 100, 32, 33], [75, 29, 112, 103], [0, 49, 45, 54], [94, 9, 51, 110], [54, 61, 27, 47], [88, 89, 23, 37], [73, 43, 0, 32], [123, 6, 35, 78], [73, 72, 119, 64], [81, 46, 11, 102], [42, 124, 47, 8], [50, 66, 3, 40], [116, 7, 51, 20], [47, 112, 99, 7], [42, 37, 86, 89], [18, 74, 78, 101], [57, 85, 75, 7], [26, 90, 35, 10], [72, 126, 10, 77], [55, 12, 5, 78], [37, 87, 85, 96], [91, 9, 114, 68], [79, 76, 44, 20], [84, 52, 63, 56], [95, 9, 22, 117], [96, 38, 50, 67], [43, 114, 45, 56], [94, 21, 74, 107], [92, 82, 81, 71], [40, 10, 10, 90], [20, 18, 15, 56], [72, 2, 30, 22], [50, 31, 123, 20], [85, 40, 115, 115], [93, 1, 48, 47], [111, 118, 45, 34], [9, 122, 37, 121], [60, 27, 77, 41], [122, 38, 22, 39], [115, 66, 74, 126], [77, 67, 90, 78], [96, 3, 53, 52], [5, 26, 120, 101], [45, 100, 72, 6], [106, 56, 87, 77], [52, 68, 102, 95], [1, 13, 36, 33], [58, 27, 35, 8], [52, 5, 38, 35], [102, 82, 63, 47], [24, 71, 119, 43], [11, 36, 90, 13], [11, 93, 27, 23], [4, 107, 26, 125], [85, 9, 5, 13], [116, 25, 55, 119], [73, 82, 73, 2], [40, 123, 77, 41], [10, 98, 51, 111], [23, 79, 120, 54], [56, 18, 22, 84], [61, 115, 51, 109], [33, 5, 12, 121], [8, 81, 35, 70], [22, 39, 103, 2], [38, 74, 66, 126], [83, 20, 117, 85], [8, 32, 91, 98], [37, 31, 94, 119], [7, 30, 45, 43], [68, 16, 124, 97], [86, 124, 37, 21], [29, 101, 15, 30], [27, 31, 52, 45], [47, 37, 102, 3], [117, 49, 54, 89], [48, 94, 126, 66], [42, 115, 63, 104], [14, 74, 6, 112], [68, 125, 4, 5], [66, 3, 78, 52], [108, 33, 6, 77], [77, 99, 16, 52], [61, 78, 73, 70], [108, 106, 124, 0], [23, 35, 119, 118], [125, 124, 37, 65], [69, 30, 61, 110], [77, 10, 120, 118], [53, 121, 24, 30], [87, 32, 29, 63], [54, 64, 1, 3], [16, 59, 104, 25], [30, 6, 59, 102], [43, 120, 35, 94], [89, 13, 69, 39], [87, 78, 100, 14], [83, 17, 14, 4], [24, 49, 31, 81], [73, 32, 72, 10], [0, 22, 61, 54], [81, 42, 70, 13], [108, 56, 52, 2], [25, 99, 116, 72], [66, 23, 18, 102], [121, 115, 47, 12], [96, 37, 123, 48], [64, 69, 4, 39], [78, 38, 124, 31], [27, 69, 10, 70], [5, 29, 2, 85], [30, 45, 56, 7], [31, 25, 120, 61], [36, 89, 89, 118], [98, 63, 18, 21], [121, 83, 36, 57], [60, 5, 86, 17], [121, 55, 117, 58], [12, 96, 4, 27], [119, 63, 124, 37], [96, 27, 45, 91], [42, 119, 8, 103], [104, 42, 68, 37], [104, 55, 41, 38], [120, 3, 50, 87], [120, 121, 20, 67], [58, 123, 50, 28], [103, 62, 58, 20], [97, 27, 89, 102], [7, 51, 56, 108], [73, 60, 10, 77], [56, 72, 103, 69], [101, 89, 18, 66], [115, 35, 80, 36], [98, 103, 39, 63], [29, 126, 67, 76], [27, 97, 15, 79], [36, 6, 17, 90], [126, 54, 101, 42], [115, 66, 74, 126], [78, 80, 62, 83], [60, 11, 31, 88], [16, 73, 108, 13]]
'''key = os.urandom(16)
encrypted = AES.new(key=key, iv=iv, mode=AES.MODE_CBC).encrypt(b"".join([pad(i.encode(), 16) for i in flag]))print(leak)
print(key)
print(encrypted)'''
-3.257518803980229925210589904230583482986646342139415561576950148286382674434770529248486501793457710730252401258721482142654716015216299244487794967600132597049154513815052213387666360825101667524635777006510550117512116441539852315185793280311905620746025669520152068447372368293640072502196959919309286241
b'\x8fj\x94\x98-\x1fd\xd5\x89\xbe\xa9*Tu\x90\xb7'
b'\x9fT@\xbc\x82\x8esQ\x1e\xd8\x1d\xdb\x9b\xb4\xf8rU\xc8\xa0\xcb\xaf H\xa9.\x04\x1e\xd2\x92\x1f\x0fBja-\x965x\xa8@\xc9x\xf9\xaf\x87\xd1\xa5}\xfc\x1b\xe0#\xc3m\xc9\x8973\x1c\x1f\x13\x8f\xb2a\xae\xa9]\xb9\xc2\xe8\x83A\x80\x13g\xc9a\x1c<\x8a\x9c&\xd9\xbd\x06\xef\xba9\xb0\x03\x9f\x022\xc9\x13\x9a\xffXPG\xc6o\xc0\xeaV7)XG9L\x84N7U\xe3Wn0G\x8e\xd3\x04(\n\x08\xb9\x17\xe6\xf1\xaa\xb7\x8a@$\x16\x13\x06A\x00\xc9Z\xdf\x7fQ\xc9\x08\xb4\xf3P\xfcpe\xe2\xeb\x96\x0e(-\xde\x17\xd1\x01\x1c_\x82\x8b\x9fw\xc8\x86\xfbw\xb5\xf7\xd0\xc8\x1784\xe3?\x00\x0b.)\xb7\xbc\x8e{\xe0\xae\x8d$\x0f\x19\'\xb6\xee@d\x00\xd9\x84\x8c\x0e\xa3,\xc6a\xa3\xba*1\xfd<\xfd\x18\xd6\x9e\x8c4\x8e#\xfd\xbd&0R\xeddE,\xed\xb6\x1e\x00\x11\xa6K\xd3\x1dT\x8c5\x8e\x00\xea\x10\xe9\'u"B#\xa1#\xd8\xe3\xf5j\xbc\x94M\xda\xe3\xcb*\xf0W1\xa0\x80\x1d\xfc\xbfo\x01?(da\r\xb6\x86\xd0\x90\x88Z\xa1`B\x89\x89\x89\xb3v\xa5\xf0\xe0\x0c\x8e\xcc+P\xfc\xfd#\x83\xe9\x93\x96\n\xf2\xa5\xfb\xc3\xc5\xaa\x9e\x89\x93\xb6\xf5\xea\x8c%NY\xc3\x0eR\xfas\xa1\x13\xf2/*\xce\x8b_:_r\xeb\xbe\x0b\x8a\x8c\x97\x7f|m}\xae\xa9I\x95\xcc\xe7\x80\xa5yC4\x1f5\xa4P\xc5\xbf.\xf9V\xe8|\xbb\xc3\xcb\x98&\'JB\x99\x94\xc0\r$\x0b\xbe48u\xeb\xca\xa1\xfbb\xd8_R\x97\x8e\xaeI\xfc\xc2\xb2\xd2#@\xec\x16\xf1\xd7eCQ\x1cO\x13\xca\xb5\xd3\x1a\xb1\xf1_D\x80\x06\xa5\xbe\xbev\xbd\xd6\xbb\x9a\xc9x\x9cf:\xcb>\xa2\xe1\xcad\xde]aw\xa0\xdc\xb2\xb3{+\x85\x8d\x8b\xc5\rT\xcc\xd9X\xd5\x9b\r<\x99m\xb8b6s\xbfp\x0eo~\xe9&\xb2{\xbe\xee\x93\xd2N1\\\x94\x968IWO7\xcb\xb6e\x80\xf7\x9air\xb2~\x17\x1cF\x0f\x82T]RBX\xdex\x13\x85\xfa\xcd-\xce\xdc\xe4\xe5^\x99u\xb5\x01\xd0-\xc3C\xcd\xc4y6\xb7\x9d|L1\xe74\xf7\x8cH\xe9\xa9\xfav\n\xec;\xf2\xa2w\xfb\x13_b\r)z!\xa3\xc8\xa8\xc2\xd2\x10\x00\x11\x11\r\xb2&\xfb\x04&\x84">x6l[\x06n>\xa0\xbe\x9c`\xa7\x9e\xe0\xfb\x85\x91\xc4,\xcf\xac\xe11@a\xed3@\xfd}\x8e\xfaTp\xcb7\xe7\xbf\xd4\xe0~b\xd9\xe0<\xba\x81\xd4"e\xfc\x939|j#0H\x86\xf8\x0b\x03\xd2\xe8\xf5\xe55\xdc\xc8\x06\\\xb7)\xcc\x9b\'\xf12'
'''

analysis

  • 首先这道题是引入了指定的高斯噪声的LWE问题,当我们进行求解LWE之后,会得到hint:Congratulations,you're amazing!Here's a hint: sin(iv) + leak * cos(iv) = 0, keep it up! @V@

  • 由此,我们可以得到iv的关系式,但是这里根据这个关系式tan(iv)=-k.这个地方就会卡在这里,问过出题人大大之后,第一次了解到了构造三角函数的格。根据三角函数构造的格规约得到iv.注意,这里直接计算反三角函数得到的并不是iv,但是得到的hint是正确的,因为三角函数具有周期性,我们要找到的iv是要在16字节转长整型之后的数据范围内的解,因此可以采用格基规约,这里后期还需要进行自身知识补充。

  • 最后进行AES解密即可。

exp

  • LWE高斯去噪

    from tqdm import tqdm
    import numpy as npP=[[87, -27, -52, -29], [57, -41, -24, -60], [76, -17, -55, -37], [75, -46, -33, -21], [121, -55, -33, -34], [47, -4, -34, -45], [112, -33, -44, -16], [74, -44, -5, -25], [20, -21, -16, -49], [89, -21, -54, -24], [18, -23, -53, -1], [35, -40, -4, -29], [105, -54, -2, -8], [44, -24, -43, -36], [111, -15, -15, -54]]
    C=[[24, 75, 81, 85], [24, 14, 85, 102], [115, 1, 5, 21], [58, 118, 104, 77], [65, 42, 101, 103], [33, 38, 50, 67], [7, 81, 38, 58], [117, 101, 54, 11], [44, 29, 81, 8], [59, 114, 70, 121], [62, 13, 9, 105], [11, 43, 97, 23], [39, 82, 75, 97], [122, 113, 14, 30], [70, 102, 116, 5], [58, 44, 61, 20], [73, 119, 59, 28], [119, 68, 57, 122], [61, 91, 83, 44], [103, 29, 1, 73], [47, 60, 120, 125], [17, 126, 14, 21], [104, 8, 78, 123], [72, 121, 54, 74], [48, 104, 49, 66], [72, 56, 27, 69], [34, 110, 41, 54], [33, 54, 74, 44], [70, 65, 11, 113], [122, 3, 69, 35], [58, 7, 39, 64], [59, 106, 49, 66], [77, 92, 87, 92], [95, 21, 96, 83], [67, 55, 30, 73], [99, 54, 18, 90], [101, 102, 126, 107], [81, 46, 104, 83], [38, 24, 94, 60], [114, 105, 76, 97], [22, 115, 20, 67], [40, 72, 110, 65], [111, 92, 106, 117], [5, 123, 21, 96], [41, 14, 23, 114], [113, 75, 43, 65], [56, 3, 61, 48], [40, 101, 16, 114], [42, 84, 95, 13], [36, 110, 91, 107], [4, 13, 60, 74], [24, 80, 125, 76], [123, 26, 27, 119], [31, 87, 6, 123], [61, 106, 73, 120], [66, 10, 36, 65], [91, 38, 46, 9], [121, 20, 106, 48], [123, 21, 78, 27], [22, 74, 55, 110], [47, 49, 118, 76], [30, 10, 16, 118], [43, 19, 52, 61], [100, 9, 37, 35], [20, 102, 111, 94], [116, 63, 55, 43], [13, 110, 42, 14], [46, 65, 71, 28], [82, 5, 76, 74], [86, 34, 117, 84], [28, 44, 82, 50], [76, 79, 77, 11], [68, 39, 51, 89], [83, 93, 95, 2], [54, 108, 101, 82], [99, 90, 122, 37], [16, 92, 79, 12], [67, 86, 24, 36], [80, 94, 106, 59], [50, 56, 95, 98], [33, 68, 89, 40], [74, 124, 14, 82], [88, 93, 54, 93], [51, 17, 124, 31], [17, 17, 45, 35], [113, 71, 76, 44], [48, 6, 120, 4], [36, 91, 108, 11], [2, 41, 58, 72], [42, 59, 51, 81], [73, 22, 79, 27], [85, 35, 29, 98], [76, 76, 37, 22], [82, 29, 42, 27], [75, 114, 37, 106], [40, 69, 53, 73], [39, 44, 33, 121], [94, 85, 92, 54], [91, 77, 124, 46], [108, 31, 101, 84], [35, 33, 97, 45], [99, 32, 17, 14], [1, 66, 11, 35], [78, 100, 95, 81], [73, 49, 14, 37], [70, 9, 107, 2], [84, 98, 92, 62], [123, 87, 87, 110], [3, 81, 111, 28], [20, 2, 91, 37], [93, 101, 77, 93], [27, 16, 31, 105], [95, 81, 87, 17], [10, 103, 21, 102], [81, 57, 118, 82], [15, 92, 60, 71], [16, 84, 126, 49], [35, 26, 2, 120], [70, 86, 45, 9], [29, 8, 40, 66], [99, 77, 14, 9], [12, 70, 50, 52], [21, 21, 85, 54], [91, 94, 100, 85], [9, 42, 47, 14], [117, 55, 17, 99], [53, 45, 4, 72], [49, 10, 27, 121], [108, 61, 73, 42], [121, 42, 41, 71], [49, 63, 50, 117], [5, 78, 24, 101], [0, 117, 21, 46], [90, 43, 47, 32], [74, 85, 118, 84], [13, 73, 18, 66], [95, 24, 120, 18], [94, 21, 111, 34], [66, 68, 80, 21], [102, 49, 57, 55], [25, 85, 107, 98], [8, 18, 88, 12], [18, 6, 86, 82], [18, 91, 126, 115], [26, 11, 30, 35], [88, 78, 76, 74], [51, 75, 76, 15], [60, 24, 72, 27], [91, 72, 44, 104], [84, 113, 39, 116], [41, 83, 91, 74], [84, 17, 94, 119], [46, 95, 85, 5], [109, 58, 71, 42], [126, 29, 114, 73], [27, 70, 7, 125], [121, 66, 97, 111], [8, 21, 10, 57], [15, 62, 65, 8], [101, 79, 32, 74], [69, 42, 38, 58], [65, 81, 72, 16], [20, 81, 1, 126], [91, 111, 69, 33], [56, 84, 65, 66], [47, 78, 43, 100], [43, 90, 80, 25], [46, 55, 10, 60], [116, 110, 49, 116], [72, 115, 38, 104], [79, 43, 74, 106], [86, 113, 84, 76], [102, 2, 119, 3], [126, 25, 83, 44], [37, 83, 46, 40], [13, 75, 101, 101], [76, 93, 3, 63], [69, 9, 84, 37], [103, 47, 106, 80], [72, 104, 85, 19], [124, 118, 34, 81], [57, 25, 52, 119], [44, 56, 63, 90], [123, 46, 124, 31], [19, 116, 23, 77], [126, 78, 37, 93], [34, 95, 43, 98], [37, 90, 32, 97], [106, 8, 80, 8], [90, 5, 113, 68], [99, 40, 39, 18], [90, 37, 48, 45], [56, 13, 76, 6], [68, 33, 52, 102], [62, 45, 29, 123], [100, 21, 73, 92], [92, 18, 118, 23], [84, 86, 42, 83], [107, 8, 71, 52], [114, 106, 78, 85], [10, 120, 115, 119], [27, 49, 124, 16], [65, 40, 48, 37], [69, 42, 8, 29], [35, 39, 55, 102], [58, 19, 41, 75], [17, 2, 113, 12], [8, 34, 72, 75], [91, 32, 19, 52], [62, 50, 109, 78], [9, 115, 35, 50], [42, 83, 78, 41], [34, 94, 97, 58], [56, 73, 25, 115], [55, 12, 16, 86], [97, 95, 30, 92], [47, 105, 70, 68], [50, 18, 51, 23], [46, 57, 80, 29], [4, 66, 123, 24], [55, 53, 26, 36], [71, 59, 104, 91], [94, 3, 1, 34], [57, 8, 85, 102], [89, 73, 115, 25], [13, 38, 81, 76], [104, 30, 81, 104], [55, 101, 95, 101], [69, 65, 5, 11], [123, 105, 84, 125], [38, 110, 4, 28], [112, 115, 92, 71], [90, 120, 112, 39], [50, 18, 107, 71], [95, 63, 118, 93], [93, 111, 59, 55], [17, 15, 2, 88], [78, 126, 37, 12], [56, 112, 53, 12], [65, 34, 82, 100], [9, 94, 72, 99], [78, 76, 43, 91], [7, 88, 107, 31], [43, 91, 97, 4], [113, 112, 36, 15], [8, 97, 23, 84], [65, 92, 31, 63], [54, 38, 119, 103], [89, 50, 57, 50], [61, 37, 87, 0], [21, 35, 44, 22], [20, 32, 95, 116], [10, 94, 103, 84], [59, 29, 7, 50], [98, 33, 87, 33], [7, 96, 36, 67], [85, 10, 35, 98], [65, 49, 19, 62], [56, 67, 14, 91], [30, 49, 111, 77], [121, 49, 108, 119], [89, 67, 115, 69], [65, 8, 0, 82], [117, 57, 117, 23], [23, 38, 2, 98], [60, 28, 94, 93], [23, 65, 8, 114], [121, 105, 122, 40], [120, 12, 21, 112], [55, 51, 2, 77], [48, 41, 113, 62], [66, 82, 117, 119], [4, 15, 5, 21], [41, 14, 12, 80], [23, 61, 106, 16], [23, 53, 122, 68], [6, 54, 5, 101], [69, 49, 7, 79], [17, 70, 64, 88], [103, 30, 76, 31], [108, 82, 90, 109], [55, 56, 113, 37], [93, 99, 126, 44], [1, 46, 105, 124], [55, 54, 35, 115], [0, 89, 53, 97], [67, 111, 107, 80], [92, 122, 40, 64], [75, 2, 126, 118], [90, 84, 43, 74], [101, 69, 60, 17], [104, 10, 4, 122], [94, 4, 115, 91], [15, 11, 111, 105], [9, 7, 32, 101], [77, 18, 55, 56], [66, 7, 117, 108], [116, 121, 33, 66], [32, 41, 83, 125], [60, 52, 70, 58], [125, 54, 93, 15], [70, 19, 10, 58], [83, 94, 61, 126], [95, 85, 80, 44], [25, 89, 117, 74], [12, 17, 63, 87], [118, 80, 96, 26], [6, 97, 79, 38], [97, 3, 107, 95], [7, 82, 106, 92], [83, 100, 119, 95], [81, 26, 99, 56], [25, 60, 51, 122], [56, 18, 22, 84], [9, 72, 107, 114], [80, 97, 92, 52], [108, 47, 58, 46], [9, 47, 7, 47], [115, 68, 91, 7], [14, 120, 87, 122], [97, 15, 40, 79], [5, 92, 85, 93], [4, 97, 73, 63], [25, 22, 92, 108], [88, 4, 34, 86], [0, 43, 21, 57], [67, 90, 36, 50], [15, 126, 37, 12], [92, 73, 96, 71], [76, 107, 27, 115], [79, 8, 68, 55], [38, 12, 120, 126], [54, 46, 7, 69], [72, 114, 93, 60], [59, 98, 27, 102], [50, 76, 87, 19], [77, 107, 29, 40], [36, 73, 21, 123], [36, 89, 82, 74], [24, 73, 118, 86], [58, 89, 115, 106], [12, 27, 33, 72], [28, 94, 21, 26], [0, 79, 48, 110], [72, 62, 82, 57], [65, 84, 114, 97], [80, 68, 52, 52], [119, 35, 103, 101], [10, 67, 68, 69], [101, 17, 54, 40], [98, 46, 21, 42], [30, 39, 56, 118], [27, 33, 77, 114], [66, 74, 61, 63], [23, 13, 14, 47], [88, 30, 122, 119], [15, 58, 55, 52], [56, 27, 47, 45], [119, 95, 59, 14], [84, 69, 5, 83], [21, 35, 39, 36], [10, 92, 68, 17], [79, 67, 111, 38], [36, 1, 4, 117], [117, 30, 5, 7], [112, 15, 115, 123], [54, 47, 18, 93], [102, 111, 3, 68], [91, 91, 5, 44], [123, 118, 57, 32], [12, 121, 31, 103], [114, 52, 105, 12], [100, 28, 117, 102], [51, 42, 12, 124], [47, 1, 42, 47], [28, 3, 22, 100], [103, 105, 119, 24], [101, 59, 13, 78], [79, 36, 61, 54], [11, 46, 75, 116], [31, 73, 118, 0], [92, 32, 0, 124], [77, 85, 25, 90], [29, 21, 74, 7], [3, 66, 11, 8], [112, 91, 50, 53], [45, 113, 99, 123], [35, 65, 85, 22], [108, 99, 42, 1], [103, 113, 116, 72], [125, 74, 112, 24], [75, 79, 80, 12], [83, 44, 94, 86], [64, 20, 0, 8], [104, 126, 31, 120], [85, 75, 61, 74], [36, 93, 36, 102], [70, 54, 101, 83], [90, 46, 109, 83], [112, 126, 114, 23], [16, 123, 97, 62], [118, 86, 108, 53], [99, 18, 2, 18], [103, 3, 38, 8], [99, 49, 123, 81], [37, 75, 89, 53], [34, 77, 27, 122], [29, 8, 40, 66], [119, 13, 64, 83], [4, 108, 116, 121], [49, 87, 1, 92], [15, 63, 80, 62], [27, 81, 100, 83], [7, 90, 16, 0], [13, 50, 61, 65], [51, 64, 76, 5], [55, 100, 106, 66], [52, 102, 105, 2], [49, 34, 89, 116], [24, 55, 11, 27], [91, 48, 73, 38], [27, 5, 1, 126], [66, 55, 80, 19], [52, 118, 104, 43], [36, 1, 111, 60], [65, 4, 34, 17], [54, 22, 0, 39], [52, 30, 64, 62], [26, 40, 32, 86], [93, 71, 41, 47], [77, 23, 15, 9], [11, 20, 51, 31], [64, 50, 37, 50], [17, 49, 80, 37], [119, 115, 115, 50], [20, 86, 27, 5], [101, 65, 17, 78], [56, 25, 125, 56], [16, 118, 2, 96], [114, 108, 69, 121], [14, 37, 76, 101], [113, 124, 121, 82], [43, 120, 35, 94], [82, 67, 23, 43], [9, 79, 47, 122], [39, 28, 110, 31], [35, 48, 27, 16], [72, 8, 115, 66], [54, 46, 122, 19], [77, 77, 30, 74], [58, 63, 81, 96], [6, 122, 75, 63], [115, 31, 119, 110], [82, 86, 89, 1], [79, 100, 6, 110], [117, 67, 15, 13], [4, 15, 63, 0], [106, 108, 122, 107], [34, 72, 0, 114], [20, 0, 32, 56], [121, 104, 66, 3], [86, 28, 76, 84], [85, 9, 60, 45], [95, 80, 78, 65], [39, 85, 50, 49], [42, 103, 36, 90], [70, 99, 116, 117], [34, 15, 40, 52], [24, 49, 19, 31], [98, 90, 95, 89], [63, 45, 40, 77], [114, 14, 30, 106], [10, 35, 116, 9], [103, 111, 112, 16], [71, 112, 71, 32], [77, 31, 105, 64], [84, 87, 24, 67], [1, 27, 123, 57], [104, 29, 87, 123], [110, 39, 67, 7], [28, 70, 108, 113], [96, 9, 101, 36], [13, 28, 6, 13], [69, 81, 89, 26], [79, 113, 77, 91], [112, 62, 104, 117], [109, 95, 55, 83], [78, 68, 98, 14], [73, 79, 96, 12], [108, 39, 97, 49], [27, 111, 106, 100], [82, 70, 9, 36], [48, 31, 90, 70], [99, 92, 45, 35], [55, 100, 31, 37], [75, 17, 69, 35], [12, 38, 119, 112], [103, 34, 63, 76], [26, 19, 91, 111], [74, 122, 12, 78], [64, 117, 16, 60], [2, 97, 122, 106], [62, 79, 56, 30], [71, 47, 13, 22], [38, 78, 116, 16], [87, 28, 94, 76], [77, 126, 94, 116], [83, 46, 104, 90], [5, 95, 13, 26], [47, 10, 46, 115], [82, 19, 91, 70], [111, 72, 49, 65], [18, 103, 59, 72], [17, 37, 56, 24], [19, 120, 24, 64], [28, 40, 11, 20], [18, 19, 80, 62], [37, 11, 74, 14], [109, 97, 75, 72], [116, 65, 52, 121], [95, 63, 82, 122], [88, 93, 54, 93], [77, 30, 65, 121], [99, 121, 42, 87], [62, 52, 44, 6], [79, 60, 55, 4], [96, 64, 6, 20], [94, 114, 90, 8], [123, 98, 29, 27], [116, 84, 31, 80], [9, 77, 45, 45], [120, 33, 63, 15], [51, 44, 66, 25], [2, 46, 72, 94], [107, 113, 50, 46], [115, 64, 126, 85], [64, 10, 28, 78], [84, 112, 64, 103], [59, 114, 15, 82], [65, 122, 104, 89], [113, 122, 21, 11], [69, 106, 19, 78], [42, 93, 125, 0], [7, 123, 82, 70], [103, 114, 62, 92], [15, 30, 78, 114], [4, 78, 111, 60], [40, 80, 34, 55], [3, 87, 120, 27], [122, 64, 3, 122], [24, 49, 31, 81], [26, 43, 100, 19], [52, 78, 2, 97], [116, 45, 15, 33], [21, 119, 92, 86], [28, 118, 71, 24], [106, 15, 0, 79], [36, 4, 52, 73], [22, 43, 8, 60], [96, 22, 9, 100], [19, 64, 26, 96], [97, 61, 22, 39], [6, 112, 76, 38], [58, 6, 97, 94], [103, 87, 87, 101], [17, 49, 80, 37], [117, 33, 26, 8], [59, 108, 78, 91], [113, 28, 30, 44], [119, 78, 72, 20], [49, 101, 77, 2], [26, 18, 35, 7], [34, 38, 99, 37], [45, 52, 90, 27], [108, 31, 118, 67], [3, 37, 29, 88], [111, 96, 12, 111], [91, 111, 106, 100], [52, 78, 117, 80], [14, 51, 87, 0], [1, 52, 116, 1], [117, 2, 33, 48], [57, 0, 48, 34], [59, 14, 84, 63], [82, 83, 8, 82], [58, 100, 32, 33], [75, 29, 112, 103], [0, 49, 45, 54], [94, 9, 51, 110], [54, 61, 27, 47], [88, 89, 23, 37], [73, 43, 0, 32], [123, 6, 35, 78], [73, 72, 119, 64], [81, 46, 11, 102], [42, 124, 47, 8], [50, 66, 3, 40], [116, 7, 51, 20], [47, 112, 99, 7], [42, 37, 86, 89], [18, 74, 78, 101], [57, 85, 75, 7], [26, 90, 35, 10], [72, 126, 10, 77], [55, 12, 5, 78], [37, 87, 85, 96], [91, 9, 114, 68], [79, 76, 44, 20], [84, 52, 63, 56], [95, 9, 22, 117], [96, 38, 50, 67], [43, 114, 45, 56], [94, 21, 74, 107], [92, 82, 81, 71], [40, 10, 10, 90], [20, 18, 15, 56], [72, 2, 30, 22], [50, 31, 123, 20], [85, 40, 115, 115], [93, 1, 48, 47], [111, 118, 45, 34], [9, 122, 37, 121], [60, 27, 77, 41], [122, 38, 22, 39], [115, 66, 74, 126], [77, 67, 90, 78], [96, 3, 53, 52], [5, 26, 120, 101], [45, 100, 72, 6], [106, 56, 87, 77], [52, 68, 102, 95], [1, 13, 36, 33], [58, 27, 35, 8], [52, 5, 38, 35], [102, 82, 63, 47], [24, 71, 119, 43], [11, 36, 90, 13], [11, 93, 27, 23], [4, 107, 26, 125], [85, 9, 5, 13], [116, 25, 55, 119], [73, 82, 73, 2], [40, 123, 77, 41], [10, 98, 51, 111], [23, 79, 120, 54], [56, 18, 22, 84], [61, 115, 51, 109], [33, 5, 12, 121], [8, 81, 35, 70], [22, 39, 103, 2], [38, 74, 66, 126], [83, 20, 117, 85], [8, 32, 91, 98], [37, 31, 94, 119], [7, 30, 45, 43], [68, 16, 124, 97], [86, 124, 37, 21], [29, 101, 15, 30], [27, 31, 52, 45], [47, 37, 102, 3], [117, 49, 54, 89], [48, 94, 126, 66], [42, 115, 63, 104], [14, 74, 6, 112], [68, 125, 4, 5], [66, 3, 78, 52], [108, 33, 6, 77], [77, 99, 16, 52], [61, 78, 73, 70], [108, 106, 124, 0], [23, 35, 119, 118], [125, 124, 37, 65], [69, 30, 61, 110], [77, 10, 120, 118], [53, 121, 24, 30], [87, 32, 29, 63], [54, 64, 1, 3], [16, 59, 104, 25], [30, 6, 59, 102], [43, 120, 35, 94], [89, 13, 69, 39], [87, 78, 100, 14], [83, 17, 14, 4], [24, 49, 31, 81], [73, 32, 72, 10], [0, 22, 61, 54], [81, 42, 70, 13], [108, 56, 52, 2], [25, 99, 116, 72], [66, 23, 18, 102], [121, 115, 47, 12], [96, 37, 123, 48], [64, 69, 4, 39], [78, 38, 124, 31], [27, 69, 10, 70], [5, 29, 2, 85], [30, 45, 56, 7], [31, 25, 120, 61], [36, 89, 89, 118], [98, 63, 18, 21], [121, 83, 36, 57], [60, 5, 86, 17], [121, 55, 117, 58], [12, 96, 4, 27], [119, 63, 124, 37], [96, 27, 45, 91], [42, 119, 8, 103], [104, 42, 68, 37], [104, 55, 41, 38], [120, 3, 50, 87], [120, 121, 20, 67], [58, 123, 50, 28], [103, 62, 58, 20], [97, 27, 89, 102], [7, 51, 56, 108], [73, 60, 10, 77], [56, 72, 103, 69], [101, 89, 18, 66], [115, 35, 80, 36], [98, 103, 39, 63], [29, 126, 67, 76], [27, 97, 15, 79], [36, 6, 17, 90], [126, 54, 101, 42], [115, 66, 74, 126], [78, 80, 62, 83], [60, 11, 31, 88], [16, 73, 108, 13]]P = np.array(P)
    C = np.array(C)
    q = 127
    n = 3def enc(P, M, q):N = P.shape[0]n = len(M)r = np.random.randint(0, 2, (n, N))Z = np.zeros((n, P.shape[1]), dtype=np.int32)Z[:, 0] = 1C = np.zeros((n, P.shape[1]), dtype=np.int32)for i in range(n):C[i] = (np.dot(P.T, r[i]) + (np.floor(q/2) * Z[i] * M[i])) % qreturn Cdef dec(C, s, q):M = np.zeros(len(C), dtype=np.int32)for i in range(len(C)):M[i] = round((np.dot(C[i], s) % q) * (2/q)) % 2return Mdef crack_n1_lwe(P, q, num_samples=200):known_messages = np.random.randint(0, 2, num_samples)ciphertexts = enc(P, known_messages, q)best_success = 0best_ts = []for potential_ts in tqdm(range(q**n)):potential_ts = np.unravel_index(potential_ts, (q,) * n)potential_s = np.concat((np.array([1]), np.array(potential_ts)))success_count = 0decrypted = dec(ciphertexts, potential_s, q)success_count = np.sum(known_messages == decrypted)if success_count > best_success:best_success = success_countbest_ts = potential_tsif success_count == num_samples:breakrecovered_s = np.concat((np.array([1]), np.array(best_ts)))success_rate = best_success / num_samplesreturn recovered_s, success_rateprint(f"{q=}")
    recovered_s, success_rate = crack_n1_lwe(P, q)
    print(recovered_s, success_rate)
    M = dec(C, recovered_s, q)def unprep(s):s = ''.join([str(b) for b in s])return ''.join([chr(int(s[i:i+8], 2)) for i in range(0, len(s), 8)])print(unprep(M))
    
  • 三角函数格基规约iv,AES解密

    from Crypto.Util.number import *
    from Crypto.Cipher import AES
    from Crypto.Util.Padding import pad,unpad
    from Crypto.Util.strxor import strxort = 3.257518803980229925210589904230583482986646342139415561576950148286382674434770529248486501793457710730252401258721482142654716015216299244487794967600132597049154513815052213387666360825101667524635777006510550117512116441539852315185793280311905620746025669520152068447372368293640072502196959919309286241
    a = arctan(t)
    ts = 2 ^ 1024A = int(a * ts)
    Pi = int((pi).n(1024) * ts)G = Matrix([[1, 0, -ts],[0, 1, int(Pi)],[0, 0, A]])
    m = G.LLL()[0][0]
    # print(m)
    # print(long_to_bytes(int(m)))iv = long_to_bytes(int(m))
    c = b'\x9fT@\xbc\x82\x8esQ\x1e\xd8\x1d\xdb\x9b\xb4\xf8rU\xc8\xa0\xcb\xaf H\xa9.\x04\x1e\xd2\x92\x1f\x0fBja-\x965x\xa8@\xc9x\xf9\xaf\x87\xd1\xa5}\xfc\x1b\xe0#\xc3m\xc9\x8973\x1c\x1f\x13\x8f\xb2a\xae\xa9]\xb9\xc2\xe8\x83A\x80\x13g\xc9a\x1c<\x8a\x9c&\xd9\xbd\x06\xef\xba9\xb0\x03\x9f\x022\xc9\x13\x9a\xffXPG\xc6o\xc0\xeaV7)XG9L\x84N7U\xe3Wn0G\x8e\xd3\x04(\n\x08\xb9\x17\xe6\xf1\xaa\xb7\x8a@$\x16\x13\x06A\x00\xc9Z\xdf\x7fQ\xc9\x08\xb4\xf3P\xfcpe\xe2\xeb\x96\x0e(-\xde\x17\xd1\x01\x1c_\x82\x8b\x9fw\xc8\x86\xfbw\xb5\xf7\xd0\xc8\x1784\xe3?\x00\x0b.)\xb7\xbc\x8e{\xe0\xae\x8d$\x0f\x19\'\xb6\xee@d\x00\xd9\x84\x8c\x0e\xa3,\xc6a\xa3\xba*1\xfd<\xfd\x18\xd6\x9e\x8c4\x8e#\xfd\xbd&0R\xeddE,\xed\xb6\x1e\x00\x11\xa6K\xd3\x1dT\x8c5\x8e\x00\xea\x10\xe9\'u"B#\xa1#\xd8\xe3\xf5j\xbc\x94M\xda\xe3\xcb*\xf0W1\xa0\x80\x1d\xfc\xbfo\x01?(da\r\xb6\x86\xd0\x90\x88Z\xa1`B\x89\x89\x89\xb3v\xa5\xf0\xe0\x0c\x8e\xcc+P\xfc\xfd#\x83\xe9\x93\x96\n\xf2\xa5\xfb\xc3\xc5\xaa\x9e\x89\x93\xb6\xf5\xea\x8c%NY\xc3\x0eR\xfas\xa1\x13\xf2/*\xce\x8b_:_r\xeb\xbe\x0b\x8a\x8c\x97\x7f|m}\xae\xa9I\x95\xcc\xe7\x80\xa5yC4\x1f5\xa4P\xc5\xbf.\xf9V\xe8|\xbb\xc3\xcb\x98&\'JB\x99\x94\xc0\r$\x0b\xbe48u\xeb\xca\xa1\xfbb\xd8_R\x97\x8e\xaeI\xfc\xc2\xb2\xd2#@\xec\x16\xf1\xd7eCQ\x1cO\x13\xca\xb5\xd3\x1a\xb1\xf1_D\x80\x06\xa5\xbe\xbev\xbd\xd6\xbb\x9a\xc9x\x9cf:\xcb>\xa2\xe1\xcad\xde]aw\xa0\xdc\xb2\xb3{+\x85\x8d\x8b\xc5\rT\xcc\xd9X\xd5\x9b\r<\x99m\xb8b6s\xbfp\x0eo~\xe9&\xb2{\xbe\xee\x93\xd2N1\\\x94\x968IWO7\xcb\xb6e\x80\xf7\x9air\xb2~\x17\x1cF\x0f\x82T]RBX\xdex\x13\x85\xfa\xcd-\xce\xdc\xe4\xe5^\x99u\xb5\x01\xd0-\xc3C\xcd\xc4y6\xb7\x9d|L1\xe74\xf7\x8cH\xe9\xa9\xfav\n\xec;\xf2\xa2w\xfb\x13_b\r)z!\xa3\xc8\xa8\xc2\xd2\x10\x00\x11\x11\r\xb2&\xfb\x04&\x84">x6l[\x06n>\xa0\xbe\x9c`\xa7\x9e\xe0\xfb\x85\x91\xc4,\xcf\xac\xe11@a\xed3@\xfd}\x8e\xfaTp\xcb7\xe7\xbf\xd4\xe0~b\xd9\xe0<\xba\x81\xd4"e\xfc\x939|j#0H\x86\xf8\x0b\x03\xd2\xe8\xf5\xe55\xdc\xc8\x06\\\xb7)\xcc\x9b\'\xf12'
    key = b'\x8fj\x94\x98-\x1fd\xd5\x89\xbe\xa9*Tu\x90\xb7'
    myaes = AES.new(key=key, iv=iv, mode=AES.MODE_CBC)decrypted_bytes = myaes.decrypt(c)
    # print(decrypted_bytes)
    messages = [decrypted_bytes[i:i + 16] for i in range(0, len(decrypted_bytes), 16)]
    flag = "".join([chr(message[0]) for message in messages])
    print(flag)
    # flag{6ef25d1e-bb76-8e53-dbc4-1e56585f9aa9}
    
  • 同时在解密的时候,这里的填充很有意思,就是对每一个字节都做相同的16位的填充,在看完Chestnut师傅的wp后,也和师傅讨论了一下,这道题的另一种解法漏洞是由于AES-CBC以及这道题所作的这种固定的填充。


from Crypto.Cipher import AES
from Crypto.Util.Padding import padencrypted = b'\x9fT@\xbc\x82\x8esQ\x1e\xd8\x1d\xdb\x9b\xb4\xf8rU\xc8\xa0\xcb\xaf H\xa9.\x04\x1e\xd2\x92\x1f\x0fBja-\x965x\xa8@\xc9x\xf9\xaf\x87\xd1\xa5}\xfc\x1b\xe0#\xc3m\xc9\x8973\x1c\x1f\x13\x8f\xb2a\xae\xa9]\xb9\xc2\xe8\x83A\x80\x13g\xc9a\x1c<\x8a\x9c&\xd9\xbd\x06\xef\xba9\xb0\x03\x9f\x022\xc9\x13\x9a\xffXPG\xc6o\xc0\xeaV7)XG9L\x84N7U\xe3Wn0G\x8e\xd3\x04(\n\x08\xb9\x17\xe6\xf1\xaa\xb7\x8a@$\x16\x13\x06A\x00\xc9Z\xdf\x7fQ\xc9\x08\xb4\xf3P\xfcpe\xe2\xeb\x96\x0e(-\xde\x17\xd1\x01\x1c_\x82\x8b\x9fw\xc8\x86\xfbw\xb5\xf7\xd0\xc8\x1784\xe3?\x00\x0b.)\xb7\xbc\x8e{\xe0\xae\x8d$\x0f\x19\'\xb6\xee@d\x00\xd9\x84\x8c\x0e\xa3,\xc6a\xa3\xba*1\xfd<\xfd\x18\xd6\x9e\x8c4\x8e#\xfd\xbd&0R\xeddE,\xed\xb6\x1e\x00\x11\xa6K\xd3\x1dT\x8c5\x8e\x00\xea\x10\xe9\'u"B#\xa1#\xd8\xe3\xf5j\xbc\x94M\xda\xe3\xcb*\xf0W1\xa0\x80\x1d\xfc\xbfo\x01?(da\r\xb6\x86\xd0\x90\x88Z\xa1`B\x89\x89\x89\xb3v\xa5\xf0\xe0\x0c\x8e\xcc+P\xfc\xfd#\x83\xe9\x93\x96\n\xf2\xa5\xfb\xc3\xc5\xaa\x9e\x89\x93\xb6\xf5\xea\x8c%NY\xc3\x0eR\xfas\xa1\x13\xf2/*\xce\x8b_:_r\xeb\xbe\x0b\x8a\x8c\x97\x7f|m}\xae\xa9I\x95\xcc\xe7\x80\xa5yC4\x1f5\xa4P\xc5\xbf.\xf9V\xe8|\xbb\xc3\xcb\x98&\'JB\x99\x94\xc0\r$\x0b\xbe48u\xeb\xca\xa1\xfbb\xd8_R\x97\x8e\xaeI\xfc\xc2\xb2\xd2#@\xec\x16\xf1\xd7eCQ\x1cO\x13\xca\xb5\xd3\x1a\xb1\xf1_D\x80\x06\xa5\xbe\xbev\xbd\xd6\xbb\x9a\xc9x\x9cf:\xcb>\xa2\xe1\xcad\xde]aw\xa0\xdc\xb2\xb3{+\x85\x8d\x8b\xc5\rT\xcc\xd9X\xd5\x9b\r<\x99m\xb8b6s\xbfp\x0eo~\xe9&\xb2{\xbe\xee\x93\xd2N1\\\x94\x968IWO7\xcb\xb6e\x80\xf7\x9air\xb2~\x17\x1cF\x0f\x82T]RBX\xdex\x13\x85\xfa\xcd-\xce\xdc\xe4\xe5^\x99u\xb5\x01\xd0-\xc3C\xcd\xc4y6\xb7\x9d|L1\xe74\xf7\x8cH\xe9\xa9\xfav\n\xec;\xf2\xa2w\xfb\x13_b\r)z!\xa3\xc8\xa8\xc2\xd2\x10\x00\x11\x11\r\xb2&\xfb\x04&\x84">x6l[\x06n>\xa0\xbe\x9c`\xa7\x9e\xe0\xfb\x85\x91\xc4,\xcf\xac\xe11@a\xed3@\xfd}\x8e\xfaTp\xcb7\xe7\xbf\xd4\xe0~b\xd9\xe0<\xba\x81\xd4"e\xfc\x939|j#0H\x86\xf8\x0b\x03\xd2\xe8\xf5\xe55\xdc\xc8\x06\\\xb7)\xcc\x9b\'\xf12'message_pad = pad(b'f', 16)key = b'\x8fj\x94\x98-\x1fd\xd5\x89\xbe\xa9*Tu\x90\xb7'myaes = AES.new(key, AES.MODE_ECB)iv = bytes([a ^ b for a, b in zip(myaes.decrypt(encrypted[:16]), message_pad)])
# print(iv)
c = b'\x9fT@\xbc\x82\x8esQ\x1e\xd8\x1d\xdb\x9b\xb4\xf8rU\xc8\xa0\xcb\xaf H\xa9.\x04\x1e\xd2\x92\x1f\x0fBja-\x965x\xa8@\xc9x\xf9\xaf\x87\xd1\xa5}\xfc\x1b\xe0#\xc3m\xc9\x8973\x1c\x1f\x13\x8f\xb2a\xae\xa9]\xb9\xc2\xe8\x83A\x80\x13g\xc9a\x1c<\x8a\x9c&\xd9\xbd\x06\xef\xba9\xb0\x03\x9f\x022\xc9\x13\x9a\xffXPG\xc6o\xc0\xeaV7)XG9L\x84N7U\xe3Wn0G\x8e\xd3\x04(\n\x08\xb9\x17\xe6\xf1\xaa\xb7\x8a@$\x16\x13\x06A\x00\xc9Z\xdf\x7fQ\xc9\x08\xb4\xf3P\xfcpe\xe2\xeb\x96\x0e(-\xde\x17\xd1\x01\x1c_\x82\x8b\x9fw\xc8\x86\xfbw\xb5\xf7\xd0\xc8\x1784\xe3?\x00\x0b.)\xb7\xbc\x8e{\xe0\xae\x8d$\x0f\x19\'\xb6\xee@d\x00\xd9\x84\x8c\x0e\xa3,\xc6a\xa3\xba*1\xfd<\xfd\x18\xd6\x9e\x8c4\x8e#\xfd\xbd&0R\xeddE,\xed\xb6\x1e\x00\x11\xa6K\xd3\x1dT\x8c5\x8e\x00\xea\x10\xe9\'u"B#\xa1#\xd8\xe3\xf5j\xbc\x94M\xda\xe3\xcb*\xf0W1\xa0\x80\x1d\xfc\xbfo\x01?(da\r\xb6\x86\xd0\x90\x88Z\xa1`B\x89\x89\x89\xb3v\xa5\xf0\xe0\x0c\x8e\xcc+P\xfc\xfd#\x83\xe9\x93\x96\n\xf2\xa5\xfb\xc3\xc5\xaa\x9e\x89\x93\xb6\xf5\xea\x8c%NY\xc3\x0eR\xfas\xa1\x13\xf2/*\xce\x8b_:_r\xeb\xbe\x0b\x8a\x8c\x97\x7f|m}\xae\xa9I\x95\xcc\xe7\x80\xa5yC4\x1f5\xa4P\xc5\xbf.\xf9V\xe8|\xbb\xc3\xcb\x98&\'JB\x99\x94\xc0\r$\x0b\xbe48u\xeb\xca\xa1\xfbb\xd8_R\x97\x8e\xaeI\xfc\xc2\xb2\xd2#@\xec\x16\xf1\xd7eCQ\x1cO\x13\xca\xb5\xd3\x1a\xb1\xf1_D\x80\x06\xa5\xbe\xbev\xbd\xd6\xbb\x9a\xc9x\x9cf:\xcb>\xa2\xe1\xcad\xde]aw\xa0\xdc\xb2\xb3{+\x85\x8d\x8b\xc5\rT\xcc\xd9X\xd5\x9b\r<\x99m\xb8b6s\xbfp\x0eo~\xe9&\xb2{\xbe\xee\x93\xd2N1\\\x94\x968IWO7\xcb\xb6e\x80\xf7\x9air\xb2~\x17\x1cF\x0f\x82T]RBX\xdex\x13\x85\xfa\xcd-\xce\xdc\xe4\xe5^\x99u\xb5\x01\xd0-\xc3C\xcd\xc4y6\xb7\x9d|L1\xe74\xf7\x8cH\xe9\xa9\xfav\n\xec;\xf2\xa2w\xfb\x13_b\r)z!\xa3\xc8\xa8\xc2\xd2\x10\x00\x11\x11\r\xb2&\xfb\x04&\x84">x6l[\x06n>\xa0\xbe\x9c`\xa7\x9e\xe0\xfb\x85\x91\xc4,\xcf\xac\xe11@a\xed3@\xfd}\x8e\xfaTp\xcb7\xe7\xbf\xd4\xe0~b\xd9\xe0<\xba\x81\xd4"e\xfc\x939|j#0H\x86\xf8\x0b\x03\xd2\xe8\xf5\xe55\xdc\xc8\x06\\\xb7)\xcc\x9b\'\xf12'
key = b'\x8fj\x94\x98-\x1fd\xd5\x89\xbe\xa9*Tu\x90\xb7'
myaes = AES.new(key=key, iv=iv, mode=AES.MODE_CBC)decrypted_bytes = myaes.decrypt(c)
# print(decrypted_bytes)
messages = [decrypted_bytes[i:i + 16] for i in range(0, len(decrypted_bytes), 16)]
flag = "".join([chr(message[0]) for message in messages])
print(flag)
# flag{6ef25d1e-bb76-8e53-dbc4-1e56585f9aa9}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/diannao/84448.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

三重天理论

第一重天&#xff1a;公理层&#xff08;形而上地基&#xff09; 这里构建的是人类理性的"操作系统"&#xff0c;公理作为不证自明的逻辑起点&#xff08;如矛盾律/同一律&#xff09;&#xff0c;恰似海德格尔所说的"存在之镜"。黑格尔辩证法在此显现为动…

2025年第八届广西大学生程序设计大赛(正式赛)题解(更新中)

知乎评价&#xff1a;如何评价2025年第八届GXCPC广西大学生程序设计大赛暨中国-东盟国际大学生程序设计大赛&#xff1f; 榜单&#xff1a;牛客比赛排名 题目链接&#xff1a;第八届广西大学生程序设计大赛暨2025邀请赛 TIP&#xff1a;提交处可查看别人过题代码 难度签到题普通…

WHAT - 兆比特每秒 vs 兆字节每秒

文章目录 Mbps 解释Mbps 和 MB/s&#xff08;兆字节每秒&#xff09;换算总结网络场景1. 在路由器设置中的 Mbps2. 在游戏下载时的 Mbps / MB/s总结 Mbps 解释 首先&#xff0c;Mbps 是一个常见的网络带宽单位&#xff0c;意思是&#xff1a; Megabits per second&#xff08;…

[C语言实战]C语言内存管理实战:实现自定义malloc与free(四)

[C语言实战]C语言内存管理实战&#xff1a;实现自定义malloc与free&#xff08;四&#xff09; 摘要&#xff1a;通过实现简化版的内存管理器&#xff0c;深入理解动态内存分配的核心原理。本文包含内存块设计、分配算法、空闲合并策略的完整实现&#xff0c;并附可运行的代码…

YOLOv8源码修改(5)- YOLO知识蒸馏(下)设置蒸馏超参数:以yolov8-pose为例

目录 前言 1. 不同蒸馏算法资源占用 2. 不动态调整蒸馏损失 2.1 训练定量化结果 2.1 训练结果可视化结果 3. 动态调整蒸馏损失权重及实验分析 3.1 余弦衰减和指数衰减 3.2 CWD蒸馏损失 3.3 MGD蒸馏损失 3.4 AT蒸馏损失 3.5 SKD和PKD蒸馏损失 4. 调权重心得总结 5…

历年华东师范大学保研上机真题

2025华东师范大学保研上机真题 2024华东师范大学保研上机真题 2023华东师范大学保研上机真题 在线测评链接&#xff1a;https://pgcode.cn/school?classification1 简单一位数代数式计算 题目描述 给一个小学生都会算的1位数与1位数运算的代数式&#xff0c;请你求出这个表…

Oracle 中 SHRINK 与 MOVE 操作的比较

Oracle 中 SHRINK 与 MOVE 操作的比较 在 Oracle 数据库中&#xff0c;SHRINK 和 MOVE 都是用于重组表和索引以减少空间碎片的重要操作&#xff0c;但它们在实现方式和适用场景上有显著区别。 SHRINK 操作 基本语法 ALTER TABLE table_name SHRINK SPACE [COMPACT] [CASCAD…

展锐 Android 15 锁定某个App版本的实现

Android 15 系统锁定Antutu版本的实现方法 在Android系统开发中,有时需要锁定特定应用的版本以确保系统稳定性或测试一致性。本文将介绍如何通过修改Android源码来锁定Antutu跑分软件的版本。 修改概述 这次修改主要涉及以下几个方面: 禁用产品复制文件的检查添加指定版本…

视频剪辑SDK定制开发技术方案与报价书优雅草卓伊凡

视频剪辑SDK定制开发技术方案与报价书-优雅草卓伊凡 一、项目概述 客户需求&#xff1a;开发一套跨平台&#xff08;Android/iOS/Uni-App&#xff09;视频剪辑SDK&#xff0c;包含AI字幕提取、转场特效、文字叠加、背景音乐、滤镜、背景替换、动态贴纸等功能。 报价范围&#…

BGP为什么要配置对等IP?

本文由deepseek生成&#xff0c;特此声明 一、为什么要配置对等体IP&#xff1f; 1. 明确标识邻居身份 路由协议需求&#xff1a;动态路由协议&#xff08;如BGP、OSPF、RIP&#xff09;需要路由器之间建立邻居关系以交换路由信息。配置对等体IP是为了唯一标识邻居路由器&…

Qt中配置文件读写

1. 保存分组数据到配置文件 #include <QSettings>void saveNetworkConfig() {QSettings settings("network.ini", QSettings::IniFormat);// 网络配置分组settings.beginGroup("Network");// 源地址配置settings.beginGroup("Source");se…

Linux 的编辑器--vim

1.Linux编辑器-vim使⽤ vi/vim的区别简单点来说&#xff0c;它们都是多模式编辑器&#xff0c;不同的是vim是vi的升级版本&#xff0c;它不仅兼容vi的所有指令&#xff0c;⽽且还有⼀些新的特性在⾥⾯。例如语法加亮&#xff0c;可视化操作不仅可以在终端运⾏&#xff0c;也可以…

SAP Commerce(Hybris)开发实战(二):登陆生成token问题

问题简述 最近处理Hybris框架标准的登陆功能&#xff0c;遇到一个问题&#xff1a;用两个不同的浏览器&#xff0c;同时登陆一个账号&#xff0c;会同时生成两个不同的token和refreshToken。 问题原因 解决了其实非常简单&#xff0c;就是Hybris的Employee表中&#xff0c;有一…

c/c++的opencv椒盐噪声

在 C/C 中实现椒盐噪声 椒盐噪声&#xff08;Salt-and-Pepper Noise&#xff09;&#xff0c;也称为脉冲噪声&#xff08;Impulse Noise&#xff09;&#xff0c;是数字图像中常见的一种噪声类型。它的特点是在图像中随机出现纯白色&#xff08;盐&#xff09;或纯黑色&#x…

LIEDNet: A Lightweight Network for Low-light Enhancement and Deblurring论文阅读

摘要 夜间拍摄的图像常常面临诸如低光和模糊等挑战&#xff0c;这些问题主要是由于昏暗环境和长时间曝光的频繁使用所导致。现有方法要么独立处理这两种退化问题&#xff0c;要么依赖于通过复杂机制生成的精心设计的先验知识&#xff0c;这导致了较差的泛化能力和较高的模型复…

谈谈worldquant中设置的几个意思

Decay 是一个设置&#xff0c;用于确定要反映多少过去的位置。正如我们之前详细介绍的那样&#xff0c;Decay 值越高&#xff0c;Alpha 周转率越低。但是&#xff0c;请注意&#xff0c;Alpha 的夏普比率可能会随着信息延迟而降低。 创建 Alpha 时&#xff0c;头寸可能会集中在…

大模型和AI工具汇总(一)

一、国内可免费使用的大模型&#xff08;持续更新&#xff09; DeepSeek 模型介绍&#xff1a;DeepSeek 系列包括 DeepSeek V3&#xff08;通用场景&#xff09;、DeepSeek R1&#xff08;推理模型&#xff09;&#xff0c;支持高达 64K 上下文长度&#xff0c;中文场景表现优…

HarmonyOS NEXT 技术特性:分布式软总线技术架构

HarmonyOS NEXT 技术特性&#xff1a;分布式软总线技术架构 随着物联网发展&#xff0c;2030 预计全球联网设备达 2000 亿&#xff0c;异构设备互联难题凸显&#xff0c;分布式软总线作为 HarmonyOS 生态核心&#xff0c;以软件虚拟总线打破物理局限&#xff0c;让跨品牌设备即…

什么是VR展馆?VR展馆的实用价值有哪些?

VR展馆&#xff0c;重塑展览体验。在数字化时代浪潮的推动下&#xff0c;传统的实体展馆经历前所未有的变革。作为变革的先锋&#xff0c;VR展馆以无限的潜力&#xff0c;成为展览行业的新宠。 VR展馆&#xff0c;即虚拟现实展馆&#xff0c;是基于VR&#xff08;Virtual Real…

VLA模型:自动驾驶与机器人行业的革命性跃迁,端到端智能如何重塑未来?

当AI开始操控方向盘和机械臂&#xff0c;人类正在见证一场静默的产业革命。 2023年7月&#xff0c;谷歌DeepMind抛出一枚技术核弹——全球首个视觉语言动作模型&#xff08;VLA&#xff09;RT-2横空出世。这个能将“把咖啡递给穿红衣服的阿姨”这类自然语言指令直接转化为机器人…