DAY41 CNN

可以看到即使在深度神经网络情况下,准确率仍旧较差,这是因为特征没有被有效提取----真正重要的是特征的提取和加工过程。MLP把所有的像素全部展平了(这是全局的信息),无法布置到局部的信息,所以引入了卷积神经网络。(在之前的复试班已经交代清楚了,如果不清楚什么是卷积神经网络,请自行学习下相关概念)

复试班的计算机视觉部分的讲义
https://docs.qq.com/doc/DTFNucmRzc3RlRk5k
卷积层是特征提取器,池化层是特征压缩器。他们二者都是在做下采样操作。

注意点:机器视觉不是计算机视觉
● 计算机视觉(CV):更偏向于科学研究领域,目标是让计算机能够像人眼一样“看懂”和“理解”图
像和视频。它是一个更广泛、更基础的学科。

● 机器视觉(MV):更偏向于工程应用领域,特别是工业自动化。目标是利用视觉技术替代人眼
进行测量、检测、引导和识别等特定任务。 ---- 工厂流水线工人.

2.2 图像的张量表示
(N,C,H,W)是PyTorch 中表示张量维度的默认约定,其中:
●N 代表批量大小(Batch Size):这是指在每一次训练或推理过程中,一次性处理的样本数量。
●c 代表通道数(Number of Channels):这是指输入数据的通道数量,通常用于表示颜色通道(比如在图像处理中的红色、绿色、蓝色通道,即 RGB),或者在卷积神经网络中的特征通道数。
●H 代表高度(Height):这是输入数据的高度的像素数
●w 代表宽度(Width):这是输入数据的宽度像素数
例如,如果你有一个批量大小为 32 的彩色图像数据集,每个图像的尺寸为 128x128 像素,那么你的输入数据的形状就可以表示为(32,3,128,128),其中N=32、c=3、H=128、 w=128。

2.6 数据增强操作
又叫数据增广,数据增强能够有效扩充数据集的规模和多样性,进而提升模型的泛化能力与鲁棒性。通过对原始图像数据集进行一系列的数据增强变换,生成大量的新图像数据
数据增强的主要目的并不是直接增加数据集的样本数目,而是通过对现有样本进行各种变换(如旋转、翻转、裁剪等),生成更多的数据变体,从而增加数据的多样性,提高模型的泛化能力。
写入循环中,每次训练时,模型看到的都是经过随机变换的新样本。也就是训练时,数据增强不会直接增加数据集的样本数目,而是在每次训练时动态生成新的数据变体。
常见的修改策略包括以下几类

  1. 几何变换:如旋转、缩放、平移、剪裁、裁剪、翻转
  2. 像素变换:如修改颜色、亮度、对比度、饱和度、色相、高斯模糊(模拟对焦失败)、增加噪声、马赛克
  3. 语义增强(暂时不用):mixup,对图像进行结构性改造、cutout随机遮挡等

此外,在数据极少的场景长,常常用生成模型来扩充数据集,如GAN、VAE等。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 1. 数据预处理
# 训练集:使用多种数据增强方法提高模型泛化能力
train_transform = transforms.Compose([# 随机裁剪图像,从原图中随机截取32x32大小的区域transforms.RandomCrop(32, padding=4),# 随机水平翻转图像(概率0.5)transforms.RandomHorizontalFlip(),# 随机颜色抖动:亮度、对比度、饱和度和色调随机变化transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),# 随机旋转图像(最大角度15度)transforms.RandomRotation(15),# 将PIL图像或numpy数组转换为张量transforms.ToTensor(),# 标准化处理:每个通道的均值和标准差,使数据分布更合理transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 测试集:仅进行必要的标准化,保持数据原始特性,标准化不损失数据信息,可还原
test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=train_transform  # 使用增强后的预处理
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=test_transform  # 测试集不使用增强
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

注意数据增强一般是不改变每个批次的数据量,是对原始数据修改后替换原始数据。其中该数据集事先知道其均值和标准差,如果不知道,需要提前计算下。

二、 CNN模型

卷积的本质:通过卷积核在输入通道上的滑动乘积,提取跨通道的空间特征。所以只需要定义几个参数即可

  1. 卷积核大小:卷积核的大小,如3x3、5x5、7x7等。
  2. 输入通道数:输入图片的通道数,如1(单通道图片)、3(RGB图片)、4(RGBA图片)等。
  3. 输出通道数:卷积核的个数,即输出的通道数。如本模型中通过 32→64→128 逐步增加特征复杂度
  4. 步长(stride):卷积核的滑动步长,默认为1。
# 4. 定义CNN模型的定义(替代原MLP)
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()  # 继承父类初始化# ---------------------- 第一个卷积块 ----------------------# 卷积层1:输入3通道(RGB),输出32个特征图,卷积核3x3,边缘填充1像素self.conv1 = nn.Conv2d(in_channels=3,       # 输入通道数(图像的RGB通道)out_channels=32,     # 输出通道数(生成32个新特征图)kernel_size=3,       # 卷积核尺寸(3x3像素)padding=1            # 边缘填充1像素,保持输出尺寸与输入相同)# 批量归一化层:对32个输出通道进行归一化,加速训练self.bn1 = nn.BatchNorm2d(num_features=32)# ReLU激活函数:引入非线性,公式:max(0, x)self.relu1 = nn.ReLU()# 最大池化层:窗口2x2,步长2,特征图尺寸减半(32x32→16x16)self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  # stride默认等于kernel_size# ---------------------- 第二个卷积块 ----------------------# 卷积层2:输入32通道(来自conv1的输出),输出64通道self.conv2 = nn.Conv2d(in_channels=32,      # 输入通道数(前一层的输出通道数)out_channels=64,     # 输出通道数(特征图数量翻倍)kernel_size=3,       # 卷积核尺寸不变padding=1            # 保持尺寸:16x16→16x16(卷积后)→8x8(池化后))self.bn2 = nn.BatchNorm2d(num_features=64)self.relu2 = nn.ReLU()self.pool2 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:16x16→8x8# ---------------------- 第三个卷积块 ----------------------# 卷积层3:输入64通道,输出128通道self.conv3 = nn.Conv2d(in_channels=64,      # 输入通道数(前一层的输出通道数)out_channels=128,    # 输出通道数(特征图数量再次翻倍)kernel_size=3,padding=1            # 保持尺寸:8x8→8x8(卷积后)→4x4(池化后))self.bn3 = nn.BatchNorm2d(num_features=128)self.relu3 = nn.ReLU()  # 复用激活函数对象(节省内存)self.pool3 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:8x8→4x4# ---------------------- 全连接层(分类器) ----------------------# 计算展平后的特征维度:128通道 × 4x4尺寸 = 128×16=2048维self.fc1 = nn.Linear(in_features=128 * 4 * 4,  # 输入维度(卷积层输出的特征数)out_features=512          # 输出维度(隐藏层神经元数))# Dropout层:训练时随机丢弃50%神经元,防止过拟合self.dropout = nn.Dropout(p=0.5)# 输出层:将512维特征映射到10个类别(CIFAR-10的类别数)self.fc2 = nn.Linear(in_features=512, out_features=10)def forward(self, x):# 输入尺寸:[batch_size, 3, 32, 32](batch_size=批量大小,3=通道数,32x32=图像尺寸)# ---------- 卷积块1处理 ----------x = self.conv1(x)       # 卷积后尺寸:[batch_size, 32, 32, 32](padding=1保持尺寸)x = self.bn1(x)         # 批量归一化,不改变尺寸x = self.relu1(x)       # 激活函数,不改变尺寸x = self.pool1(x)       # 池化后尺寸:[batch_size, 32, 16, 16](32→16是因为池化窗口2x2)# ---------- 卷积块2处理 ----------x = self.conv2(x)       # 卷积后尺寸:[batch_size, 64, 16, 16](padding=1保持尺寸)x = self.bn2(x)x = self.relu2(x)x = self.pool2(x)       # 池化后尺寸:[batch_size, 64, 8, 8]# ---------- 卷积块3处理 ----------x = self.conv3(x)       # 卷积后尺寸:[batch_size, 128, 8, 8](padding=1保持尺寸)x = self.bn3(x)x = self.relu3(x)x = self.pool3(x)       # 池化后尺寸:[batch_size, 128, 4, 4]# ---------- 展平与全连接层 ----------# 将多维特征图展平为一维向量:[batch_size, 128*4*4] = [batch_size, 2048]x = x.view(-1, 128 * 4 * 4)  # -1自动计算批量维度,保持批量大小不变x = self.fc1(x)           # 全连接层:2048→512,尺寸变为[batch_size, 512]x = self.relu3(x)         # 激活函数(复用relu3,与卷积块3共用)x = self.dropout(x)       # Dropout随机丢弃神经元,不改变尺寸x = self.fc2(x)           # 全连接层:512→10,尺寸变为[batch_size, 10](未激活,直接输出logits)return x  # 输出未经过Softmax的logits,适用于交叉熵损失函数# 初始化模型
model = CNN()
model = model.to(device)  # 将模型移至GPU(如果可用)

上述定义CNN模型中:

  1. 使用三层卷积+池化结构提取图像特征
  2. 每层卷积后添加BatchNorm加速训练并提高稳定性
  3. 使用Dropout减少过拟合

可以把全连接层前面的不理解为神经网络的一部分,单纯理解为特征提取器,他们的存在就是帮助模型进行特征提取的。

2.1 batch归一化

Batch 归一化是深度学习中常用的一种归一化技术,加速模型收敛并提升泛化能力。通常位于卷积层后。

卷积操作常见流程如下:

  1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层
  2. Flatten -> Dense (with Dropout,可选) -> Dense (Output)

其中,BatchNorm 应在池化前对空间维度的特征完成归一化,以确保归一化统计量基于足够多的样本(空间位置),避免池化导致的统计量偏差

旨在解决深度神经网络训练中的内部协变量偏移问题:深层网络中,随着前层参数更新,后层输入分布会发生变化,导致模型需要不断适应新分布,训练难度增加。就好比你在学新知识,知识体系的基础一直在变,你就得不断重新适应,模型训练也是如此,这就导致训练变得困难,这就是内部协变量偏移问题。

通过对每个批次的输入数据进行标准化(均值为 0、方差为 1),想象把一堆杂乱无章、分布不同的数据规整到一个标准的样子。

  1. 使各层输入分布稳定,让数据处于激活函数比较合适的区域,缓解梯度消失 / 爆炸问题;
  2. 因为数据分布稳定了,所以允许使用更大的学习率,提升训练效率。
阶段均值/方差来源参数更新
训练阶段基于当前批次数据计算实时更新 g a m m a gamma gamma b e t a beta beta
推理阶段使用训练集的全局统计量(如滑动平均后的均值和方差)不更新参数,直接使用固定值

深度学习的归一化有2类:

  1. Batch Normalization:一般用于图像数据,因为图像数据通常是批量处理,有相对固定的 Batch Size ,能利用 Batch 内数据计算稳定的统计量(均值、方差 )来做归一化。
  2. Layer Normalization:一般用于文本数据,本数据的序列长度往往不同,像不同句子长短不一,很难像图像那样固定 Batch Size 。如果用 Batch 归一化,不同批次的统计量波动大,效果不好。层归一化是对单个样本的所有隐藏单元进行归一化,不依赖批次。

ps:这个操作在结构化数据中其实是叫做标准化,但是在深度学习领域,习惯把这类对网络中间层数据进行调整分布的操作都叫做归一化 。

2.2 特征图

卷积层输出的叫做特征图,通过输入尺寸和卷积核的尺寸、步长可以计算出输出尺寸。可以通过可视化中间层的特征图,理解 CNN 如何从底层特征(如边缘)逐步提取高层语义特征(如物体部件、整体结构)。MLP是不输出特征图的,因为他输出的一维向量,无法保留空间维度

特征图就代表着在之前特征提取器上提取到的特征,可以通过 Grad-CAM方法来查看模型在识别图像时,特征图所对应的权重是多少。-----深度学习可解释性

我们在后续介绍。下面接着训练CNN模型

2.3 调度器

criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,        # 指定要控制的优化器(这里是Adam)mode='min',       # 监测的指标是"最小化"(如损失函数)patience=3,       # 如果连续3个epoch指标没有改善,才降低LRfactor=0.5        # 降低LR的比例(新LR = 旧LR × 0.5)
)
# scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)  
# # 每5个epoch,LR = LR × 0.1  # scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[10, 20, 30], gamma=0.5)  
# # 当epoch=10、20、30时,LR = LR × 0.5  # scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10, eta_min=0.0001)  
# # LR在[0.0001, LR_initial]之间按余弦曲线变化,周期为2×T_max  

可以把优化器和调度器理解为调参手段,学习率是参数

注意,优化器如adam虽然也在调整学习率,但是他的调整是相对值,计算步长后根据基础学习率来调整。但是调度器是直接调整基础学习率。

# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):model.train()  # 设置为训练模式# 记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号# 记录每个 epoch 的准确率和损失train_acc_history = []test_acc_history = []train_loss_history = []test_loss_history = []for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)  # 移至GPUoptimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计准确率和损失running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次打印一次训练信息if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 计算当前epoch的平均训练损失和准确率epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totaltrain_acc_history.append(epoch_train_acc)train_loss_history.append(epoch_train_loss)# 测试阶段model.eval()  # 设置为评估模式test_loss = 0correct_test = 0total_test = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testtest_acc_history.append(epoch_test_acc)test_loss_history.append(epoch_test_loss)# 更新学习率调度器scheduler.step(epoch_test_loss)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)# 绘制每个 epoch 的准确率和损失曲线plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc  # 返回最终测试准确率# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 7. 绘制每个 epoch 的准确率和损失曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 4))# 绘制准确率曲线plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('训练和测试准确率')plt.legend()plt.grid(True)# 绘制损失曲线plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('训练和测试损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 8. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始使用CNN训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# # 保存模型
# torch.save(model.state_dict(), 'cifar10_cnn_model.pth')
# print("模型已保存为: cifar10_cnn_model.pth")

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/news/907915.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【仿生系统】爱丽丝机器人的设想(可行性优先级较高)

非程序化、能够根据环境和交互动态产生情感和思想,并以微妙、高级的方式表达出来的能力 我们不想要一个“假”的智能,一个仅仅通过if-else逻辑或者简单prompt来模拟情感的机器人。您追求的是一种更深层次的、能够学习、成长,并形成独特“个性…

面向连接的运输:TCP

目录 TCP连接 TCP报文段结构 往返时间估计与超时 可靠数据传输 回退N步or超时重传 超时间隔加倍 快速重传 流量控制 TCP连接管理 三次握手 1. 客户端 → 服务器:SYN 包 2. 服务器 → 客户端:SYNACK 包 3. 客户端 → 服务器:AC…

SpringAI系列 - 升级1.0.0

目录 一、调整pom二、MessageChatMemoryAdvisor调整三、ChatMemory get方法删除lastN参数四、QuestionAnswerAdvisor调整Spring AI发布1.0.0正式版了😅 ,搞起… 一、调整pom <properties><java.version>17</java.version><spring-ai.version>

前端高频面试题2:JavaScript/TypeScript

1.什么是类数组对象 一个拥有 length 属性和若干索引属性的对象就可以被称为类数组对象&#xff0c;类数组对象和数组类似&#xff0c;但是不能调用数组的方法。常见的类数组对象有 arguments 和 DOM 方法的返回结果&#xff0c;还有一个函数也可以被看作是类数组对象&#xff…

Spring Security入门:创建第一个安全REST端点项目

项目初始化与基础配置 创建基础Spring Boot项目 我们首先创建一个名为ssia-ch2-ex1的空项目(该名称与配套源码中的示例项目保持一致)。项目需要添加以下两个核心依赖: org.springframework.bootspring-boot-starter-weborg.springframework.bootspring-boot-starter-secur…

秋招Day12 - 计算机网络 - UDP

说说TCP和UDP的区别&#xff1f; TCP使用无边界的字节流传输&#xff0c;可能发生拆包和粘包&#xff0c;接收方并不知道数据边界&#xff1b;UDP采用数据报传输&#xff0c;数据报之间相互独立&#xff0c;有边界。 应用场景方面&#xff0c;TCP适合对数据的可靠性要求高于速…

【QQ音乐】sign签名| data参数加密 | AES-GCM加密 | webpack (下)

1.目标 网址&#xff1a;https://y.qq.com/n/ryqq/toplist/26 我们知道了 sign P(n.data)&#xff0c;其中n.data是明文的请求参数 2.webpack生成data加密参数 那么 L(n.data)就是密文的请求参数。返回一个Promise {<pending>}&#xff0c;所以L(n.data) 是一个异步函数…

Codeforces Round 1028 (Div. 2)(A-D)

题面链接&#xff1a;Dashboard - Codeforces Round 1028 (Div. 2) - Codeforces A. Gellyfish and Tricolor Pansy 思路 要知道骑士如果没了那么这个人就失去了攻击手段&#xff0c;贪心的来说我们只需要攻击血量少的即可&#xff0c;那么取min比较一下即可 代码 void so…

【存储基础】存储设备和服务器的关系和区别

文章目录 1. 存储设备和服务器的区别2. 客户端访问数据路径场景1&#xff1a;经过服务器处理场景2&#xff1a;客户端直连 3. 服务器作为"中转站"的作用 刚开始接触存储的时候&#xff0c;以为数据都是存放在服务器上的&#xff0c;服务器和存储设备是一个东西&#…

macOS 安装 Grafana + Prometheus + Node Exporter

macOS 安装指南&#xff1a;Grafana Prometheus Node Exporter 目录简介&#x1f680; 快速开始 安装 Homebrew1. 安装 Homebrew2. 更新 Homebrew 安装 Node Exporter使用 Homebrew 安装验证 Node Exporter 安装 Prometheus使用 Homebrew 安装验证安装 安装 Grafana使用 Home…

不可变集合类型转换异常

记录一个异常&#xff1a;class java.util.ImmutableCollections$ListN cannot be cast to class java.util.ArrayList (java.util.ImmutableCollections$ListN and java.util.ArrayList 文章目录 1、原因2、解决方式一3、解决方式二4、关于不可变集合的补充4.1 JDK8和9的对比4…

【DAY37】早停策略和模型权重的保存

内容来自浙大疏锦行python打卡训练营 浙大疏锦行 知识点&#xff1a; 过拟合的判断&#xff1a;测试集和训练集同步打印指标模型的保存和加载 仅保存权重保存权重和模型保存全部信息checkpoint&#xff0c;还包含训练状态 早停策略 作业&#xff1a; 对信贷数据集训练后保存权…

【Zephyr 系列 3】多线程与调度机制:让你的 MCU 同时干多件事

好的,下面是Zephyr 系列第 3 篇:聚焦 多线程与调度机制的实践应用,继续面向你这样的 Ubuntu + 真板实战开发者,代码清晰、讲解通俗、结构规范,符合 CSDN 高质量博客标准。 🧠关键词:Zephyr、线程调度、k_thread、k_sleep、RTOS、BluePill 📌适合人群:想从裸机开发进…

实现RabbitMQ多节点集群搭建

目录 引言 一、环境准备 二、利用虚拟机搭建 ​ 三、镜像集群配置 四、HAProxy实现负载均衡(主用虚拟机操作) 五、测试RabbitMQ集群搭建情况 引言 在现代分布式系统中&#xff0c;消息队列&#xff08;Message Queue&#xff09;扮演着至关重要的角色,而 RabbitMQ 作为…

异步上传石墨文件进度条前端展示记录(采用Redis中String数据结构实现-苏东坡版本)

昔者&#xff0c;有客临门&#xff0c;亟需自石墨文库中撷取卷帙若干。此等文册&#xff0c;非止一卷&#xff0c;乃累牍连篇&#xff0c;亟需批量转置。然吾辈虑及用户体验&#xff0c;当效东坡"腹有诗书气自华"之雅意&#xff0c;使操作如行云流水&#xff0c;遂定…

Axure 基础入门

目录 认识产品经理 项目团队* 基本概述 认识产品经理 A公司产品经理 B公司产品经理 C公司产品经理 D公司产品经理 产品经理工作范围 产品经理工作流程* 产品经理的职责 产品经理的分类 产品经理能力要求 产品工具 产品体验报告 原型设计介绍 原型设计概述 为…

零基础学习计算机网络编程----socket实现UDP协议

本章将会详细的介绍如何使用 socket 实现 UDP 协议的传送数据。有了前面基础知识的铺垫。对于本章的理解将会变得简单。将会从基础的 Serve 的初始化&#xff0c;进阶到 Client 的初始化&#xff0c;以及 run。最后实现一个简陋的小型的网络聊天室。 目录 1.UdpSever.h 1.1 构造…

普中STM32F103ZET6开发攻略(二)

接上文&#xff1a;普中STM32F103ZET6开发攻略&#xff08;一&#xff09;-CSDN博客 各位看官老爷们&#xff0c;点击关注不迷路哟。你的点赞、收藏&#xff0c;一键三连&#xff0c;是我持续更新的动力哟&#xff01;&#xff01;&#xff01; 目录 接上文&#xff1a;普中…

用提示词写程序(3),VSCODE+Claude3.5+deepseek开发edge扩展插件V2

edge扩展插件;筛选书签,跳转搜索,设置背景 链接: https://pan.baidu.com/s/1nfnwQXCkePRnRh5ltFyfag?pwd86se 提取码: 86se 导入解压的扩展文件夹: 导入扩展成功: edge扩展插件;筛选书签,跳转搜索,设置背景

电脑桌面便签软件哪个好?桌面好用便签备忘录推荐

在日常办公中&#xff0c;一款优秀的桌面便签工具能显著提升工作效率。面对市面上琳琅满目的选择&#xff0c;不少用户都难以抉择。如果你正在寻找一款兼具轻量化与多功能性的便签软件&#xff0c;那么集实用性与便捷性于一身的"好用便签"&#xff0c;或许就是你的理…