6.RV1126-OPENCV 形态学基础膨胀及腐蚀

一.膨胀

1.膨胀原理

        膨胀的本质就是通过微积分的转换,将图像A和图形B进行卷积操作合并成一个A+B图像就是指任意的形状或者大小的图形B。例如下图,将核(也就是图形B)通过微积分卷积,和图像A合并成一个图像A+B。

2.特点

  • 图像就会更加明亮    
  • 图像就会更加粗糙

如下图所示: 

 

 3.膨胀的API

  • 处理图像膨胀的API:void dilate( InputArray src, OutputArray dst, InputArray kernel, Point anchor, int iterations, int borderType, const Scalar&borderValue )

第一个参数:src 的类型是 InputArray,它指的是输入图像,它可以是 Mat 类的数据。图像的通道数可以是任意数,但是图像的深度一般是 CV_8U,CV_16U,CV_16S,CV_32F,CV_64F
第二个参数:dst 的类型是 OutputArray,它指的是目标图像(输出图像),值得注意的是输出图像的尺寸、类型要和输入图像是一致的。
第三个参数:InputArray 类型的 kernel,膨胀操作的核(可以理解为输入图形B)。当这个值为 NULL 的时候,表示使用的核参考点默认是 3*3。这个参数通常会配合 getStructingElement 参数的使用(这个参数的使用,下面我会详细说到)。
第四个参数:Point 类型的 anchor,描点的位置,默认是(-1,-1),表示中心位置。
第五个参数:int 类型的迭代次数,默认是 1
第六个参数:int 类型的 borderType,这个类型用于推断图像外部的边界模式,用的最多的是 BORDER_DEFAULT
下面是常用的几种边框模式(这几种相对比较常用,其他的用的很少)
BORDER_CONSTANT:用指定的像素填充边框
BORDER_REPLICATE:用已知的边缘像素来填充边框
BORDER_WRAP:用另一边的像素来补偿填充
BORDER_DEFAULT:默认模式画边框
BORDER_TRANSPANT: 用透明的方式画框
第七个参数:const Scalar 类型的 borderType,一般不用填写,因为这个 API 已经有了默认值 morphologyDefaultBorderValue()

  • 获取核(图形B)的API: CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1));

 第一个参数:表示内核的形状(就是图形B是以什么形状放在图像A上的),这里包括了:矩形(MORPH_RECT)、交叉形(MORPH_CROSS)、椭圆形(MORPH_ELLIPSE),常用的内核形状是矩形
第二个参数:内核的尺寸
第三个参数:锚点的位置,默认值 Point(-1,-1),表示的是位于中心点

4. 代码实战:实现图像膨胀功能

(1)功能实现的步骤:imread 读取图片、使用 cvtColor 对图片进行灰度操作、使用 getStructingElement 获取卷积层(也就是获取图形B)、使用 dilate 对图片进行膨胀(将A和B合并)、imwrite 保存图片。流程图如下:

(2)代码如下:

#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>using namespace cv;
using namespace std;int main()
{Mat testImage = imread("zjl.jpg");//读取图片if(testImage.empty()){printf("read testImage failed....\n");}Mat vertical_structure = getStructuringElement(MORPH_CROSS, Size(20,20));//创建一个20*20的十字形结构元素dilate(testImage, testImage, vertical_structure);//膨胀操作,testImage为输入图像,testImage为输出图像,vertical_structure为核imwrite("zjl1.jpg", testImage);//保存图片return 0;
}

(3)效果如下:上图是MORPH_CROSS(十字交叉的核),下图是MORPH_RECT(矩形核)效果图。

 二.腐蚀

1.腐蚀原理

        原理和膨胀一样,腐蚀就是膨胀的反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。

2.特点

  • 图像更加细小
  • 黑暗背景部分会更加大

3.腐蚀的API

  •  CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, const Scalar& borderValue = morphologyDefaultBorderValue() );

第一个参数:src 的类型是 InputArray,它指的是输入图像,它可以是 Mat 类的数据。图像的通道数可以是任意数,但是图像的深度一般是 CV_8U,CV_16U,CV_16S,CV_32F,CV_64F
第二个参数:dst 的类型是 OutputArray,它指的是目标图像(输出图像),值得注意的是输出图像的尺寸、类型要和输入图像是一致的。
第三个参数:InputArray 类型的 kernel,膨胀操作的核。当这个值为 NULL 的时候,表示使用的核参考点默认是 3*3。这个参数通常会配合 getStructingElement 参数的使用(这个参数的使用,下面我会详细说到)。
第四个参数:Point 类型的 anchor,描点的位置,默认是(-1,-1),表示中心位置。
第五个参数:int 类型的迭代次数,默认是 1
第六个参数:int 类型的 borderType,这个类型用于推断图像外部的边界模式,它的默认值是 BORDER_DEFAULT
第七个参数:const Scalar 类型的 borderType,一般不用填写,因为这个 API 已经有了默认值 morphologyDefaultBorderValue()

  •  CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1));

第一个参数:表示内核的形状,这里包括了:矩形(MORPH_RECT)、交叉(MORPH_CROSS)、椭圆形(MORPH_ELLIPSE)
第二个参数:内核的尺寸
第三个参数:锚点的位置,默认值 Point(-1,-1),表示的是位于中心点

 4.代码实战:实现图像腐蚀功能

(1)功能实现的步骤:imread 读取图片、使用 cvtColor 对图片进行灰度操作、使用 getStructingElement 获取卷积层(也就是获取图形B)、使用 erode 对图片进行腐蚀、imwrite 保存图片。流程图如下: 

(2)代码如下: 

#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>using namespace cv;
using namespace std;int main()
{Mat testImage = imread("zjl.jpg");//读取图片if(testImage.empty()){printf("could not load image.....\n");return -1;}Mat vertical_structure = getStructuringElement(MORPH_RECT, Size(15,15));//获取核图形erode(testImage, testImage, vertical_structure);//腐蚀操作imwrite("zjl2.jpg", testImage);//保存图片return 0;
}

(3)效果如下:上图是MORPH_CROSS(十字交叉的核),下图是MORPH_RECT(矩形核)效果图。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/news/908176.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习实战37-基于情感字典和机器学习的股市舆情分析可视化系统

文章目录 一、项目背景数字时代情感分析情况二、项目流程1.数据采集与预处理2.复合情感分析模型构建3.舆情分析可视化:三、机器学习算法原理1.支持向量机基础2.核函数与高维映射3.情感分类特征融合4.模型训练与优化四、实现代码五、系统特点与优势1.复合情感分析模型2.多维度可…

STM32F407VET6学习笔记9:编译输出固定大小.bin文件

今日学习如何输出固定大小的.bin编译文件 目录 Keil_V5 fromelf.exe 软件目录&#xff1a; 魔棒添加命令输出bin文件&#xff1a; 输出固定大小的bin文件&#xff1a; 计算bin文件大小&#xff1a; 安装 SRecord 工具集&#xff1a; 使用SRecord&#xff1a; 参考文章&#…

【Web应用】若依框架:基础篇14 源码阅读-后端代码分析

文章目录 ⭐前言⭐一、课程讲解⭐总结 标题详情作者JosieBook头衔CSDN博客专家资格、阿里云社区专家博主、软件设计工程师博客内容开源、框架、软件工程、全栈&#xff08;,NET/Java/Python/C&#xff09;、数据库、操作系统、大数据、人工智能、工控、网络、程序人生口号成为你…

Java 单例模式详解

目录 1. 饿汉式&#xff08;Eager Initialization&#xff09; 2. 懒汉式&#xff08;Lazy Initialization&#xff09; 3. 懒汉式 同步锁&#xff08;线程安全&#xff09; 4. 双重检查锁&#xff08;Double-Checked Locking&#xff09; 5. 静态内部类&#xff08;推荐…

从 AMQP 到 RabbitMQ:核心组件设计与工作原理(一)

一、引言 ** 在当今分布式系统盛行的时代&#xff0c;消息队列作为一种关键的中间件技术&#xff0c;承担着系统间异步通信、解耦和削峰填谷的重要职责。AMQP&#xff08;Advanced Message Queuing Protocol&#xff09;作为一种高级消息队列协议&#xff0c;为消息队列的实现…

概率单纯形(Probability Simplex)

目录 定义性质在统计学中的应用在机器学习中的应用在信息论中的应用在优化问题中的应用在其他领域的应用 定义 定义&#xff1a;在数学中&#xff0c;概率单纯形&#xff08;Probability Simplex&#xff09;是指在 n n n维空间中&#xff0c;所有分量非负且分量之和为1的向量…

项目练习:Vue2中el-button上的@click事件失效

文章目录 一、问题描述二、解决 一、问题描述 button按钮上绑定了一个click事件 对应的方法写在methods中 但是&#xff0c;测试点击时&#xff0c;无法触发函数 二、解决 1、问题代码 <el-buttonclick"changeConfirm(Y)"type"success"plainicon&qu…

十六、【前端强化篇】完善 TestCase 编辑器:支持 API 结构化定义与断言配置

【前端强化篇】完善 TestCase 编辑器:支持 API 结构化定义与断言配置 前言准备工作第一步:更新前端 `TestCase` 类型定义第二步:改造 `TestCaseEditView.vue` 表单第三步:修改后端代码中的TestCase模型和序列化器第四步:测试强化后的用例编辑器总结前言 在之前的后端文章…

HTTP连接管理——短连接,长连接,HTTP 流水线

连接管理是一个 HTTP 的关键话题&#xff1a;打开和保持连接在很大程度上影响着网站和 Web 应用程序的性能。在 HTTP/1.x 里有多种模型&#xff1a;短连接、_长连接_和 HTTP 流水线。 下面分别来详细解释 短连接 HTTP 协议最初&#xff08;0.9/1.0&#xff09;是个非常简单的…

MySQL范式和反范式

范式 是用一组规则定义的数据库设计标准&#xff0c;旨在确保数据库结构合理&#xff0c;避免数据冗余和异常。 目的 消除数据的重复&#xff0c;提高存储效率防止数据异常&#xff08;插入、删除、更新异常&#xff09;提高数据的完整性和一致性 第一范式 定义 所有列&am…

编程技能:格式化打印04,sprintf

专栏导航 本节文章分别属于《Win32 学习笔记》和《MFC 学习笔记》两个专栏&#xff0c;故划分为两个专栏导航。读者可以自行选择前往哪个专栏。 &#xff08;一&#xff09;WIn32 专栏导航 上一篇&#xff1a;编程技能&#xff1a;格式化打印03&#xff0c;printf 回到目录…

JavaScript性能优化实战:深入探讨JavaScript性能瓶颈与优化技巧

引言:为什么JavaScript性能至关重要 在现代Web开发中,JavaScript已成为构建交互式应用程序的核心技术。随着单页应用(SPA)和复杂前端架构的普及,JavaScript代码的性能直接影响用户体验、转化率甚至搜索引擎排名。研究表明,页面加载时间每增加1秒,转化率可能下降7%,而性能…

Java数据结构——八大排序

排序 插⼊排序希尔排序直接选择排序堆排序冒泡排序快速排序归并排序计数排序 排序的概念 排序&#xff1a;就是将一串东西&#xff0c;按照要求进行排序&#xff0c;按照递增或递减排序起来 稳定性&#xff1a;就是比如排序中有两个相同的数&#xff0c;如果排序后&#xff0c…

WPF响应式UI的基础:INotifyPropertyChanged

INotifyPropertyChanged 1 实现基础接口2 CallerMemberName优化3 数据更新触发策略4 高级应用技巧4.1 表达式树优化4.2 性能优化模式4.3 跨平台兼容实现 5 常见错误排查 在WPF的MVVM架构中&#xff0c; INotifyPropertyChanged是实现数据驱动界面的核心机制。本章将深入解析属…

低空城市场景下的多无人机任务规划与动态协调!CoordField:无人机任务分配的智能协调场

作者&#xff1a;Tengchao Zhang 1 ^{1} 1 , Yonglin Tian 2 ^{2} 2 , Fei Lin 1 ^{1} 1, Jun Huang 1 ^{1} 1, Patrik P. Sli 3 ^{3} 3, Rui Qin 2 , 4 ^{2,4} 2,4, and Fei-Yue Wang 5 , 1 ^{5,1} 5,1单位&#xff1a; 1 ^{1} 1澳门科技大学创新工程学院工程科学系&#xff0…

解决Java项目NoProviderFoundException报错

前言 在Java开发中&#xff0c;jakarta.validation.NoProviderFoundException 是一个令人困惑的运行时错误&#xff0c;常因校验框架依赖缺失或版本冲突导致。 问题复现&#xff1a;用户注册校验失败 业务场景 开发一个用户注册功能&#xff0c;要求&#xff1a; 校验邮箱…

重构跨境收益互换价值链:新一代TRS平台的破局之道

当香港券商面对内地汹涌的结构化产品需求&#xff0c;一套智能化的TRS系统正成为打开万亿市场的金钥匙 在跨境金融的暗流涌动中&#xff0c;一家中资背景的香港券商正面临甜蜜的烦恼&#xff1a;内地高净值客户对港股、美股的杠杆交易需求激增&#xff0c;但传统TRS业务深陷操作…

实验设计如何拯救我的 CEI VSR 28G 设计

为了确定总体设计裕量&#xff0c;CEI 28G VSR/100 Gb 以太网设计需要分析 500 万种通道变化、收发器工艺和均衡设置的组合。蛮力模拟需要 278 天&#xff0c;这显然超出了可用的时间表。 相反&#xff0c;我们使用实验设计 &#xff08;DOE&#xff09; 和响应面建模 &#x…

【仿生机器人】刀剑神域——爱丽丝苏醒计划,需求文档

仿生机器人"爱丽丝"系统架构设计需求文档 一、硬件基础 已完成头部和颈部硬件搭建 25个舵机驱动表情系统 颈部旋转功能 眼部摄像头&#xff08;视觉输入&#xff09; 麦克风阵列&#xff08;听觉输入&#xff09; 颈部发声装置&#xff08;语音输出&#xff09…

【Day44】

DAY 44 预训练模型 知识点回顾&#xff1a; 预训练的概念常见的分类预训练模型图像预训练模型的发展史预训练的策略预训练代码实战&#xff1a;resnet18 作业&#xff1a; 尝试在cifar10对比如下其他的预训练模型&#xff0c;观察差异&#xff0c;尽可能和他人选择的不同尝试通…