Spring Boot中使用Bouncy Castle实现SM2国密算法(与前端JS加密交互)
- 一、环境准备
- 二、核心实现
- 三、前后端交互流程
- 四、关键问题解决方案
- 五、常见问题排查
- 六、最佳实践建议

在现代Web应用中,数据安全传输至关重要。SM2作为我国自主设计的非对称加密算法,在安全性、效率和合规性方面具有显著优势。本文将详细介绍如何在Spring Boot中集成SM2算法,实现与前端JS的无缝加密交互。
一、环境准备
技术栈:
- Java 1.8
- Spring Boot 2.1.18
- Bouncy Castle 1.68+
- 前端:sm-crypto或类似库
Maven核心依赖:
<dependencies><dependency><groupId>org.bouncycastle</groupId><artifactId>bcprov-jdk15on</artifactId><version>1.68</version></dependency>
</dependencies>
二、核心实现
- 密钥生成服务
@RestController
@RequestMapping("/sm2")
public class SM2Controller {@GetMapping("/keypair")public Map<String, String> generateKeyPair() throws Exception {KeyPair keyPair = SM2CryptoUtil.generateKeyPair();ECPublicKey publicKey = (ECPublicKey) keyPair.getPublic();ECPrivateKey privateKey = (ECPrivateKey) keyPair.getPrivate();String publicKeyHex = Hex.toHexString(publicKey.getQ().getEncoded(false));String privateKeyHex = privateKey.getD().toString(16);// 标准化私钥格式(64字符)privateKeyHex = String.format("%64s", privateKeyHex).replace(' ', '0');return Map.of("publicKey", publicKeyHex, // 130字符带04前缀"privateKey", privateKeyHex // 64字符);}
}
- SM2解密服务
import org.bouncycastle.asn1.gm.GMNamedCurves;
import org.bouncycastle.asn1.x9.X9ECParameters;
import org.bouncycastle.crypto.digests.SM3Digest;
import org.bouncycastle.crypto.params.ECDomainParameters;
import org.bouncycastle.jce.ECNamedCurveTable;
import org.bouncycastle.jce.provider.BouncyCastleProvider;
import org.bouncycastle.jce.spec.ECNamedCurveParameterSpec;
import org.bouncycastle.math.ec.ECPoint;
import org.bouncycastle.util.BigIntegers;
import org.bouncycastle.util.encoders.Hex;import java.math.BigInteger;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.SecureRandom;
import java.security.Security;
import java.util.Arrays;/*** @author cmamg* @title: Base64Util* @projectName * @description: TODO* @date 2025/7/29*/
public class SM2CryptoUtil {// 加密模式常量public static final int C1C2C3 = 0;public static final int C1C3C2 = 1;// 椭圆曲线参数private static final X9ECParameters EC_PARAMS;private static final ECDomainParameters DOMAIN_PARAMS;private static final BigInteger CURVE_ORDER;static {Security.addProvider(new BouncyCastleProvider());EC_PARAMS = GMNamedCurves.getByName("sm2p256v1");DOMAIN_PARAMS = new ECDomainParameters(EC_PARAMS.getCurve(),EC_PARAMS.getG(),EC_PARAMS.getN(),EC_PARAMS.getH());CURVE_ORDER = EC_PARAMS.getN();}/*** 生成SM2密钥对*/public static KeyPair generateKeyPair() throws Exception {ECNamedCurveParameterSpec spec = ECNamedCurveTable.getParameterSpec("sm2p256v1");KeyPairGenerator kpg = KeyPairGenerator.getInstance("EC", "BC");kpg.initialize(spec, new SecureRandom());return kpg.generateKeyPair();}/*** 获取压缩公钥十六进制字符串*/public static String getCompressedPublicKey(ECPoint publicKey) {byte[] compressed = publicKey.getEncoded(true);return Hex.toHexString(compressed);}/*** 获取未压缩公钥十六进制字符串(不带04前缀)*/public static String getUncompressedPublicKey(ECPoint publicKey) {byte[] uncompressed = publicKey.getEncoded(false);// 去掉开头的04标识return Hex.toHexString(uncompressed);}/*** 从十六进制字符串解析公钥*/public static ECPoint parsePublicKey(String publicKeyHex) {// 添加04前缀表示未压缩格式byte[] pubKeyBytes = Hex.decode( publicKeyHex);return DOMAIN_PARAMS.getCurve().decodePoint(pubKeyBytes);}private static BigInteger parsePrivateKey(String privateKeyHex) {if (privateKeyHex == null || privateKeyHex.length() != 64) {throw new IllegalArgumentException("私钥必须是64字符十六进制字符串");}try {BigInteger privateKey = new BigInteger(privateKeyHex, 16);// 验证私钥范围 [1, n-1]if (privateKey.signum() <= 0 || privateKey.compareTo(CURVE_ORDER) >= 0) {throw new IllegalArgumentException("私钥超出有效范围");}return privateKey;} catch (NumberFormatException e) {throw new IllegalArgumentException("无效的私钥格式", e);}}public static String decryptStr(String ciphertextHex, String privateKeyHex) throws Exception {return new String(decrypt(ciphertextHex,privateKeyHex, 1), "UTF-8");}/*** SM2解密*/public static byte[] decrypt(String ciphertextHex, String privateKeyHex, int cipherMode) throws Exception {// 1. 验证并解析私钥BigInteger privateKey = parsePrivateKey(privateKeyHex);// 2. 解析密文byte[] ciphertext = Hex.decode(ciphertextHex);// 验证最小长度 = C1(64) + C3(32) = 96字节if (ciphertext.length < 96) {throw new IllegalArgumentException("密文太短");}// 3. 拆分密文byte[] c1 = Arrays.copyOfRange(ciphertext, 0, 64); // 64字节byte[] c3;byte[] c2;if (cipherMode == C1C2C3) {// C1C2C3模式: C1(64) + C2 + C3(32)c3 = Arrays.copyOfRange(ciphertext, ciphertext.length - 32, ciphertext.length);c2 = Arrays.copyOfRange(ciphertext, 64, ciphertext.length - 32);} else {// C1C3C2模式: C1(64) + C3(32) + C2c3 = Arrays.copyOfRange(ciphertext, 64, 96);c2 = Arrays.copyOfRange(ciphertext, 96, ciphertext.length);}// 4. 重建C1点byte[] c1Full = new byte[65]; // 04 + 64字节c1Full[0] = 0x04; // 添加未压缩标识System.arraycopy(c1, 0, c1Full, 1, 64);ECPoint c1Point;try {c1Point = DOMAIN_PARAMS.getCurve().decodePoint(c1Full);} catch (Exception e) {throw new IllegalArgumentException("无效的C1点", e);}// 5. 计算共享点 (x2, y2) = privateKey * C1ECPoint s = c1Point.multiply(privateKey).normalize();// 验证点是否在曲线上if (!s.isValid()) {throw new SecurityException("计算出的点不在曲线上");}byte[] x2 = BigIntegers.asUnsignedByteArray(32, s.getXCoord().toBigInteger());byte[] y2 = BigIntegers.asUnsignedByteArray(32, s.getYCoord().toBigInteger());// 6. KDF生成密钥流byte[] z = new byte[x2.length + y2.length];System.arraycopy(x2, 0, z, 0, x2.length);System.arraycopy(y2, 0, z, x2.length, y2.length);byte[] t = kdf(z, c2.length);// 7. 异或解密byte[] msg = new byte[c2.length];for (int i = 0; i < c2.length; i++) {msg[i] = (byte) (c2[i] ^ t[i]);}// 8. 验证C3byte[] u = new byte[x2.length + msg.length + y2.length];System.arraycopy(x2, 0, u, 0, x2.length);System.arraycopy(msg, 0, u, x2.length, msg.length);System.arraycopy(y2, 0, u, x2.length + msg.length, y2.length);byte[] calculatedC3 = sm3(u);if (!Arrays.equals(c3, calculatedC3)) {throw new SecurityException("C3验证失败: 数据可能被篡改或密钥错误");}return msg;}/*** KDF密钥派生函数*/private static byte[] kdf(byte[] z, int keylen) {int ct = 1;int offset = 0;byte[] result = new byte[keylen];SM3Digest digest = new SM3Digest();while (offset < keylen) {// 准备计数器字节byte[] ctBytes = new byte[]{(byte) (ct >>> 24),(byte) (ct >>> 16),(byte) (ct >>> 8),(byte) ct};// 计算SM3哈希digest.update(z, 0, z.length);digest.update(ctBytes, 0, 4);byte[] hash = new byte[digest.getDigestSize()];digest.doFinal(hash, 0);// 填充结果int copyLen = Math.min(keylen - offset, hash.length);System.arraycopy(hash, 0, result, offset, copyLen);offset += copyLen;ct++;digest.reset();}return result;}/*** SM3哈希计算*/private static byte[] sm3(byte[] input) {SM3Digest digest = new SM3Digest();digest.update(input, 0, input.length);byte[] hash = new byte[digest.getDigestSize()];digest.doFinal(hash, 0);return hash;}
}
- 前端加密示例
import { sm2 } from 'sm-crypto';// 使用后端生成的公钥(130字符带04前缀)
const publicKey = '04d4de...'; function encryptMessage(message) {// 使用C1C3C2模式加密const ciphertext = sm2.doEncrypt(message, publicKey, 1 // cipherMode=1 表示C1C3C2);return ciphertext; // 十六进制字符串
}// 调用示例
const encrypted = encryptMessage('敏感数据123');
三、前后端交互流程
密钥获取:
GET /sm2/keypair
Response: { "publicKey": "04...", "privateKey": "a1b2..." }
前端加密:
const ciphertext = sm2.doEncrypt(data, publicKey, 1);
后端解密:
POST /sm2/decrypt
{"ciphertext": "a1b2c3...","privateKey": "a1b2...","mode": 1
}
四、关键问题解决方案
- 公钥格式一致性
前端要求公钥带04前缀(未压缩格式),后端需确保:
public String getPublicKeyHex(ECPoint publicKey) {return Hex.toHexString(publicKey.getEncoded(false)); // 带04前缀
}
- 私钥范围验证
防止Scalar not in interval错误:
private static final BigInteger CURVE_ORDER = EC_PARAMS.getN();if (privateKey.signum() <= 0 || privateKey.compareTo(CURVE_ORDER) >= 0) {throw new IllegalArgumentException("无效私钥范围");
}
- C1点重建
前端密文中的C1点不带04前缀,后端需重建:
byte[] c1Full = new byte[65];
c1Full[0] = 0x04; // 添加前缀
System.arraycopy(c1, 0, c1Full, 1, 64);
五、常见问题排查
错误现象 可能原因 解决方案
Scalar not in interval 私钥格式错误或越界 验证私钥长度64字符,值在[1, n-1]范围内
C3验证失败 密钥错误或数据篡改 检查公私钥配对,重试加密流程
无效的C1点 密文格式错误 确认使用C1C3C2模式,检查密文长度
解密乱码 编码不一致 统一使用UTF-8编码
六、最佳实践建议
密钥管理:
前端不存储私钥
后端使用HSM或KMS管理私钥
定期轮换密钥
性能优化:
// 重用SM3Digest实例
private static final ThreadLocal<SM3Digest> sm3Cache = ThreadLocal.withInitial(SM3Digest::new);
安全增强:
// 防止时序攻击
if (!MessageDigest.isEqual(c3, calculatedC3)) {throw new SecurityException("C3验证失败");
}
七、总结
本文实现了Spring Boot中完整的SM2算法集成方案,重点解决了:
密钥生成与格式标准化
与前端JS的加密交互
解密过程中的异常处理
通过此方案,开发者可以快速构建符合国密标准的安全应用,确保数据传输的机密性和完整性。在实际业务中,建议结合HTTPS等传输层安全措施,构建纵深防御体系。