OpenCV CUDA模块图像过滤------创建一个 Sobel 滤波器函数createSobelFilter()

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

该函数用于创建一个 Sobel 滤波器,用于在 GPU 上进行边缘检测。它基于图像的梯度计算:

  • dx 表示对 x 方向求导的阶数(0 或 1)
  • dy 表示对 y 方向求导的阶数(0 或 1)
  • 支持核大小为 1、3、5、7 等奇数尺寸(默认为 3)

由于是 CUDA 实现,适合大规模图像的高性能处理。

参数

参数名类型描述
srcTypeint输入图像的数据类型。例如:CV_8UC1, CV_32FC4 等。
dstTypeint输出图像的数据类型。通常与输入相同或转换为更高精度(如 CV_32F)。
dxintx 方向导数的阶数。取值为 0 或 1,表示是否对 x 方向求导。
dyinty 方向导数的阶数。取值为 0 或 1,表示是否对 y 方向求导。
ksizeintSobel 核大小,必须是正奇数,默认为 3。支持 1、3、5、7。
scaledouble可选比例因子,默认为 1。可用于对结果进行缩放(如归一化)。
rowBorderModeint垂直方向(行)的边界填充方式。常用值有 BORDER_DEFAULT, BORDER_REPLICATE 等。
columnBorderModeint水平方向(列)的边界填充方式,默认为 -1,表示与 rowBorderMode 相同。

返回值

返回一个指向 cv::cuda::Filter 的智能指针 (Ptr),可以调用 .apply() 方法在 GPU 上执行 Sobel 边缘检测操作。

代码示例

以下是一个完整的使用 createSobelFilter 提取图像 x 和 y 方向梯度的示例代码:

#include <opencv2/opencv.hpp>
#include <opencv2/cudaimgproc.hpp>
#include <opencv2/cudafilters.hpp>int main() {// 读取图像并上传到 GPUcv::Mat h_input = cv::imread("/media/dingxin/data/study/OpenCV/sources/images/Lenna.png", cv::IMREAD_GRAYSCALE);if (h_input.empty()) {std::cerr << "无法加载图像!" << std::endl;return -1;}cv::cuda::GpuMat d_input, d_output_x, d_output_y;d_input.upload(h_input);// 创建 Sobel 滤波器(x方向)cv::Ptr<cv::cuda::Filter> sobelX = cv::cuda::createSobelFilter(d_input.type(),       // 输入类型CV_32F,               // 输出设为浮点型1,                    // x方向导数0,                    // y方向不导数3                     // 核大小);// 创建 Sobel 滤波器(y方向)cv::Ptr<cv::cuda::Filter> sobelY = cv::cuda::createSobelFilter(d_input.type(),CV_32F,0,1,3);// 应用滤波器sobelX->apply(d_input, d_output_x);sobelY->apply(d_input, d_output_y);// 下载结果并归一化显示cv::Mat h_output_x, h_output_y;d_output_x.download(h_output_x);d_output_y.download(h_output_y);cv::Mat out_x_u8, out_y_u8;cv::normalize(h_output_x, out_x_u8, 0, 255, cv::NORM_MINMAX, CV_8U);cv::normalize(h_output_y, out_y_u8, 0, 255, cv::NORM_MINMAX, CV_8U);cv::imshow("Sobel X", out_x_u8);cv::imshow("Sobel Y", out_y_u8);cv::waitKey(0);return 0;
}

运行结果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/pingmian/82564.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【JavaSE】枚举和注解学习笔记

枚举和注解 -枚举 规定多选一数据类型的解决方案-枚举 枚举对应英文(enumeration,简写 enum) 2)枚举是一组常量的集合。 3)可以这里理解:枚举属于一种特殊的类&#xff0c;里面只包含一组有限的特定的对象。 枚举的两种实现方式 自定义实现枚举 使用enum关键字实现枚举 自…

Spark SQL进阶:解锁大数据处理的新姿势

目录 一、Spark SQL&#xff0c;为何进阶&#xff1f; 二、进阶特性深剖析 2.1 窗口函数&#xff1a;数据洞察的新视角 2.2 高级聚合&#xff1a;挖掘数据深度价值 2.3 自定义函数&#xff08;UDF 和 UDTF&#xff09;&#xff1a;拓展功能边界 三、性能优化实战 3.1 数…

如何利用 Conda 安装 Pytorch 教程 ?

如何利用 Conda 安装 Pytorch 教程 &#xff1f; 总共分为六步走&#xff1a; &#xff08;1&#xff09;第一步&#xff1a;验证conda 环境是否安装好&#xff1f; 1) conda -V2) conda --version&#xff08;2&#xff09;第二步&#xff1a;查看现有环境 conda env list…

什么是HTTP

HTTP&#xff08;HyperText Transfer Protocol&#xff09;是万维网数据通信的基础协议&#xff0c;作为应用层协议具有以下关键特性&#xff1a; 客户端-服务器模型&#xff1a;基于请求/响应模式 无状态协议&#xff1a;默认不保留通信状态 可扩展性&#xff1a;通过首部字…

2025-05-27 学习记录--Python-模块

合抱之木&#xff0c;生于毫末&#xff1b;九层之台&#xff0c;起于累土&#xff1b;千里之行&#xff0c;始于足下。&#x1f4aa;&#x1f3fb; 一、模块 ⭐️ &#xff08;一&#xff09;模块的导入与使用 &#x1f36d; 模块的导入&#xff1a;&#x1f41d; 模块 就好比…

leetcode 131. Palindrome Partitioning

目录 一、题目描述 二、方法1、回溯法每次暴力判断回文子串 三、方法2、动态规划回溯法 一、题目描述 分割回文子串 131. Palindrome Partitioning 二、方法1、回溯法每次暴力判断回文子串 class Solution {vector<vector<string>> res;vector<string>…

重构开发范式!飞算JavaAI革新Spring Cloud分布式系统开发

分布式系统凭借高可用性、可扩展性等核心优势&#xff0c;成为大型软件项目的标配架构。Spring Cloud作为Java生态最主流的分布式开发框架&#xff0c;虽被广泛应用于微服务架构搭建&#xff0c;但其传统开发模式却面临效率瓶颈——从服务注册中心配置到网关路由规则编写&#…

python 生成复杂表格,自动分页等功能

py&#xff54;&#xff48;&#xff4f;&#xff4e; 生成复杂表格&#xff0c;自动分页等功能 解决将Python中的树形目录数据转换为Word表格&#xff0c;并生成带有合并单元格的检测报告的问题。首先&#xff0c;要解决“tree目录数据”和“Word表格互换”&#xff0c;指将树…

根据Cortex-M3(包括STM32F1)权威指南讲解MCU内存架构与如何查看编译器生成的地址具体位置

首先我们先查看官方对于Cortex-M3预定义的存储器映射 1.存储器映射 1.1 Cortex-M3架构的存储器结构 内部私有外设总线&#xff1a;即AHB总线&#xff0c;包括NVIC中断&#xff0c;ITM硬件调试&#xff0c;FPB, DWT。 外部私有外设总线&#xff1a;即APB总线&#xff0c;用于…

Linux中硬件信息查询利器——lshw命令详解!

lshw&#xff08;List Hardware&#xff09;是 Linux 系统下的一款命令行工具&#xff0c;用于全面检测并显示详细的硬件信息。它能够报告 CPU、内存、主板、存储设备、显卡、网络设备等几乎所有硬件组件的详细信息&#xff0c;适用于系统管理、故障排查和硬件兼容性检查等场景…

用llama3微调了一个WiFiGPT 用于室内定位

一段话总结 本文提出WiFiGPT,一种基于Decoder-Only Transformer(如LLaMA 3)的室内定位系统,通过将WiFi遥测数据(如CSI、FTM、RSSI)转换为文本序列进行端到端训练,无需手工特征工程即可实现高精度定位。实验表明,WiFiGPT在LOS环境中实现亚米级精度(MAE低至0.90米),在…

大模型系列22-MCP

大模型系列22-MCP 玩转 MCP 协议&#xff1a;用 Cline DeepSeek 接入天气服务什么是 MCP&#xff1f;环境准备&#xff1a;VScode Cline DeepSeek**配置 DeepSeek 模型&#xff1a;****配置 MCP 工具****uvx是什么&#xff1f;****安装 uv&#xff08;会自动有 uvx 命令&…

Go语言Map的底层原理

概念 map 又称字典&#xff0c;是一种常用的数据结构&#xff0c;核心特征包含下述三点&#xff1a; &#xff08;1&#xff09;存储基于 key-value 对映射的模式&#xff1b; &#xff08;2&#xff09;基于 key 维度实现存储数据的去重&#xff1b; &#xff08;3&#x…

循环神经网络(RNN):原理、架构与实战

循环神经网络&#xff08;Recurrent Neural Network, RNN&#xff09;是一类专门处理序列数据的神经网络&#xff0c;如时间序列、自然语言、音频等。与前馈神经网络不同&#xff0c;RNN 引入了循环结构&#xff0c;能够捕捉序列中的时序信息&#xff0c;使模型在不同时间步之间…

java 项目登录请求业务解耦模块全面

登录是统一的闸机&#xff1b; 密码存在数据库中&#xff0c;用的是密文&#xff0c;后端加密&#xff0c;和数据库中做对比 1、UserController public class UserController{Autowiredprivate IuserService userservicepublic JsonResult login(Validated RequestBody UserLo…

【手写数据库核心揭秘系列】第9节 可重入的SQL解析器,不断解析Structure Query Language,语言翻译好帮手

可重入的SQL解析器 文章目录 可重入的SQL解析器一、概述 二、可重入解析器 2.1 可重入设置 2.2 记录状态的数据结构 2.3 节点数据类型定义 2.4 头文件引用 三、调整后的程序结构 四、总结 一、概述 现在就来修改之前sqlscanner.l和sqlgram.y程序,可以不断输入SQL语句,循环执…

微软开源bitnet b1.58大模型,应用效果测评(问答、知识、数学、逻辑、分析)

微软开源bitnet b1.58大模型,应用效果测评(问答、知识、数学、逻辑、分析) 目 录 1. 前言... 2 2. 应用部署... 2 3. 应用效果... 3 1.1 问答方面... 3 1.2 知识方面... 4 1.3 数字运算... 6 1.4 逻辑方面... …

用HTML5+JavaScript实现汉字转拼音工具

用HTML5JavaScript实现汉字转拼音工具 前一篇博文&#xff08;https://blog.csdn.net/cnds123/article/details/148067680&#xff09;提到&#xff0c;当需要将拼音添加到汉字上面时&#xff0c;用python实现比HTML5JavaScript实现繁琐。在这篇博文中用HTML5JavaScript实现汉…

鸿蒙OSUniApp 开发的动态背景动画组件#三方框架 #Uniapp

使用 UniApp 开发的动态背景动画组件 前言 在移动应用开发中&#xff0c;动态背景动画不仅能提升界面美感&#xff0c;还能增强用户的沉浸感和品牌辨识度。无论是登录页、首页还是活动页&#xff0c;恰到好处的动态背景都能让产品脱颖而出。随着鸿蒙&#xff08;HarmonyOS&am…

云原生技术架构技术探索

文章目录 前言一、什么是云原生技术架构二、云原生技术架构的优势三、云原生技术架构的应用场景结语 前言 在当今的技术领域&#xff0c;云原生技术架构正以一种势不可挡的姿态席卷而来&#xff0c;成为了众多开发者、企业和技术爱好者关注的焦点。那么&#xff0c;究竟什么是…