Python打卡训练营Day41

DAY 41 简单CNN

知识回顾

  1. 数据增强
  2. 卷积神经网络定义的写法
  3. batch归一化:调整一个批次的分布,常用与图像数据
  4. 特征图:只有卷积操作输出的才叫特征图
  5. 调度器:直接修改基础学习率

卷积操作常见流程如下:

1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层

  1. Flatten -> Dense (with Dropout,可选) -> Dense (Output)

这里相关的概念比较多,如果之前没有学习过计算机视觉部分,请自行上网检索视频了解下基础概念,也可以对照讲义学习下。

计算机视觉入门

作业:尝试手动修改下不同的调度器和CNN的结构,观察训练的差异。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 1. 数据预处理
# 训练集:使用多种数据增强方法提高模型泛化能力
train_transform = transforms.Compose([# 随机裁剪图像,从原图中随机截取32x32大小的区域transforms.RandomCrop(32, padding=4),# 随机水平翻转图像(概率0.5)transforms.RandomHorizontalFlip(),# 随机颜色抖动:亮度、对比度、饱和度和色调随机变化transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),# 随机旋转图像(最大角度15度)transforms.RandomRotation(15),# 将PIL图像或numpy数组转换为张量transforms.ToTensor(),# 标准化处理:每个通道的均值和标准差,使数据分布更合理transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 测试集:仅进行必要的标准化,保持数据原始特性,标准化不损失数据信息,可还原
test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=train_transform  # 使用增强后的预处理
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=test_transform  # 测试集不使用增强
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 4. 定义CNN模型的定义(替代原MLP)
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()  # 继承父类初始化# ---------------------- 第一个卷积块 ----------------------# 卷积层1:输入3通道(RGB),输出32个特征图,卷积核3x3,边缘填充1像素self.conv1 = nn.Conv2d(in_channels=3,       # 输入通道数(图像的RGB通道)out_channels=32,     # 输出通道数(生成32个新特征图)kernel_size=3,       # 卷积核尺寸(3x3像素)padding=1            # 边缘填充1像素,保持输出尺寸与输入相同)# 批量归一化层:对32个输出通道进行归一化,加速训练self.bn1 = nn.BatchNorm2d(num_features=32)# ReLU激活函数:引入非线性,公式:max(0, x)self.relu1 = nn.ReLU()# 最大池化层:窗口2x2,步长2,特征图尺寸减半(32x32→16x16)self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  # stride默认等于kernel_size# ---------------------- 第二个卷积块 ----------------------# 卷积层2:输入32通道(来自conv1的输出),输出64通道self.conv2 = nn.Conv2d(in_channels=32,      # 输入通道数(前一层的输出通道数)out_channels=64,     # 输出通道数(特征图数量翻倍)kernel_size=3,       # 卷积核尺寸不变padding=1            # 保持尺寸:16x16→16x16(卷积后)→8x8(池化后))self.bn2 = nn.BatchNorm2d(num_features=64)self.relu2 = nn.ReLU()self.pool2 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:16x16→8x8# ---------------------- 第三个卷积块 ----------------------# 卷积层3:输入64通道,输出128通道self.conv3 = nn.Conv2d(in_channels=64,      # 输入通道数(前一层的输出通道数)out_channels=128,    # 输出通道数(特征图数量再次翻倍)kernel_size=3,padding=1            # 保持尺寸:8x8→8x8(卷积后)→4x4(池化后))self.bn3 = nn.BatchNorm2d(num_features=128)self.relu3 = nn.ReLU()  # 复用激活函数对象(节省内存)self.pool3 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:8x8→4x4# ---------------------- 全连接层(分类器) ----------------------# 计算展平后的特征维度:128通道 × 4x4尺寸 = 128×16=2048维self.fc1 = nn.Linear(in_features=128 * 4 * 4,  # 输入维度(卷积层输出的特征数)out_features=512          # 输出维度(隐藏层神经元数))# Dropout层:训练时随机丢弃50%神经元,防止过拟合self.dropout = nn.Dropout(p=0.5)# 输出层:将512维特征映射到10个类别(CIFAR-10的类别数)self.fc2 = nn.Linear(in_features=512, out_features=10)def forward(self, x):# 输入尺寸:[batch_size, 3, 32, 32](batch_size=批量大小,3=通道数,32x32=图像尺寸)# ---------- 卷积块1处理 ----------x = self.conv1(x)       # 卷积后尺寸:[batch_size, 32, 32, 32](padding=1保持尺寸)x = self.bn1(x)         # 批量归一化,不改变尺寸x = self.relu1(x)       # 激活函数,不改变尺寸x = self.pool1(x)       # 池化后尺寸:[batch_size, 32, 16, 16](32→16是因为池化窗口2x2)# ---------- 卷积块2处理 ----------x = self.conv2(x)       # 卷积后尺寸:[batch_size, 64, 16, 16](padding=1保持尺寸)x = self.bn2(x)x = self.relu2(x)x = self.pool2(x)       # 池化后尺寸:[batch_size, 64, 8, 8]# ---------- 卷积块3处理 ----------x = self.conv3(x)       # 卷积后尺寸:[batch_size, 128, 8, 8](padding=1保持尺寸)x = self.bn3(x)x = self.relu3(x)x = self.pool3(x)       # 池化后尺寸:[batch_size, 128, 4, 4]# ---------- 展平与全连接层 ----------# 将多维特征图展平为一维向量:[batch_size, 128*4*4] = [batch_size, 2048]x = x.view(-1, 128 * 4 * 4)  # -1自动计算批量维度,保持批量大小不变x = self.fc1(x)           # 全连接层:2048→512,尺寸变为[batch_size, 512]x = self.relu3(x)         # 激活函数(复用relu3,与卷积块3共用)x = self.dropout(x)       # Dropout随机丢弃神经元,不改变尺寸x = self.fc2(x)           # 全连接层:512→10,尺寸变为[batch_size, 10](未激活,直接输出logits)return x  # 输出未经过Softmax的logits,适用于交叉熵损失函数# 初始化模型
model = CNN()
#model = model.to(device)  # 将模型移至GPU(如果可用)
# 5. 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数,适用于多分类任务
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器,学习率0.001
# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,        # 指定要控制的优化器(这里是Adam)mode='min',       # 监测的指标是"最小化"(如损失函数)patience=3,       # 如果连续3个epoch指标没有改善,才降低LRfactor=0.5        # 降低LR的比例(新LR = 旧LR × 0.5)
)
# scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)  
# # 每5个epoch,LR = LR × 0.1  # scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[10, 20, 30], gamma=0.5)  
# # 当epoch=10、20、30时,LR = LR × 0.5  # scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10, eta_min=0.0001)  
# # LR在[0.0001, LR_initial]之间按余弦曲线变化,周期为2×T_max  
# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):model.train()  # 设置为训练模式# 记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号# 记录每个 epoch 的准确率和损失train_acc_history = []test_acc_history = []train_loss_history = []test_loss_history = []for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)  # 移至GPUoptimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计准确率和损失running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次打印一次训练信息if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 计算当前epoch的平均训练损失和准确率epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totaltrain_acc_history.append(epoch_train_acc)train_loss_history.append(epoch_train_loss)# 测试阶段model.eval()  # 设置为评估模式test_loss = 0correct_test = 0total_test = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testtest_acc_history.append(epoch_test_acc)test_loss_history.append(epoch_test_loss)# 更新学习率调度器scheduler.step(epoch_test_loss)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)# 绘制每个 epoch 的准确率和损失曲线plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc  # 返回最终测试准确率# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 7. 绘制每个 epoch 的准确率和损失曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 4))# 绘制准确率曲线plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('训练和测试准确率')plt.legend()plt.grid(True)# 绘制损失曲线plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('训练和测试损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 8. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始使用CNN训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# # 保存模型
# torch.save(model.state_dict(), 'cifar10_cnn_model.pth')
# print("模型已保存为: cifar10_cnn_model.pth")

一般来说,在一个训练良好的深度学习模型中,训练集上的准确率应该等于或略高于测试集上的准确率。如果测试集上的准确率显著优于训练集,这通常是一个异常情况,可能暗示着以下几种潜在的问题或特殊情况:

正则化层(最常见原因):

许多深度学习模型包含在训练和测试阶段表现不同的层,最典型的就是:

  • Dropout 层: 在训练阶段,Dropout 层会随机关闭一部分神经元,引入噪声,降低模型在训练集上的表现(因为它每次都在一个“残缺”的网络上学习)。但在测试阶段,Dropout 层是关闭的,所有神经元都参与计算,模型使用其全部学习到的能力进行预测。因此,测试时 Dropout 的关闭可能会导致模型在测试集上表现略好于训练集。
  • Batch Normalization(批归一化)层: 在训练阶段,Batch Normalization 使用当前批次数据的均值和方差进行归一化。但在测试阶段,它使用在训练过程中累积的全局均值和方差(移动平均)。这种行为上的差异也可能导致在某些情况下测试集准确率略高于训练集。
  • 解决方法: 在评估模型性能时,确保正确切换模型的模式。例如,在 PyTorch 中使用 model.eval() 模式进行评估,而在 TensorFlow/Keras 中,确保在评估函数中设置 training=False。在评估训练集准确率时,也应切换到 eval() 模式,以进行公平比较。如果这是原因,切换模式后,训练集准确率通常会提高,并接近或略高于测试集准确率。
  • 数据泄露(Data Leakage):

  • 这是机器学习中最严重的问题之一。如果测试集中的信息在无意中“泄露”到了训练过程中,模型就会在测试集上表现得异常好,因为它已经“见过”这部分数据了。常见的数据泄露形式包括:

  • 特征工程在划分数据集之前完成: 例如,计算了整个数据集的均值、标准差来标准化数据,然后再进行训练/测试集划分。这样测试集的信息就通过这些统计量进入了训练集。

  • 不小心将测试数据混入训练数据: 复制粘贴错误,或者数据集划分逻辑有误。
  • 使用“未来”信息进行预测: 在时间序列数据中,如果使用了未来的数据来训练模型,然后在测试集上预测,也会出现数据泄露。
  • 解决方法: 严格遵循数据处理的最佳实践,即先将数据集划分为训练集、验证集和测试集,然后只在训练集上进行特征工程和数据预处理,并将这些处理规则应用到验证集和测试集。

浙大疏锦行-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/pingmian/83100.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

开源版 PyMOL 如何绘制 Galidesivir 分子结构 ?

参阅:开源版PyMol安装保姆级教程 百度网盘下载 提取码:csub pip show pymol 简介: PyMOL是一个Python增强的分子图形工具。它擅长蛋白质、小分子、密度、表面和轨迹的3D可视化。它还包括分子编辑、射线追踪和动画。 先从 www.python.org 下载 python-…

【FPGA】Vivado 保姆级安装教程 | 从官网下载安装包开始到安装完毕 | 每步都有详细截图说明 | 支持无脑跟装

安装包下载:Xilinx_Vivado Download Link(下好后可直接安装) 目录 (有安装包后,可直接跳转至 Step5,免得去官网下了,比较麻烦) Step1:进入官网 Step2:注册…

纯html,js创建一个类似excel的表格

后台是php,表中数据可编辑,可删除,可提交到数据库 <!DOCTYPE html> <html> <head><meta charset="utf-8"><style>body {font-family: Arial, sans-serif;margin: 20px;background-color: #fff;}.toolbar {margin-bottom: 10px;disp…

密码编码器使用指南

密码编码器概述 通过第三章的学习,您应该已经对UserDetails接口及其多种实现方式有了清晰认识。如第二章所述,在认证授权流程中,不同参与者负责管理用户凭证的表示形式,其中UserDetailsService和PasswordEncoder等组件都提供了默认实现。本节将重点分析PasswordEncoder的核…

《数据结构初阶》【番外篇:二路归并的外排史诗】

【番外篇&#xff1a;多路归并的外排史诗】目录 前言&#xff1a;---------------介绍---------------一、实际情景二、外部排序什么是外部排序&#xff1f; 三、多路归并排序什么是多路归并排序&#xff1f; ---------------实现---------------四、文件归并文件二路归并排序思…

DDP与FSDP:分布式训练技术全解析

DDP与FSDP:分布式训练技术全解析 DDP(Distributed Data Parallel)和 FSDP(Fully Sharded Data Parallel)均为用于深度学习模型训练的分布式训练技术,二者借助多 GPU 或多节点来提升训练速度。 1. DDP(Distributed Data Parallel) 实现原理 数据并行:把相同的模型复…

MATLAB实战:实现数字调制解调仿真

以下是使用MATLAB实现BPSK和QPSK数字调制解调仿真的完整代码。该代码包括调制、AWGN信道、匹配滤波/相关解调、星座图绘制以及误码率计算与理论值比较。 %% 清理环境 clear all; close all; clc; %% 参数设置 numBits 100000; % 传输比特数 EbN0_dB 0:2:10; …

数据可视化的定义和类型

数据可视化是一种将数据转换为图形或视觉表示的方法。想象一下&#xff0c;你面前有一堆数字和表格&#xff0c;看着这些&#xff0c;可能会让人头大。数据可视化就像是给这些枯燥的数字画上一幅画。它用图表、地图和各种有趣的图形&#xff0c;帮我们把难懂的数字变得容易看懂…

*JavaScript中的Symbol类型:唯一标识符的艺术

JavaScript中的Symbol类型&#xff1a;唯一标识符的艺术 在JavaScript的世界中&#xff0c;数据类型一直是开发者关注的焦点。从基本的Number、String到后来的Symbol&#xff0c;每一种类型的引入都为语言本身注入了新的活力。而今天我们要聊的主角——Symbol&#xff0c;是ES…

粽叶飘香时 山水有相逢

粽叶飘香时 山水有相逢 尊敬的广大客户们&#xff1a; 五月初五&#xff0c;艾叶幽香。值此端午佳节&#xff0c;衡益科技全体同仁向您致以最诚挚的祝福&#xff01; 这一年我们如同协同竞渡的龙舟&#xff0c;在数字化转型的浪潮中默契配合。每一次技术对接、每轮方案优化&a…

一文认识并学会c++模板初阶

文章目录 泛型编程&#xff1a;概念 函数模板概念&#xff1a;&#x1f6a9;函数模板格式原理&#xff1a;&#x1f6a9;函数模板实例化与非模板函数共存 类模板类模板实例化 泛型编程&#xff1a; 概念 &#x1f6a9;编写与类型无关的通用代码&#xff0c;是代码复写一种手段…

Python实现VTK-自学笔记(5):在三维世界里自由舞蹈——高级交互与动态可视化

深夜的台灯在屏幕上投下温暖的弧光,指尖敲击键盘的节奏逐渐与窗外雨滴声融为一体。这是我在VTK世界的第五次探险,此刻显示器里旋转的彩色分子模型仿佛在对我眨眼——它渴望被触摸、被塑造、被赋予生命。今天,就让我们用Python为这些沉默的数据注入灵魂,见证静态可视化如何蜕…

智慧充电桩数字化管理平台:环境监测与动态数据可视化技术有哪些作用?

随着新能源汽车的普及&#xff0c;智慧充电桩作为基础设施的重要组成部分&#xff0c;正逐步向数字化、智能化方向发展。环境监测与动态数据可视化技术的应用&#xff0c;为充电桩的高效管理和运维提供了全新解决方案。通过实时采集环境参数与运行数据&#xff0c;并结合可视化…

LVS +Keepalived高可用群集

目录 一&#xff1a;Keepalived双机热备基础知识 1.Keepalived 概述及安装 1.1.Keepalived的热备方式 1.2.Keepalived 的安装与服务控制 &#xff08;1&#xff09;安装Keepalived &#xff08;2&#xff09;控制Keepalived服务 2.使用Keepalived实现双机热备 2.1.主服务…

深入剖析Java类加载机制:双亲委派模型的突破与实战应用

引言&#xff1a;一个诡异的NoClassDefFoundError 某金融系统在迁移到微服务架构后&#xff0c;突然出现了一个诡异问题&#xff1a;在调用核心交易模块时&#xff0c;频繁抛出NoClassDefFoundError&#xff0c;但类明明存在于classpath中。经过排查&#xff0c;发现是由于不同…

Go语言的context

Golang context 实现原理 本篇文章是基于小徐先生的文章的修改和个人注解&#xff0c;要查看原文可以点击上述的链接查看 目前我这篇文章的go语言版本是1.24.1 context上下文 context被当作第一个参数&#xff08;官方建议&#xff09;&#xff0c;并且不断的传递下去&…

BERT、GPT-3与超越:NLP模型演进全解析

自然语言处理&#xff08;NLP&#xff09;领域近年来经历了前所未有的变革&#xff0c;从早期的统计方法到如今的深度学习大模型&#xff0c;技术的进步推动了机器理解、生成和交互能力的飞跃。其中&#xff0c;BERT和GPT-3作为两个里程碑式的模型&#xff0c;分别代表了不同的…

Kanass入门教程- 事项管理

kanass是一款国产开源免费、简洁易用的项目管理工具&#xff0c;包含项目管理、项目集管理、事项管理、版本管理、迭代管理、计划管理等相关模块。工具功能完善&#xff0c;用户界面友好&#xff0c;操作流畅。本文主要介绍事项管理使用指南。 1、添加事项 事项有多种类型 分…

2025年5月个人工作生活总结

本文为 2025年5月工作生活总结。 研发编码 一个项目的临时记录 月初和另一项目同事向业主汇报方案&#xff0c;两个项目都不满意&#xff0c;后来领导做了调整&#xff0c;将项目合并&#xff0c;拆分了好几大块。原来我做的一些工作&#xff0c;如数据库、中间件等&#xff…

⭐ Unity AVProVideo插件自带播放器 脚本重构 实现视频激活重置功能

一、功能概述 本笔记记录直接修改插件自带的场景播放其中 原始的 MediaPlayerUI 脚本,实现激活时自动重置播放器的功能。 我用的插件版本是 AVPro Video - Ultra Edition 2.7.3 修改后的脚本将具备以下特性: 激活 GameObject 时自动重置播放位置到开头 可配置是否在重置后自…