DAY 43 预训练模型

目录

一、预训练的概念

二、 经典的预训练模型

 2.1 CNN架构预训练模型

2.2 Transformer类预训练模型

2.3 自监督预训练模型

三、常见的分类预训练模型介绍

3.1 预训练模型的发展史

3.2 预训练模型的训练策略


知识点回顾:

  1. 预训练的概念
  2. 常见的分类预训练模型
  3. 图像预训练模型的发展史
  4. 预训练的策略
  5. 预训练代码实战:resnet18

一、预训练的概念

        我们之前在训练中发现,准确率最开始随着epoch的增加而增加。随着循环的更新,参数在不断发生更新。

所以参数的初始值对训练结果有很大的影响:

  1. 如果最开始的初始值比较好,后续训练轮数就会少很多
  2. 很有可能陷入局部最优值,不同的初始值可能导致陷入不同的局部最优值

        所以很自然的想到,如果最开始能有比较好的参数,即可能导致未来训练次数少,也可能导致未来训练避免陷入局部最优解的问题。这就引入了一个概念,即预训练模型。

        如果别人在某些和我们目标数据类似的大规模数据集上做过训练,我们可以用他的训练参数来初始化我们的模型,这样我们的模型就比较容易收敛。
 

为了帮助理解,这里提出几个自问自答的问题。

1. 那为什么要选择类似任务的数据集预训练的模型参数呢?

        因为任务差不多,他提取特征的能力才有用,如果任务相差太大,他的特征提取能力就没那么好。所以本质预训练就是拿别人已经具备的通用特征提取能力来接着强化能力使之更加适应我们的数据集和任务。

2. 为什么要求预训练模型是在大规模数据集上训练的,小规模不行么?

        因为提取的是通用特征,所以如果数据集数据少、尺寸小,就很难支撑复杂任务学习通用的数据特征。比如你是一个物理的博士,让你去做小学数学题,很快就能上手;但是你是一个小学数学速算高手,让你做物理博士的课题,就很困难。所以预训练模型一般就挺强的。

        我们把用预训练模型的参数,然后接着在自己数据集上训练来调整该参数的过程叫做微调,这种思想叫做迁移学习。把预训练的过程叫做上游任务,把微调的过程叫做下游任务。

现在再来看下之前一直用的cifar10数据集,他是不是就很明显不适合作为预训练数据集?

  1. 规模过小:仅 10 万张图像,且尺寸小(32x32),无法支撑复杂模型学习通用视觉特征;
  2. 类别单一:仅 10 类(飞机、汽车等),泛化能力有限;

        这里给大家介绍一个常常用来做预训练的数据集,ImageNet,ImageNet 1000 个类别,有 1.2 亿张图像,尺寸 224x224,数据集大小 1.4G,下载地址:http://www.image-net.org/。


 

二、 经典的预训练模型

 2.1 CNN架构预训练模型

模型预训练数据集核心特点在CIFAR10上的适配要点
AlexNetImageNet首次引入ReLU/局部响应归一化,参数量6000万+需修改首层卷积核大小(原11x11→适配32x32)
VGG16ImageNet纯卷积堆叠,结构统一,参数量1.38亿冻结前10层卷积,仅微调全连接层
ResNet18ImageNet残差连接解决梯度消失,参数量1100万直接适配32x32输入,需调整池化层步长
MobileNetV2ImageNet深度可分离卷积,参数量350万+轻量级设计,适合计算资源有限的场景

2.2 Transformer类预训练模型

适用于较大尺图像(如224x224),在CIFAR10上需上采样图像尺寸调整Patch大小

模型预训练数据集核心特点在CIFAR10上的适配要点
ViT-BaseImageNet-21K纯Transformer架构,参数量8600万图像Resize至224x224,Patch大小设为4x4
Swin TransformerImageNet-22K分层窗口注意力,参数量8000万+需调整窗口大小适配小图像
DeiTImageNet结合CNN归纳偏置,参数量2200万轻量级Transformer,适合中小尺寸图像

2.3 自监督预训练模型

无需人工标注,通过 pretext task(如掩码图像重建)学习特征,适合数据稀缺场景。

模型预训练方式典型数据集在CIFAR10上的优势
MoCo v3对比学习ImageNet无需标签即可迁移,适合无标注数据
BEiT掩码图像建模ImageNet-22K特征语义丰富,微调时收敛更快

三、常见的分类预训练模型介绍

3.1 预训练模型的发展史

模型年份提出团队关键创新点层数参数量ImageNet Top-5错误率典型应用场景预训练权重可用性
LeNet-51998Yann LeCun等首个CNN架构,卷积层+池化层+全连接层,Sigmoid激活函数7~60KN/A手写数字识别(MNIST)无(历史模型)
AlexNet2012Alex Krizhevsky等ReLU激活函数、Dropout、数据增强、GPU训练860M15.3%大规模图像分类PyTorch/TensorFlow官方支持
VGGNet2014Oxford VGG团队统一3×3卷积核、多尺度特征提取、结构简洁16/19138M/144M7.3%/7.0%图像分类、目标检测基础骨干网络PyTorch/TensorFlow官方支持
GoogLeNet2014GoogleInception模块(多分支并行卷积)、1×1卷积降维、全局平均池化225M6.7%大规模图像分类PyTorch/TensorFlow官方支持
ResNet2015何恺明等残差连接(解决梯度消失)、Batch Normalization18/50/15211M/25M/60M3.57%/3.63%/3.58%图像/视频分类、检测、分割PyTorch/TensorFlow官方支持
DenseNet2017Gao Huang等密集连接(每层与后续所有层相连)、特征复用、参数效率高121/1698M/14M2.80%小数据集、医学图像处理PyTorch/TensorFlow官方支持
MobileNet2017Google深度可分离卷积(减少75%计算量)、轻量级设计284.2M7.4%移动端图像分类/检测PyTorch/TensorFlow官方支持
EfficientNet2019Google复合缩放(同时优化深度、宽度、分辨率)、NAS搜索最佳配置B0-B75.3M-66M2.6% (B7)高精度图像分类(资源受限场景)PyTorch/TensorFlow官方支持

        上图的层数,代表该模型不同的版本resnet有resnet18、resnet50、resnet152;efficientnet有efficientnet-b0、efficientnet-b1、efficientnet-b2、efficientnet-b3、efficientnet-b4等

        其中ImageNet Top - 5 准确率是图像分类任务里的一种评估指标 ,用于衡量模型在 ImageNet 数据集上的分类性能,模型对图像进行分类预测,输出所有类别(共 1000 类 )的概率,取概率排名前五的类别,只要这五个类别里包含人工标注的正确类别,就算预测正确。

模型架构演进关键点总结

  1. 深度突破:从LeNet的7层到ResNet152的152层,残差连接解决了深度网络的训练难题。 ----没上过我复试班cv部分的自行去了解下什么叫做残差连接,很重要!

  2. 计算效率:GoogLeNet(Inception)和MobileNet通过结构优化,在保持精度的同时大幅降低参数量。

  3. 特征复用:DenseNet的密集连接设计使模型能更好地利用浅层特征,适合小数据集。

  4. 自动化设计:EfficientNet使用神经架构搜索(NAS)自动寻找最优网络配置,开创了AutoML在CNN中的应用。

预训练模型使用建议

任务需求推荐模型理由
快速原型开发ResNet50/18结构平衡,预训练权重稳定,社区支持完善
移动端部署MobileNetV3参数量小,计算高效,专为移动设备优化
高精度分类(资源充足)EfficientNet-B7目前ImageNet准确率领先,适合GPU/TPU环境
小数据集或特征复用需求DenseNet密集连接设计减少过拟合,特征复用能力强
多尺度特征提取Inception-ResNet结合Inception多分支和ResNet残差连接,适合复杂场景

        这些模型的预训练权重均可通过主流框架(如PyTorch的torchvision.models、Keras的applications模块)直接加载,便于快速迁移到新任务。

总结:CNN 架构发展脉络

  1. 早期探索(1990s-2010s):LeNet 验证 CNN 可行性,但受限于计算和数据。
  2. 深度学习复兴(2012-2015):AlexNet、VGGNet、GoogLeNet 通过加深网络和结构创新突破性能。
  3. 超深网络时代(2015 年后):ResNet 解决退化问题,开启残差连接范式,后续模型围绕效率(MobileNet)、特征复用(DenseNet)、多分支结构(Inception)等方向优化。

3.2 预训练模型的训练策略

那么什么模型会被选为预训练模型呢?比如一些调参后表现很好的cnn神经网络(固定的神经元个数+固定的层数等)。

所以调用预训练模型做微调,本质就是 用这些固定的结构+之前训练好的参数 接着训练

所以需要找到预训练的模型结构并且加载模型参数

相较于之前用自己定义的模型有以下几个注意点:

  1. 需要调用预训练模型和加载权重
  2. 需要resize 图片让其可以适配模型
  3. 需要修改最后的全连接层以适应数据集

        其中,训练过程中,为了不破坏最开始的特征提取器的参数,最开始往往先冻结住特征提取器的参数,然后训练全连接层,大约在5-10个epoch后解冻训练。

        主要做特征提取的部分叫做backbone骨干网络;负责融合提取的特征的部分叫做Featue Pyramid Network(FPN);负责输出的预测部分的叫做Head。

首先复用下之前的代码

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 1. 数据预处理(训练集增强,测试集标准化)
train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),transforms.RandomRotation(15),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=train_transform
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=test_transform
)# 3. 创建数据加载器(可调整batch_size)
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 训练函数(支持学习率调度器)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):model.train()  # 设置为训练模式train_loss_history = []test_loss_history = []train_acc_history = []test_acc_history = []all_iter_losses = []iter_indices = []for epoch in range(epochs):running_loss = 0.0correct_train = 0total_train = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()# 记录Iteration损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计训练指标running_loss += iter_loss_, predicted = output.max(1)total_train += target.size(0)correct_train += predicted.eq(target).sum().item()# 每100批次打印进度if (batch_idx + 1) % 100 == 0:print(f"Epoch {epoch+1}/{epochs} | Batch {batch_idx+1}/{len(train_loader)} "f"| 单Batch损失: {iter_loss:.4f}")# 计算 epoch 级指标epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct_train / total_train# 测试阶段model.eval()correct_test = 0total_test = 0test_loss = 0.0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_test# 记录历史数据train_loss_history.append(epoch_train_loss)test_loss_history.append(epoch_test_loss)train_acc_history.append(epoch_train_acc)test_acc_history.append(epoch_test_acc)# 更新学习率调度器if scheduler is not None:scheduler.step(epoch_test_loss)# 打印 epoch 结果print(f"Epoch {epoch+1} 完成 | 训练损失: {epoch_train_loss:.4f} "f"| 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%")# 绘制损失和准确率曲线plot_iter_losses(all_iter_losses, iter_indices)plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc  # 返回最终测试准确率# 5. 绘制Iteration损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7)plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('训练过程中的Iteration损失变化')plt.grid(True)plt.show()# 6. 绘制Epoch级指标曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 5))# 准确率曲线plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('准确率随Epoch变化')plt.legend()plt.grid(True)# 损失曲线plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('损失值随Epoch变化')plt.legend()plt.grid(True)plt.tight_layout()plt.show()

输出:
 

使用设备: cuda
Files already downloaded and verified

# 导入ResNet模型
from torchvision.models import resnet18# 定义ResNet18模型(支持预训练权重加载)
def create_resnet18(pretrained=True, num_classes=10):# 加载预训练模型(ImageNet权重)model = resnet18(pretrained=pretrained)# 修改最后一层全连接层,适配CIFAR-10的10分类任务in_features = model.fc.in_featuresmodel.fc = nn.Linear(in_features, num_classes)# 将模型转移到指定设备(CPU/GPU)model = model.to(device)return model
# 创建ResNet18模型(加载ImageNet预训练权重,不进行微调)
model = create_resnet18(pretrained=True, num_classes=10)
model.eval()  # 设置为推理模式# 测试单张图片(示例)
from torchvision import utils# 从测试数据集中获取一张图片
dataiter = iter(test_loader)
images, labels = dataiter.next()
images = images[:1].to(device)  # 取第1张图片# 前向传播
with torch.no_grad():outputs = model(images)_, predicted = torch.max(outputs.data, 1)# 显示图片和预测结果
plt.imshow(utils.make_grid(images.cpu(), normalize=True).permute(1, 2, 0))
plt.title(f"预测类别: {predicted.item()}")
plt.axis('off')
plt.show()

在 CIFAR-10 数据集 中,类别标签是固定的 10 个,分别对应:

标签(数字)类别名称说明
0airplane飞机
1automobile汽车(含轿车、卡车等)
2bird鸟类
3cat
4deer鹿
5dog
6frog青蛙
7horse
8ship
9truck卡车(重型货车等)

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms, models
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import os# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 1. 数据预处理(训练集增强,测试集标准化)
train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),transforms.RandomRotation(15),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=train_transform
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=test_transform
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义ResNet18模型
def create_resnet18(pretrained=True, num_classes=10):model = models.resnet18(pretrained=pretrained)# 修改最后一层全连接层in_features = model.fc.in_featuresmodel.fc = nn.Linear(in_features, num_classes)return model.to(device)# 5. 冻结/解冻模型层的函数
def freeze_model(model, freeze=True):"""冻结或解冻模型的卷积层参数"""# 冻结/解冻除fc层外的所有参数for name, param in model.named_parameters():if 'fc' not in name:param.requires_grad = not freeze# 打印冻结状态frozen_params = sum(p.numel() for p in model.parameters() if not p.requires_grad)total_params = sum(p.numel() for p in model.parameters())if freeze:print(f"已冻结模型卷积层参数 ({frozen_params}/{total_params} 参数)")else:print(f"已解冻模型所有参数 ({total_params}/{total_params} 参数可训练)")return model# 6. 训练函数(支持阶段式训练)
def train_with_freeze_schedule(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs, freeze_epochs=5):"""前freeze_epochs轮冻结卷积层,之后解冻所有层进行训练"""train_loss_history = []test_loss_history = []train_acc_history = []test_acc_history = []all_iter_losses = []iter_indices = []# 初始冻结卷积层if freeze_epochs > 0:model = freeze_model(model, freeze=True)for epoch in range(epochs):# 解冻控制:在指定轮次后解冻所有层if epoch == freeze_epochs:model = freeze_model(model, freeze=False)# 解冻后调整优化器(可选)optimizer.param_groups[0]['lr'] = 1e-4  # 降低学习率防止过拟合model.train()  # 设置为训练模式running_loss = 0.0correct_train = 0total_train = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()# 记录Iteration损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计训练指标running_loss += iter_loss_, predicted = output.max(1)total_train += target.size(0)correct_train += predicted.eq(target).sum().item()# 每100批次打印进度if (batch_idx + 1) % 100 == 0:print(f"Epoch {epoch+1}/{epochs} | Batch {batch_idx+1}/{len(train_loader)} "f"| 单Batch损失: {iter_loss:.4f}")# 计算 epoch 级指标epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct_train / total_train# 测试阶段model.eval()correct_test = 0total_test = 0test_loss = 0.0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_test# 记录历史数据train_loss_history.append(epoch_train_loss)test_loss_history.append(epoch_test_loss)train_acc_history.append(epoch_train_acc)test_acc_history.append(epoch_test_acc)# 更新学习率调度器if scheduler is not None:scheduler.step(epoch_test_loss)# 打印 epoch 结果print(f"Epoch {epoch+1} 完成 | 训练损失: {epoch_train_loss:.4f} "f"| 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%")# 绘制损失和准确率曲线plot_iter_losses(all_iter_losses, iter_indices)plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc  # 返回最终测试准确率# 7. 绘制Iteration损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7)plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('训练过程中的Iteration损失变化')plt.grid(True)plt.show()# 8. 绘制Epoch级指标曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 5))# 准确率曲线plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('准确率随Epoch变化')plt.legend()plt.grid(True)# 损失曲线plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('损失值随Epoch变化')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 主函数:训练模型
def main():# 参数设置epochs = 40  # 总训练轮次freeze_epochs = 5  # 冻结卷积层的轮次learning_rate = 1e-3  # 初始学习率weight_decay = 1e-4  # 权重衰减# 创建ResNet18模型(加载预训练权重)model = create_resnet18(pretrained=True, num_classes=10)# 定义优化器和损失函数optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)criterion = nn.CrossEntropyLoss()# 定义学习率调度器scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=2, verbose=True)# 开始训练(前5轮冻结卷积层,之后解冻)final_accuracy = train_with_freeze_schedule(model=model,train_loader=train_loader,test_loader=test_loader,criterion=criterion,optimizer=optimizer,scheduler=scheduler,device=device,epochs=epochs,freeze_epochs=freeze_epochs)print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# # 保存模型# torch.save(model.state_dict(), 'resnet18_cifar10_finetuned.pth')# print("模型已保存至: resnet18_cifar10_finetuned.pth")if __name__ == "__main__":main()

几个明显的现象

  1. 解冻后几个epoch即可达到之前cnn训练20轮的效果,这是预训练的优势
  2. 由于训练集用了 RandomCrop(随机裁剪)、RandomHorizontalFlip(随机水平翻转)、ColorJitter(颜色抖动)等数据增强操作,这会让训练时模型看到的图片有更多 “干扰” 或变形。比如一张汽车图片,训练时可能被裁剪成只显示局部、颜色也有变化,模型学习难度更高;而测试集是标准的、没增强的图片,模型预测相对轻松,就可能出现训练集准确率暂时低于测试集的情况,尤其在训练前期增强对模型影响更明显。随着训练推进,模型适应增强后会缓解。
  3. 最后收敛后的效果超过非预训练模型的80%,大幅提升。

@浙大疏锦行

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.pswp.cn/pingmian/86915.shtml
繁体地址,请注明出处:http://hk.pswp.cn/pingmian/86915.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis:事物

🌈 个人主页:Zfox_ 🔥 系列专栏:Redis 🔥 什么是事务 Redis的事务和MySQL的事务概念上是类似的.都是把⼀系列操作绑定成⼀组.让这⼀组能够批量执⾏. 但是注意体会Redis的事务和MySQL事务的区别: 弱化的原⼦性:redi…

CppCon 2018 学习:An allocator is a handle to a heap Lessons learned from std::pmr

“An allocator is a handle to a heap — Lessons learned from std::pmr” 翻译过来就是:“分配器(allocator)是对堆(heap)的一种句柄(handle)——从 std::pmr 中学到的经验”。 基础概念 分…

设备健康实时监测方法演进:从传感网络到AI决策树的工业智能实践

引言:当设备运维遇上AIoT革命 在工业4.0进程中,​毫秒级设备状态捕获能力正成为智能工厂的核心竞争力。传统监测方法因数据滞后、诊断粗放被诟病,本文将深入探讨三大前沿实时监测技术路径,并揭秘中讯烛龙系统如何通过深度强化学习…

剑指offer53_二叉树的深度

二叉树的深度 输入一棵二叉树的根结点,求该树的深度。 从根结点到叶结点依次经过的结点(含根、叶结点)形成树的一条路径,最长路径的长度为树的深度。 数据范围 树中节点数量 [ 0 , 500 ] [0,500] [0,500]。 样例 输入&#…

探秘AI的秘密:leaked-system-prompts

揭秘:揭秘系统提示合集背后的秘密 在当今这个人工智能技术迅速发展的时代,了解和使用大型语言模型(LLM)已成为技术爱好者、开发者和研究人员的共同目标。而作为核心组成部分,系统提示(system prompts)的设计和应用直接影响了LLM的表现和功能。今天, 我们将为大家揭示一…

Gaming Mode四大功能(VRR、QMS、QFT、ALLM)

HDMI 2.1定义的Gaming Mode四大功能(VRR、QMS、QFT、ALLM)通过协同优化帧传输、刷新率同步与延迟控制,显著提升了游戏和影音的流畅性与响应速度。以下是这些功能的详细解析及其应用价值: 🔄 1. 可变刷新率(…

数据库总结(关系代数-函数依赖-范式)

以下是关系代数中基本操作的详细说明: 并(Union) 关系R和S的并操作表示为R ∪ S,要求R和S具有相同的属性集(并相容性)。结果包含所有属于R或S的元组,自动去除重复项。 示例: R …

react经验:在nextjs中使用motion组件

什么是motion组件? 一种动画组件 motion组件文档 在nextjs中的应用步骤 1.安装motion npm i framer-motion2.在next.config.js中配置转义 export default {transpilePackages: [framer-motion] }3.开始应用 **注意要点:**在服务端渲染不可直接用&am…

怎样大语言模型 遵守规则

如何让应用中的提示工程更能适应未来变化 目录 如何让应用中的提示工程更能适应未来变化怎样大语言模型 遵守规则提示词 很有效:Memorize these rules提示可分为稳定组件和易变组件怎样大语言模型 遵守规则 实验背景:让大语言模型可靠地遵守规则很难,尤其是规则数量增多时。…

如何通过SSL证书配置防止源站IP泄露 - 全面防护指南

问题背景:SSL证书如何导致源站IP泄露 近期多位站长反馈,即使已部署高防CDN并做好源站IP保密工作,服务器仍频繁遭受DDoS攻击。经深入排查,发现问题根源在于SSL证书。当前网络环境中存在大量爬虫工具24小时不间断扫描全网IP地址&am…

医院信息化发展要经过哪几个阶段

目前,几乎所有的医院都离不开信息技术的建设和支持。没有信息技术,医院的业务可能无法继续。医院信息化的发展主要经历三个阶段,即医院管理信息化阶段、临床管理信息化阶段和医疗智能化阶段。从基础设施的角度来看,每个阶段都有不…

【Vscode】Vscode切换成中文语言

安装中文语言包 启动 VSCode。按下Ctrl Shift X(或者点击左侧边栏的扩展图标),打开扩展面板。在搜索框中输入Chinese (Simplified),在搜索结果里找到Chinese (Simplified) Language Pack for Visual Studio Code并点击安装按钮…

【百日精通JAVA | 数据结构篇】 一文了解泛型体系

一、初识泛型 在推出泛型以前,程序员可以创建一个元素类型Object的集合,该集合能够存储任意的数据类型对象,而在使用该集合的过程中,需要明确知道存储每个元素的类型,否则容易引发ClassCastException异常。 泛型是JD…

赋能 Java 工程,飞算科技重新定义智能开发

在数字经济蓬勃发展的当下,软件开发行业正经历着前所未有的变革。飞算科技作为一家自主创新型的数字科技公司,始终以互联网科技、大数据、人工智能等前沿技术为根基。凭借团队在相关领域多年积累的深厚实践经验,公司深度融合技术与应用&#…

【蓝牙】Linux Qt4蓝牙设备列表刷新加载采用什么策略,使用什么对应的Linux命令或dbus接口

在 Linux 系统中,使用 Qt4 开发蓝牙设备列表刷新功能时,通常会结合 BlueZ 蓝牙协议栈 和 D-Bus 通信机制 实现对蓝牙设备的发现与管理。以下是常见的实现策略和对应的命令或接口。 🧩 一、蓝牙设备列表刷新策略 1. 主动扫描(Scan…

产品背景知识——CIFS、SMB 和 Samba

产品背景知识——CIFS、SMB 和 Samba 1. SMB(Server Message Block) 定义: SMB 是一种网络协议,用于在计算机之间共享文件、打印机、串口等资源。它由 IBM 在 1980 年代开发,后被微软采用并扩展。 发展历程&#xff…

基于Python的GIS-RS多源数据处理(TIF/SHP/NC/...)【20250630】

栅格数据以规则网格(像素)的数值矩阵表达地理现象,每个单元格代表一个属性值(如高程、温度)。例如卫星影像、数字高程模型、温度分布图。存储格式包括ENVI DAT、GeoTIFF、JPEG、PNG、ASCII Grid等等。 矢量数据是通过几何图形(点、线、面)表示地理实体,…

基于yolov5的深度学习的昆虫检测带QT界面

完整项目查看或想了解其他项目点击文末名片 项目简介 本项目旨在开发一个基于深度学习的昆虫检测与识别系统。系统使用两个主要模块:昆虫检测器(InsectDetector)和昆虫识别器(InsectIdentifier)。首先,昆虫…

linux使用1

1.终端查看ip地址 # windows ipconfig# linux ifconfig2.VMware共享文件夹权限设置下如何复制/移动文件 # 移动: mv # 查看当前文件夹: ls # 设置管理员权限: sudo # 复制: cp#情景一:移动桌面文件夹(desktop/day4/server/)到共…

ACE之ACE_NonBlocking_Connect_Handler问题分析

问题 ACE_NonBlocking_Connect_Handler在处理异步时存在问题 分析 当connect选择的同步参数为ACE_Synch_Options::USE_REACTOR时,连接超时时间为ACE_Time_Value::zero,在同步发起连接返回的错误码为EWOULDBLOCK时,会发起异步连接nonblocki…