计算机一次取数过程分析
1 取址过程
CPU由运算器和控制器组成,其中控制器中的程序计数器(PC)保存的是下一条指令的虚拟地址,经过内存管理单元(MMU),将虚拟地址转换为物理地址,之后交给主存地址寄存器(MAR),从主存中取出这条指令,通过主存数据寄存器(MDR)交给指令寄存器(IR),IR再将其转化成控制信号。
2 间址过程
一条指令由 <操作码,寻址方式,地址码> 几部分组成,寻址方式共有以下十种
- 隐含寻址
- 立即寻址
- 直接寻址
- 间接寻址
- 寄存器寻址
- 寄存器间接寻址
- 相对寻址
- 基址寻址
- 变址寻址
- 堆栈寻址
根据有效地址(EA)或立即数所处的位置,可以分为以下三类
在寄存器:隐含寻址、寄存器寻址
在立即数:立即寻址
在主存:直接寻址、间接寻址、寄存器间接寻址、相对寻址、基址寻址、变址寻址、堆栈寻址
而无论哪种方式得到的有效地址(EA)同样也是虚拟地址
接下来要解决以下两个问题
问题一:虚拟地址如何转为物理地址?
问题二:如何访问该物理地址?
3 虚拟地址转为物理地址
3.1 单级页表系统
在分页管理的操作系统中,将主存分为一个个页框,操作系统会建立页表这种数据结构,负责虚拟页号和主存页框号的映射。
虚拟地址由 <页号,页内偏移量> 两部分组成,根据页号去查询页表,然后将页表中的页框号和页内偏移量组成物理地址。
例如页表部分内容如下,虚拟地址为00123366H,按字节编址,虚拟地址格式为<页号12位,页内偏移量20位>
根据虚拟地址中的001H,找到1号页表项,其页框号为521H,拼接上页内偏移量后即可得到物理地址52123366H。
但是如果想要查询页表,也要知道页表的起始地址,页表的地址保存在进程控制块(PCB)中,当CPU调度该进程时,会将PCB中的页表起始地址放入页表基址寄存器中,页表起始地址为物理地址。
同时,为了解决页表项过多导致一个页框中放不下的问题,引入了多级页表。为了减少访存次数引入了快表(TLB)。
3.2 二级页表系统
在使用多级页表的32位操作系统中(以二级页表为例),虚拟地址被分成了 <页目录号,页号,页内偏移量> 三部分,例如在下图虚拟地址格式下虚拟地址为10801008H,页目录项和页表项长度均为4字节,按字节编址。
10801008H,其页目录号是66,页号是1,因此根据页目录号为66找到页目录项,其中的页框号是00301H,找到对应的页表所在页框,然后拼接上页号找到页号页表项对应的物理地址00301004H(这里因为一个页目录项是4B),页表中的页框号是98521H,拼接上页内偏移量,最终的物理地址为98521008H。
3.3 二级页表系统+快表
快表的实现基于相联存储器,是一种静态随机存取存储器(SRAM),使用的存储元是双稳态触发器,存取速度快。
在使用TLB的系统中,虚拟地址向物理地址的转换一般先查询快表(或者快表慢表一起查询),如果快表命中,可以直接获得页框号,再和页内偏移量组合,得到物理地址。
快表的映射方式有两种,为全相联映射和组相联映射,至于为什么不使用直接映射,在讨论完全相联映射和组相联映射后再讨论。
全相联映射
使用全相联映射的TLB中
TLB的格式为 <标记位,有效位,页框号>
此处的标记位即虚拟页号,若虚拟地址格式为 <页目录号(10位),页号(10位),页内偏移量(12位)>
TLB的标记位是虚拟地址中的页目录号+页号组成的虚拟页号
因为TLB是使用硬件电路实现的,全部TLB标记可以并行对比。
例如虚拟地址为10801008H,TLB使用全相联映射,虚拟地址格式为<页目录号(10位),页号(10位),页内偏移量(12位)>,TLB部分内容如下图所示
查询TLB表,10801H与虚拟页号一致,且有效位为1,因此可以直接得到页框号00001H,与页内偏移量008H拼接得到物理地址为00001008H,若未命中则回到上文中的查询二级页表的过程,且更新快表。
组相联映射
使用组相联映射的TLB格式如为 <标记位,有效位,页框号>,虚拟地址格式为 <标记位,组号,页内偏移量>,标记位+组号就是虚拟页号,同页目录号+页表号
例如二路组相联的TLB,其中共有32行,分成16组(用4位二进制表示),若虚拟地址为10801008H,虚拟地址格式为<标记位(16位),组号(4位),页内偏移量(12位)>,则查找1号分组,标记位为1080H
第一组标记位为1080H命中,其有效位为1,直接得到页框号为00002H,拼接上页内偏移量得到物理地址为00002008H,若未命中则回到上文中的查询二级页表的过程,且更新快表。
直接映射
TLB一项的大小很小,而且直接映射冲突率高,为了实现高命中率和低冲突率,因此TLB不使用直接映射。
而cache按照块大小,将主存一块数据(主存的一块和内存管理的一页没有关系,通常一页的大小比一块的大小要更大)读入cache行中,冲突率相比TLB会小一些,在部分场景下可以接受这种冲突的成本。
4.访问物理地址
得到物理地址后,会先访问cache,如果cache未命中访问主存,并将该物理地址所在块调入cache中(或者同时访问cache和主存)。
cache和TLB都是基于SRAM的相联存储器,不同的是cache的映射方式有三种,分别是直接映射,全相联映射,组相联映射。
直接映射
物理地址格式为 <Tag,行号,块内地址>
cache行内格式为 <Tag,有效位,脏位等其他数据,块数据>
全相联映射
物理地址为 <Tag,块内地址>
cache行内格式为 <Tag,有效位,脏位等其他数据,块数据>
组相联映射
物理地址格式为 <Tag,组号,块内地址>
cache行内格式为 <Tag,有效位,脏位等其他数据,块数据>
因为和TLB的过程没有太大区别,此处不再详细讨论。
不过值得注意的是,当TLB和cache未命中要更新TLB和cache时候需要使用置换算法,置换算法此处也不再讨论。