python打卡day40

知识点回顾:

  1. 彩色和灰度图片测试和训练的规范写法:封装在函数中
  2. 展平操作:除第一个维度batchsize外全部展平
  3. dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout

导入包

# 先继续之前的代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader , Dataset # DataLoader 是 PyTorch 中用于加载数据的工具
from torchvision import datasets, transforms # torchvision 是一个用于计算机视觉的库,datasets 和 transforms 是其中的模块
import matplotlib.pyplot as plt
import warnings
# 忽略警告信息
warnings.filterwarnings("ignore")
# 设置随机种子,确保结果可复现
torch.manual_seed(42)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")

数据预处理和模型定义

# 1. 数据预处理
transform = transforms.Compose([transforms.ToTensor(),  # 转换为张量并归一化到[0,1]transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差
])# 2. 加载MNIST数据集
train_dataset = datasets.MNIST(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.MNIST(root='./data',train=False,transform=transform
)# 3. 创建数据加载器
batch_size = 64  # 每批处理64个样本
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义模型、损失函数和优化器
class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten()  # 将28x28的图像展平为784维向量self.layer1 = nn.Linear(784, 128)  # 第一层:784个输入,128个神经元self.relu = nn.ReLU()  # 激活函数self.layer2 = nn.Linear(128, 10)  # 第二层:128个输入,10个输出(对应10个数字类别)def forward(self, x):x = self.flatten(x)  # 展平图像x = self.layer1(x)   # 第一层线性变换x = self.relu(x)     # 应用ReLU激活函数x = self.layer2(x)   # 第二层线性变换,输出logitsreturn x# 初始化模型
model = MLP()
model = model.to(device)  # 将模型移至GPU(如果可用)# from torchsummary import summary  # 导入torchsummary库
# print("\n模型结构信息:")
# summary(model, input_size=(1, 28, 28))  # 输入尺寸为MNIST图像尺寸criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数,适用于多分类问题
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器

训练定义

# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):model.train()  # 设置为训练模式# 新增:记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号(从1开始)for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):# enumerate() 是 Python 内置函数,用于遍历可迭代对象(如列表、元组)并同时获取索引和值。# batch_idx:当前批次的索引(从 0 开始)# (data, target):当前批次的样本数据和对应的标签,是一个元组,这是因为dataloader内置的getitem方法返回的是一个元组,包含数据和标签。# 只需要记住这种固定写法即可data, target = data.to(device), target.to(device)  # 移至GPU(如果可用)optimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 计算optimizer.step()  # 更新参数# 记录当前 iteration 的损失(注意:这里直接使用单 batch 损失,而非累加平均)iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)  # iteration 序号从1开始# 统计准确率和损失running_loss += loss.item() #将loss转化为标量值并且累加到running_loss中,计算总损失_, predicted = output.max(1) # output:是模型的输出(logits),形状为 [batch_size, 10](MNIST 有 10 个类别)# 获取预测结果,max(1) 返回每行(即每个样本)的最大值和对应的索引,这里我们只需要索引total += target.size(0) # target.size(0) 返回当前批次的样本数量,即 batch_size,累加所有批次的样本数,最终等于训练集的总样本数correct += predicted.eq(target).sum().item() # 返回一个布尔张量,表示预测是否正确,sum() 计算正确预测的数量,item() 将结果转换为 Python 数字# 每100个批次打印一次训练信息(可选:同时打印单 batch 损失)if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 测试、打印 epoch 结果epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totalepoch_test_loss, epoch_test_acc = test(model, test_loader, criterion, device)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)# 保留原 epoch 级曲线(可选)# plot_metrics(train_losses, test_losses, train_accuracies, test_accuracies, epochs)return epoch_test_acc  # 返回最终测试准确率

测试定义

# 6. 测试模型(不变)
def test(model, test_loader, criterion, device):model.eval()  # 设置为评估模式test_loss = 0correct = 0total = 0with torch.no_grad():  # 不计算梯度,节省内存和计算资源for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()avg_loss = test_loss / len(test_loader)accuracy = 100. * correct / totalreturn avg_loss, accuracy  # 返回损失和准确率

分析图像定义

# 7. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()

流程

# 8. 执行训练和测试(设置 epochs=2 验证效果)
epochs = 2  
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

@浙大疏锦行

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/web/82010.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

系统性学习C语言-第十二讲-深入理解指针(2)

系统性学习C语言-第十二讲-深入理解指针(2) 1. const 修饰指针1.1 const 修饰变量1.2 const 修饰指针变量 2. 野指针2.1 野指针成因2.2 如何规避野指针2.2.1 指针初始化2.2.2 小心指针越界2.2.3 指针变量不再使用时,及时置 NULL &…

《高等数学》(同济大学·第7版) 第一节《映射与函数》超详细解析

集合(Set)—— 最基础的数学容器 定义: 集合是由确定的、互不相同的对象(称为元素)组成的整体。 表示方法: 列举法:A {1, 2, 3} 描述法:B {x | x > 0}(表示所有大于…

Spring Boot整活指南:从Helo World到“真香”定律

📌 一、Spring Boot的"真香"本质(不是996的福报) 你以为Spring Boot只是个简化配置的工具?Too young!它其实是程序员的​​摸鱼加速器​​。 ​​经典场景还原​​: 产品经理:“这个…

打字练习:平台推荐

1.打字练习 . 1)平台推荐 下面推荐两个打字练习平台 Keybr:https://www.keybr.com/ TypingClub:https://www.edclub.com/sportal/ . 2)平台对比 特性KeybrTypingClub核心优势AI智能弱项训练结构化课程体系适合人群开发者/…

ASP.NET Core 中JWT的基本使用

文章目录 前言一、JWT与RBAC二、JWT 的作用三、RBAC 的核心思想四、使用1、配置文件 (appsettings.json)2、JWT配置模型 (Entity/JwtSettings.cs)3、服务扩展类,JWT配置 (Extensions/ServiceExtensions.cs)4、用户仓库接口服务5、认证服务 (Interface/IAuthService.…

(19)java在区块链中的应用

🔗 Java在区块链中的应用:智能合约开发全攻略 TL;DR: Java在区块链领域主要通过Hyperledger Fabric、Web3j和专用JVM实现智能合约开发,相比Solidity具有更强的企业级支持和开发效率,但在执行效率和Gas消耗方面存在差异&#xff0c…

深入理解设计模式之访问者模式

深入理解设计模式之访问者模式(Visitor Pattern) 一、什么是访问者模式? 访问者模式(Visitor Pattern)是一种行为型设计模式。它的主要作用是将数据结构与数据操作分离,使得在不改变数据结构的前提下&…

div或button一些好看实用的 CSS 样式示例

1:现代渐变按钮 .count {width: 800px;background: linear-gradient(135deg, #72EDF2 0%, #5151E5 100%);padding: 12px 24px;border-radius: 10px;box-shadow: 0 4px 15px rgba(81, 81, 229, 0.3);color: white;font-weight: bold;border: none;cursor: pointer;t…

【基于STM32的新能源汽车智能循迹系统开发全解析】

基于STM32的新能源汽车智能循迹系统开发全解析(附完整工程代码) 作者声明 作者: 某新能源车企资深嵌入式工程师(专家认证) 技术方向: 智能驾驶底层控制 | 车规级嵌入式开发 原创声明: 本文已申…

HTML Day02

Day02 0. 引言1. 文本格式化1.1 HTML文本格式化标签1.2 HTML"计算机输出"标签1.3 HTML 引文,引用及标签定义 2. HTML链接2.1链接跳转原理(有点乱可跳过)2.2 HTML超链接2.3 target属性2.4 id属性2.4.1 id属性在页面内和不同页面的定…

MIT 6.S081 2020 Lab6 Copy-on-Write Fork for xv6 个人全流程

文章目录 零、写在前面一、Implement copy-on write1.1 说明1.2 实现1.2.1 延迟复制与释放1.2.2 写时复制 零、写在前面 可以阅读下 《xv6 book》 的第五章中断和设备驱动。 问题 在 xv6 中,fork() 系统调用会将父进程的整个用户空间内存复制到子进程中。**如果父…

xhr、fetch和axios

XMLHttpRequest (XHR) XMLHttpRequest 是最早用于在浏览器中进行异步网络请求的 API。它允许网页在不刷新整个页面的情况下与服务器交换数据。 // 创建 XHR 对象 const xhr new XMLHttpRequest();// 初始化请求 xhr.open(GET, https://api.example.com/data, true);// 设置请…

电脑驱动程序更新工具, 3DP Chip 中文绿色版,一键更新驱动!

介绍 3DP Chip 是一款免费的驱动程序更新工具,可以帮助用户快速、方便地识别和更新计算机硬件驱动程序。 驱动程序更新工具下载 https://pan.quark.cn/s/98895d47f57c 软件截图 软件特点 简单易用:用户界面简洁明了,操作方便,…

机器学习与深度学习06-决策树02

目录 前文回顾5.决策树中的熵和信息增益6.什么是基尼不纯度7.决策树与回归问题8.随机森林是什么 前文回顾 上一篇文章地址:链接 5.决策树中的熵和信息增益 熵和信息增益是在决策树中用于特征选择的重要概念,它们帮助选择最佳特征进行划分。 熵&#…

【Kotlin】数字字符串数组集合

【Kotlin】简介&变量&类&接口 【Kotlin】数字&字符串&数组&集合 文章目录 Kotlin_数字&字符串&数组&集合数字字面常量显式转换数值类型转换背后发生了什么 运算字符串字符串模板字符串判等修饰符数组集合通过序列提高效率惰性求值序列的操…

oscp练习PG Monster靶机复现

端口扫描 nmap -A -p- -T4 -Pn 192.168.134.180 PORT STATE SERVICE VERSION 80/tcp open http Apache httpd 2.4.41 ((Win64) OpenSSL/1.1.1c PHP/7.3.10) |_http-server-header: Apache/2.4.41 (Win64) OpenSSL/1.1.1c PHP/7.3.10 | http-methods:…

近期知识库开发过程中遇到的一些问题

我们正在使用Rust开发一个知识库系统,遇到了一些问题,在此记录备忘。 错误:Unable to make method calls because underlying connection is closed 场景:在docker中调用headless_chrome时出错 原因:为减小镜像大小&am…

Ubuntu 22.04 系统下 Docker 安装与配置全指南

Ubuntu 22.04 系统下 Docker 安装与配置全指南 一、前言 Docker 作为现代开发中不可或缺的容器化工具,能极大提升应用部署和环境管理的效率。本文将详细介绍在 Ubuntu 22.04 系统上安装与配置 Docker 的完整流程,包括环境准备、安装步骤、权限配置及镜…

C#获取磁盘容量:代码实现与应用场景解析

C#获取磁盘容量:代码实现与应用场景解析 在软件开发过程中,尤其是涉及文件存储、数据备份等功能时,获取磁盘容量信息是常见的需求。通过获取磁盘的可用空间和总大小,程序可以更好地进行资源管理、预警提示等操作。在 C# 语言中&a…

2025年- H56-Lc164--200.岛屿数量(图论,深搜)--Java版

1.题目描述 2.思路 (1)主函数,存储图结构 (2)主函数,visit数组表示已访问过的元素 (3)辅助函数,用递归(深搜),遍历以已访问过的元素&…