Python训练营---Day41

DAY 41 简单CNN

知识回顾

  1. 数据增强
  2. 卷积神经网络定义的写法
  3. batch归一化:调整一个批次的分布,常用与图像数据
  4. 特征图:只有卷积操作输出的才叫特征图
  5. 调度器:直接修改基础学习率

卷积操作常见流程如下:

1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层

2. Flatten -> Dense (with Dropout,可选) -> Dense (Output)

作业:尝试手动修改下不同的调度器和CNN的结构,观察训练的差异。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 1. 数据预处理
# 训练集:使用多种数据增强方法提高模型泛化能力
train_transform = transforms.Compose([# 随机裁剪图像,从原图中随机截取32x32大小的区域transforms.RandomCrop(32, padding=4),# 随机水平翻转图像(概率0.5)transforms.RandomHorizontalFlip(),# 随机颜色抖动:亮度、对比度、饱和度和色调随机变化transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),# 随机旋转图像(最大角度15度)transforms.RandomRotation(15),# 将PIL图像或numpy数组转换为张量transforms.ToTensor(),# 标准化处理:每个通道的均值和标准差,使数据分布更合理transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 测试集:仅进行必要的标准化,保持数据原始特性,标准化不损失数据信息,可还原
test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./cifar_data',train=True,download=True,transform=train_transform  # 使用增强后的预处理
)test_dataset = datasets.CIFAR10(root='./cifar_data',train=False,transform=test_transform  # 测试集不使用增强
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义CNN模型的定义(替代原MLP)
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()  # 继承父类初始化# ---------------------- 第一个卷积块 ----------------------# 卷积层1:输入3通道(RGB),输出32个特征图,卷积核3x3,边缘填充1像素self.conv1 = nn.Conv2d(in_channels=3,       # 输入通道数(图像的RGB通道)out_channels=32,     # 输出通道数(生成32个新特征图)kernel_size=3,       # 卷积核尺寸(3x3像素)padding=1            # 边缘填充1像素,保持输出尺寸与输入相同)# 批量归一化层:对32个输出通道进行归一化,加速训练self.bn1 = nn.BatchNorm2d(num_features=32)# ReLU激活函数:引入非线性,公式:max(0, x)self.relu1 = nn.ReLU()# 最大池化层:窗口2x2,步长2,特征图尺寸减半(32x32→16x16)self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  # stride默认等于kernel_size# ---------------------- 第二个卷积块 ----------------------# 卷积层2:输入32通道(来自conv1的输出),输出64通道self.conv2 = nn.Conv2d(in_channels=32,      # 输入通道数(前一层的输出通道数)out_channels=64,     # 输出通道数(特征图数量翻倍)kernel_size=3,       # 卷积核尺寸不变padding=1            # 保持尺寸:16x16→16x16(卷积后)→8x8(池化后))self.bn2 = nn.BatchNorm2d(num_features=64)self.relu2 = nn.ReLU()self.pool2 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:16x16→8x8# ---------------------- 第三个卷积块 ----------------------# 卷积层3:输入64通道,输出128通道self.conv3 = nn.Conv2d(in_channels=64,      # 输入通道数(前一层的输出通道数)out_channels=128,    # 输出通道数(特征图数量再次翻倍)kernel_size=3,padding=1            # 保持尺寸:8x8→8x8(卷积后)→4x4(池化后))self.bn3 = nn.BatchNorm2d(num_features=128)self.relu3 = nn.ReLU()  # 复用激活函数对象(节省内存)self.pool3 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:8x8→4x4# ---------------------- 全连接层(分类器) ----------------------# 计算展平后的特征维度:128通道 × 4x4尺寸 = 128×16=2048维self.fc1 = nn.Linear(in_features=128 * 4 * 4,  # 输入维度(卷积层输出的特征数)out_features=512          # 输出维度(隐藏层神经元数))# Dropout层:训练时随机丢弃50%神经元,防止过拟合self.dropout = nn.Dropout(p=0.5)# 输出层:将512维特征映射到10个类别(CIFAR-10的类别数)self.fc2 = nn.Linear(in_features=512, out_features=10)def forward(self, x):# 输入尺寸:[batch_size, 3, 32, 32](batch_size=批量大小,3=通道数,32x32=图像尺寸)# ---------- 卷积块1处理 ----------x = self.conv1(x)       # 卷积后尺寸:[batch_size, 32, 32, 32](padding=1保持尺寸)x = self.bn1(x)         # 批量归一化,不改变尺寸x = self.relu1(x)       # 激活函数,不改变尺寸x = self.pool1(x)       # 池化后尺寸:[batch_size, 32, 16, 16](32→16是因为池化窗口2x2)# ---------- 卷积块2处理 ----------x = self.conv2(x)       # 卷积后尺寸:[batch_size, 64, 16, 16](padding=1保持尺寸)x = self.bn2(x)x = self.relu2(x)x = self.pool2(x)       # 池化后尺寸:[batch_size, 64, 8, 8]# ---------- 卷积块3处理 ----------x = self.conv3(x)       # 卷积后尺寸:[batch_size, 128, 8, 8](padding=1保持尺寸)x = self.bn3(x)x = self.relu3(x)x = self.pool3(x)       # 池化后尺寸:[batch_size, 128, 4, 4]# ---------- 展平与全连接层 ----------# 将多维特征图展平为一维向量:[batch_size, 128*4*4] = [batch_size, 2048]x = x.view(-1, 128 * 4 * 4)  # -1自动计算批量维度,保持批量大小不变x = self.fc1(x)           # 全连接层:2048→512,尺寸变为[batch_size, 512]x = self.relu3(x)         # 激活函数(复用relu3,与卷积块3共用)x = self.dropout(x)       # Dropout随机丢弃神经元,不改变尺寸x = self.fc2(x)           # 全连接层:512→10,尺寸变为[batch_size, 10](未激活,直接输出logits)return x  # 输出未经过Softmax的logits,适用于交叉熵损失函数# 初始化模型
model = CNN()
model = model.to(device)  # 将模型移至GPU(如果可用)criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,        # 指定要控制的优化器(这里是Adam)mode='min',       # 监测的指标是"最小化"(如损失函数)patience=3,       # 如果连续3个epoch指标没有改善,才降低LRfactor=0.5        # 降低LR的比例(新LR = 旧LR × 0.5)
)# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):model.train()  # 设置为训练模式# 记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号# 记录每个 epoch 的准确率和损失train_acc_history = []test_acc_history = []train_loss_history = []test_loss_history = []for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)  # 移至GPUoptimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计准确率和损失running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次打印一次训练信息if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 计算当前epoch的平均训练损失和准确率epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totaltrain_acc_history.append(epoch_train_acc)train_loss_history.append(epoch_train_loss)# 测试阶段model.eval()  # 设置为评估模式test_loss = 0correct_test = 0total_test = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testtest_acc_history.append(epoch_test_acc)test_loss_history.append(epoch_test_loss)# 更新学习率调度器scheduler.step(epoch_test_loss)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)# 绘制每个 epoch 的准确率和损失曲线plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc  # 返回最终测试准确率# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 7. 绘制每个 epoch 的准确率和损失曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 4))# 绘制准确率曲线plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('训练和测试准确率')plt.legend()plt.grid(True)# 绘制损失曲线plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('训练和测试损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 8. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始使用CNN训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# # 保存模型
# torch.save(model.state_dict(), 'cifar10_cnn_model.pth')
# print("模型已保存为: cifar10_cnn_model.pth")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/web/82031.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Netty系列】Reactor 模式 2

目录 流程图说明 关键流程 以下是 Reactor 模式流程图,结合 Netty 的主从多线程模型,帮助你直观理解事件驱动和线程分工: 流程图说明 Clients(客户端) 多个客户端(Client 1~N)向服务端发起连…

前端开发中 <> 符号解析问题全解:React、Vue 与 UniApp 场景分析与解决方案

前端开发中 <> 符号解析问题全解&#xff1a;React、Vue 与 UniApp 场景分析与解决方案 在前端开发中&#xff0c;<> 符号在 JSX/TSX 环境中常被错误解析为标签而非比较运算符或泛型&#xff0c;导致语法错误和逻辑异常。本文全面解析该问题在不同框架中的表现及解…

【Web应用】 Java + Vue 前后端开发中的Cookie、Token 和 Swagger介绍

文章目录 前言一、Cookie二、Token三、Swagger总结 前言 在现代的 web 开发中&#xff0c;前后端分离的架构越来越受到欢迎&#xff0c;Java 和 Vue 是这一架构中常用的技术栈。在这个过程中&#xff0c;Cookie、Token 和 Swagger 是三个非常重要的概念。本文将对这三个词进行…

投稿Cover Letter怎么写

Cover Letter控制在一页比较好&#xff0c;简短有力地推荐你的文章。 Dear Editors: Small objects detection in remote sensing field remains several challenges, including complex backgrounds, limited pixel representation, and dense object distribution, which c…

创建型设计模式之Prototype(原型)

创建型设计模式之Prototype&#xff08;原型&#xff09; 摘要&#xff1a; Prototype&#xff08;原型&#xff09;设计模式通过复制现有对象来创建新对象&#xff0c;避免重复初始化操作。该模式包含Prototype接口声明克隆方法、ConcretePrototype实现具体克隆逻辑&#xff…

spark在执行中如何选择shuffle策略

目录 1. SortShuffleManager与HashShuffleManager的选择2. Shuffle策略的自动选择机制3. 关键配置参数4. 版本差异(3.0+新特性)5. 异常处理与调优6. 高级Shuffle服务(CSS)1. SortShuffleManager与HashShuffleManager的选择 SortShuffleManager:默认使用,适用于大规模数据…

AUTOSAR图解==>AUTOSAR_EXP_AIADASAndVMC

AUTOSAR高级驾驶辅助系统与车辆运动控制接口详解 基于AUTOSAR R22-11标准的ADAS与VMC接口规范解析 目录 1. 引言2. 术语和概念说明 2.1 坐标系统2.2 定义 2.2.1 乘用车重心2.2.2 极坐标系统2.2.3 车辆加速度/推进力方向2.2.4 倾斜方向2.2.5 方向盘角度2.2.6 道路变量2.2.7 曲率…

26考研——文件管理_文件目录(4)

408答疑 文章目录 二、文件目录1、目录的作用与结构1.1、目录的基本概念1.2、目录的组织形式1.2.1、单级目录结构1.2.2、两级目录结构1.2.3、多级&#xff08;树形&#xff09;目录结构1.2.4、无环图目录结构 1.3、目录的实现方式1.3.1、线性列表1.3.2、哈希表 2、文件共享与链…

Maven 项目中集成数据库文档生成工具

在 Maven 项目中&#xff0c;可以通过集成 数据库文档生成工具&#xff08;如 screw-maven-plugin、mybatis-generator 或 liquibase&#xff09;来自动生成数据库文档。以下是使用 screw-maven-plugin&#xff08;推荐&#xff09;的完整配置步骤&#xff1a; 1. 添加插件配置…

WebSocket指数避让与重连机制

1. 引言 在现代Web应用中&#xff0c;WebSocket技术已成为实现实时通信的重要手段。与传统的HTTP请求-响应模式不同&#xff0c;WebSocket建立持久连接&#xff0c;使服务器能够主动向客户端推送数据&#xff0c;极大地提升了Web应用的实时性和交互体验。然而&#xff0c;在实…

本地部署AI工作流

&#x1f9f0; 主流 RAG / 工作流工具对比表&#xff08;含是否免费、本地部署支持与资源需求&#xff09; 工具名类型是否支持 RAG可视化目标用户是否免费支持本地部署本地部署一般配置Dify企业级问答系统平台✅✅非技术 & 企业用户✅ 免费版 商业版✅ 支持2C4G 起&…

React 第五十节 Router 中useNavigationType的使用详细介绍

前言 useNavigationType 是 React Router v6 提供的一个钩子&#xff0c;用于确定用户如何导航到当前页面。 它提供了关于导航类型的洞察&#xff0c;有助于优化用户体验和实现特定导航行为。 一、useNavigationType 核心用途 1.1、检测导航方式&#xff1a; 判断用户是通过…

4.2.3 Spark SQL 手动指定数据源

在本节实战中&#xff0c;我们学习了如何在Spark SQL中手动指定数据源以及如何使用format()和option()方法。通过案例演示&#xff0c;我们读取了不同格式的数据文件&#xff0c;包括CSV、JSON&#xff0c;并从JDBC数据源读取数据&#xff0c;展示了如何将这些数据转换为DataFr…

【AUTOSAR OS】计数器Counter机制解析:定义、实现与应用

一、Counter的定义与作用 在AUTOSAR Classic Platform&#xff08;CP&#xff09;中&#xff0c;**Counter&#xff08;计数器&#xff09;**是系统实现时间管理的核心组件&#xff0c;用于测量时间间隔、触发报警&#xff08;Alarm&#xff09;和调度表&#xff08;Schedule …

在机器视觉测量和机器视觉定位中,棋盘格标定如何影响精度

棋盘格标定是机器视觉(尤其是基于相机的系统)中进行相机内参(焦距、主点、畸变系数)和外参(相机相对于世界坐标系的位置和姿态)标定的经典且广泛应用的方法。它的质量直接、显著且多方面地影响最终的视觉测量和定位精度。 以下是棋盘格标定如何影响精度的详细分析: 标定…

SOC-ESP32S3部分:21-非易失性存储库

飞书文档https://x509p6c8to.feishu.cn/wiki/QB0Zw7GLeio4l4kyaWQcuQT3nZS 非易失性存储 (NVS) 库主要用于在 flash 中存储键值格式的数据。 它允许我们在芯片的闪存中存储和读取数据&#xff0c;即使在断电后&#xff0c;这些数据也不会丢失。 NVS 是 ESP32 flash&#xff…

让大模型看得见自己的推理 — KnowTrace结构化知识追踪

让大模型“看得见”自己的推理 —— KnowTrace 结构化知识追踪式 RAG 全解析 一句话概括:把检索-推理“改造”成 动态知识图构建任务,再让 LLM 只关注这张不断精炼的小图 —— 这就是显式知识追踪的核心价值。 1. 背景:为什么 RAG 仍难以搞定多跳推理? 长上下文负担 传统 I…

新版智慧景区信息化系统解决方案

该智慧景区信息化系统解决方案以云 + 大数据 + 物联网技术为核心,秉持 “汇聚联合,突显数据隐性价值” 理念,通过数据融合、业务融合、技术融合,构建 “营销、服务、管理” 三位一体模式。方案涵盖智慧票务、智能入园、精准营销、景区管理(如用电安全监测、森林防火、客流…

人工智能在智能健康监测中的创新应用与未来趋势

随着人们健康意识的不断提高和医疗资源的日益紧张&#xff0c;智能健康监测作为一种新兴的健康管理方式&#xff0c;正在迅速发展。人工智能&#xff08;AI&#xff09;技术通过其强大的数据分析和预测能力&#xff0c;为智能健康监测提供了重要的技术支持。本文将探讨人工智能…

python打卡day40

知识点回顾&#xff1a; 彩色和灰度图片测试和训练的规范写法&#xff1a;封装在函数中展平操作&#xff1a;除第一个维度batchsize外全部展平dropout操作&#xff1a;训练阶段随机丢弃神经元&#xff0c;测试阶段eval模式关闭dropout 导入包 # 先继续之前的代码 import torch …