仔细回顾一下神经网络到目前的内容,没跟上进度的同学补一下进度。
- 作业:对之前的信贷项目,利用神经网络训练下,尝试用到目前的知识点让代码更加规范和美观。
# 先运行之前预处理好的代码 import pandas as pd import pandas as pd #用于数据处理和分析,可处理表格数据。 import numpy as np #用于数值计算,提供了高效的数组操作。 import matplotlib.pyplot as plt #用于绘制各种类型的图表 import seaborn as sns #基于matplotlib的高级绘图库,能绘制更美观的统计图形。 import warnings warnings.filterwarnings("ignore")# 设置中文字体(解决中文显示问题) plt.rcParams['font.sans-serif'] = ['SimHei'] # Windows系统常用黑体字体 plt.rcParams['axes.unicode_minus'] = False # 正常显示负号 data = pd.read_csv('data.csv') #读取数据# 先筛选字符串变量 discrete_features = data.select_dtypes(include=['object']).columns.tolist() # Home Ownership 标签编码 home_ownership_mapping = {'Own Home': 1,'Rent': 2,'Have Mortgage': 3,'Home Mortgage': 4 } data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)# Years in current job 标签编码 years_in_job_mapping = {'< 1 year': 1,'1 year': 2,'2 years': 3,'3 years': 4,'4 years': 5,'5 years': 6,'6 years': 7,'7 years': 8,'8 years': 9,'9 years': 10,'10+ years': 11 } data['Years in current job'] = data['Years in current job'].map(years_in_job_mapping)# Purpose 独热编码,记得需要将bool类型转换为数值 data = pd.get_dummies(data, columns=['Purpose']) data2 = pd.read_csv("data.csv") # 重新读取数据,用来做列名对比 list_final = [] # 新建一个空列表,用于存放独热编码后新增的特征名 for i in data.columns:if i not in data2.columns:list_final.append(i) # 这里打印出来的就是独热编码后的特征名 for i in list_final:data[i] = data[i].astype(int) # 这里的i就是独热编码后的特征名# Term 0 - 1 映射 term_mapping = {'Short Term': 0,'Long Term': 1 } data['Term'] = data['Term'].map(term_mapping) data.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列 continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist() #把筛选出来的列名转换成列表# 连续特征用中位数补全 for feature in continuous_features: mode_value = data[feature].mode()[0] #获取该列的众数。data[feature].fillna(mode_value, inplace=True) #用众数填充该列的缺失值,inplace=True表示直接在原数据上修改。# 最开始也说了 很多调参函数自带交叉验证,甚至是必选的参数,你如果想要不交叉反而实现起来会麻烦很多 # 所以这里我们还是只划分一次数据集 from sklearn.model_selection import train_test_split X = data.drop(['Credit Default'], axis=1) # 特征,axis=1表示按列删除 y = data['Credit Default'] # 标签 # 按照8:2划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 80%训练集,20%测试集 # 归一化数据,神经网络对于输入数据的尺寸敏感,归一化是最常见的处理方式 from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) #确保训练集和测试集是相同的缩放 import torch import torch.nn as nn import torch.optim as optim # 正确写法:统一使用 torch.tensor(),并指定 dtype 和 device X_train = torch.tensor(X_train, dtype=torch.float32, device=device) y_train = torch.tensor(y_train, dtype=torch.long, device=device)X_test = torch.tensor(X_test, dtype=torch.float32, device=device) y_test = torch.tensor(y_test, dtype=torch.long, device=device) class MLP(nn.Module): # 定义一个多层感知机(MLP)模型,继承父类nn.Moduledef __init__(self): # 初始化函数super(MLP, self).__init__() # 调用父类的初始化函数# 前三行是八股文,后面的是自定义的self.fc1 = nn.Linear(31, 10) # 输入层到隐藏层self.relu = nn.ReLU()self.fc2 = nn.Linear(10, 2) # 隐藏层到输出层 # 输出层不需要激活函数,因为后面会用到交叉熵函数cross_entropy,交叉熵函数内部有softmax函数,会把输出转化为概率def forward(self, x):out = self.fc1(x)out = self.relu(out)out = self.fc2(out)return out# 实例化模型并移至GPU model = MLP().to(device)# 分类问题使用交叉熵损失函数 criterion = nn.CrossEntropyLoss()# 使用随机梯度下降优化器 optimizer = optim.SGD(model.parameters(), lr=0.001)# 训练模型 num_epochs = 20000 # 训练的轮数# 用于存储每100个epoch的损失值和对应的epoch数 losses = [] epochs = []start_time = time.time() # 记录开始时间# 创建tqdm进度条 with tqdm(total=num_epochs, desc="训练进度", unit="epoch") as pbar:# 训练模型for epoch in range(num_epochs):# 前向传播outputs = model(X_train) # 隐式调用forward函数loss = criterion(outputs, y_train)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()# 记录损失值并更新进度条if (epoch + 1) % 200 == 0:losses.append(loss.item())epochs.append(epoch + 1)# 更新进度条的描述信息pbar.set_postfix({'Loss': f'{loss.item():.4f}'})# 每1000个epoch更新一次进度条if (epoch + 1) % 1000 == 0:pbar.update(1000) # 更新进度条# 确保进度条达到100%if pbar.n < num_epochs:pbar.update(num_epochs - pbar.n) # 计算剩余的进度并更新time_all = time.time() - start_time # 计算训练时间 print(f'Training time: {time_all:.2f} seconds')
@浙大疏锦行