多目标粒子群优化算法(MOPSO),用于解决无人机三维路径规划问题,Matlab代码实现

多目标粒子群优化算法(MOPSO),用于解决无人机三维路径规划问题,Matlab代码实现

目录

    • 多目标粒子群优化算法(MOPSO),用于解决无人机三维路径规划问题,Matlab代码实现
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

代码功能
该代码实现了一个多目标粒子群优化算法(MOPSO),用于解决三维路径规划问题(如无人机避障路径规划)。核心功能是通过球坐标系表示路径节点,优化路径的多个目标(如路径长度、安全性等),最终输出Pareto最优解并可视化。

算法步骤
问题定义

加载环境模型(包含地图、起点、终点、障碍物)

设置路径节点数(决策变量)和球坐标系边界(距离r、俯仰角ψ、方位角φ)

初始化粒子群

随机生成粒子位置(球坐标)和速度

转换球坐标为笛卡尔坐标并计算多目标代价

初始化个体最优和全局最优解

MOPSO主循环
a. 粒子更新

从存档中选择全局最优(领导者)

分别更新球坐标三个分量(r, ψ, φ)的速度和位置

边界处理:速度镜像反弹 + 位置截断
b. 评估与变异

将新位置转为笛卡尔坐标并计算代价

自适应变异:以概率pm生成新解,根据支配关系决定是否接受
c. 更新最优解

比较当前解与个体历史最优,按支配关系或50%概率更新
d. 存档管理

添加新的非支配解到外部存档

移除被支配解

网格自适应:划分目标空间并分配解到网格

存档溢出时删除拥挤区域解

结果输出

从最终存档中选择最优解

转换为笛卡尔坐标并绘制3D路径

用场景
无人机/机器人路径规划

在三维环境中避开障碍物,生成安全、高效的路径

优化目标示例:路径长度最小化、远离障碍物、能耗最低

多目标优化问题

适用于任何需同时优化多个冲突目标的场景

如:成本vs时间、精度vs效率等权衡问题

三维空间导航

利用球坐标系自然约束方向变化

适合空中/水下载体的平滑路径生成

算法特点
球坐标表示

用(r, ψ, φ)代替(x,y,z),简化方向控制

约束角度变化范围(±π/4)保证路径平滑性

多目标处理

外部存档保存Pareto前沿

自适应网格管理解的分布密度

基于拥挤度删除存档解(gamma=2偏好稀疏区域)

自适应变异

变异概率随迭代下降:pm = (1-迭代比)^(1/mu)

变异步长由delta控制,增强局部搜索能力

边界处理

位置越界时采用速度镜像反弹(物理合理性)

速度边界基于位置范围动态计算(α=0.5)

程序设计

  • 完整程序和数据下载私信博主回复多目标粒子群优化算法(MOPSO),用于解决无人机三维路径规划问题,Matlab代码实现
clc; close; clear all;
%% 问题定义
model = CreateModel(); % 创建模型(包含地图、起点、终点等参数)
model_name = 6;        % 模型编号nVar=model.n;       % 决策变量数量(路径节点数)
VarSize=[1 nVar];   % 决策变量矩阵大小% 粒子位置边界(球坐标系)
VarMin.x=model.xmin;           % x最小值           
VarMax.x=model.xmax;           % x最大值           
VarMin.y=model.ymin;           % y最小值           
VarMax.y=model.ymax;           % y最大值           
VarMin.z=model.zmin;           % z最小值           
VarMax.z=model.zmax;           % z最大值                 % 球坐标距离r的范围(基于起点-终点距离计算)
VarMax.r=3*norm(model.start-model.end)/nVar;  
VarMin.r=VarMax.r/9;% 俯仰角(elevation)范围
AngleRange = pi/4; % 角度变化范围限制
VarMin.psi=-AngleRange;        % 最小俯仰角            
VarMax.psi=AngleRange;          % 最大俯仰角          % 方位角(azimuth)范围
VarMin.phi=-AngleRange;         % 最小方位角            
VarMax.phi=AngleRange;          % 最大方位角          % 速度边界(基于位置范围计算)
alpha=0.5; % 速度范围系数
VelMax.r=alpha*(VarMax.r-VarMin.r);    % 距离r的最大速度    
VelMin.r=-VelMax.r;                    % 距离r的最小速度                    
VelMax.psi=alpha*(VarMax.psi-VarMin.psi); % 俯仰角的最大速度    
VelMin.psi=-VelMax.psi;                    % 俯仰角的最小速度                    
VelMax.phi=alpha*(VarMax.phi-VarMin.phi); % 方位角的最大速度    
VelMin.phi=-VelMax.phi;                   % 方位角的最小速度   % 代价函数句柄(多目标)
CostFunction=@(x) MyCost(x,model,VarMin); % 输入笛卡尔坐标,输出多目标代价向量%% PSO Parameters
% 获取目标函数数量
dummy_output = CostFunction(struct('x', ones(1, model.n), 'y', ones(1, model.n), 'z', ones(1, model.n)));
nObj = numel(dummy_output);  % 目标数量MaxIt = 500;          % 最大迭代次数
nPop = 100;           % 种群大小        
nRep = 50;            % 外部存档大小(存储非支配解)% PSO 参数
w = 1;                % 惯性权重
wdamp = 0.98;         % 惯性权重衰减率
c1 = 1.5;             % 个体学习因子
c2 = 1.5;             % 全局学习因子

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pswp.cn/bicheng/83580.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

贪心算法应用:集合覆盖问题详解

贪心算法与集合覆盖问题详解 贪心算法在组合优化问题中展现出独特优势,集合覆盖问题(Set Cover Problem)是其中的经典案例。本文将用2万字全面解析贪心算法在集合覆盖/划分中的应用,涵盖算法原理、正确性分析、Java实现、复杂度证…

MCP:让AI工具协作变得像聊天一样简单 [特殊字符]

想象一下,你正在处理一个项目,需要从A平台查看团队讨论,从B平台获取客户信息,还要在GitHub上检查代码进度。传统做法是什么?打开三个不同的网页,在各个平台间来回切换,复制粘贴数据,最后还可能因为信息分散而遗漏重要细节。 听起来很熟悉?这正是当前工作流程的痛点所…

docker不用dockerfile

好的!既然你不想使用 Dockerfile,我们就完全不写 Dockerfile,改用你 Leader 提到的思路: 用基础镜像启动一个容器 → 手动在容器里安装依赖和复制项目 → 保存为新镜像 这个方式更直观,就像“你进入容器自己配置环境&a…

React与Vue核心区别对比

React 和 Vue 都是当今最流行、功能强大的前端 JavaScript 框架,用于构建用户界面。它们有很多相似之处(比如组件化、虚拟 DOM、响应式数据绑定),但也存在一些核心差异。以下是它们的主要区别: 1. 核心设计与哲学 Rea…

强化学习-深度学习和强化学习领域

在深度学习和强化学习领域,SFT(Supervised Fine-Tuning) 和 GRPO(可能指 Gradient-based Policy Optimization 或 Reinforcement Learning with Policy Optimization)是两种不同的训练范式,常用于模型微调或…

在 ABP VNext 中集成 Serilog:打造可观测、结构化日志系统

🚀 在 ABP VNext 中集成 Serilog:打造可观测、结构化日志系统 📚 目录 🚀 在 ABP VNext 中集成 Serilog:打造可观测、结构化日志系统1. 为什么要使用结构化日志? 🤔2. 核心集成步骤 &#x1f6e…

API异常信息如何实时发送到钉钉

#背景 对于一些重要的API,开发人员会非常关注API有没有报错,为了方便开发人员第一时间获取错误信息,我们可以使用插件来将API报错实时发送到钉钉群。 接下来我们就来实操如何实现 #准备工作 #创建钉钉群 如果已有钉钉群,可以跳…

Stone 3D新版本发布,添加玩家控制和生物模拟等组件,增强路径编辑功能,优化材质编辑

后续版本号改为构建日期加小版本,所以最新版本为20250603.01 功能更新如下: 1. 改写fps-controls组件,简化游戏应用的创建,你只需要一个场景glb,然后给Scene节点添加fps-controls组件,即可完成一个第一人…

【C++11】折叠引用和完美转发

目录 一. 前言二. 引用折叠引用折叠的规则 三. 完美转发完美转发适用场景完美转发底层实现思考1思考2 一. 前言 在函数传参时,如果想保持某个参数的属性不改变,需要完美转发,而完美转发的实现需要折叠引用的帮助 二. 引用折叠 在语法上&am…

Vue 树状结构控件

1、效果图如下所示&#xff1a; 2、网络请求的数据结构如下&#xff1a; 3、新建插件文件&#xff1a;menu-tree.vue&#xff0c;插件代码如下&#xff1a; <template><div class"root"><div class"parent" click"onParentClick(pare…

洛谷P12610 ——[CCC 2025 Junior] Donut Shop

题目背景 Score: 15. 题目描述 The owner of a donut shop spends the day baking and selling donuts. Given the events that happen over the course of the day, your job is to determine the number of donuts remaining when the shop closes. 输入格式 The first …

数据挖掘顶刊《IEEE Transactions on Knowledge and Data Engineering》2025年5月研究热点都有些什么?

本推文对2025年5月出版的数据挖掘领域国际顶级期刊《IEEE Transactions on Knowledge and Data Engineering》进行了分析&#xff0c;对收录的62篇论文的关键词与研究主题进行了汇总&#xff0c;并对其中的研究热点进行了深入分析&#xff0c;希望能为相关领域的研究人员提供有…

华为OD机试真题——最小的调整次数/特异性双端队列(2025B卷:100分)Java/python/JavaScript/C++/C语言/GO六种最佳实现

2025 B卷 100分 题型 本文涵盖详细的问题分析、解题思路、代码实现、代码详解、测试用例以及综合分析; 并提供Java、python、JavaScript、C++、C语言、GO六种语言的最佳实现方式! 2025华为OD真题目录+全流程解析/备考攻略/经验分享 华为OD机试真题《最小的调整次数/特异性双端…

2024年ESWA SCI1区TOP,自适应学习灰狼算法ALGWO+无线传感器网络覆盖优化,深度解析+性能实测

目录 1.端午快乐2.摘要3.灰狼算法GWO原理4.改进策略5.结果展示6.参考文献7.代码获取8.读者交流 1.端午快乐 今天端午节&#xff0c;祝各位朋友端午安康&#xff0c;阖家平安&#xff01; 2.摘要 无线传感器网络&#xff08;WSNs&#xff09;是一种被广泛应用的新兴技术&…

ADI硬件笔试面试题型解析下

本专栏预计更新60期左右。当前第17期-ADI硬件. ADI其硬件工程师岗位的招聘流程通常包括笔试和多轮技术面试,考察领域涵盖模拟电路设计、数字电路、半导体器件和信号处理等。 本文通过分析平台上的信息,汇总了ADI硬件工程师的典型笔试和面试题型,并提供详细解析和备考建议,…

SpringCloud 分布式锁Redisson锁的重入性与看门狗机制 高并发 可重入

可重入 Redisson 的锁支持 可重入性&#xff0c;这意味着同一个线程在获取锁后&#xff0c;如果再次尝试获取该锁&#xff0c;它可以成功地获得锁&#xff0c;而不会被阻塞。 每次一个线程成功获取锁后&#xff0c;它的持有次数会增加。当线程再次获取该锁时&#xff0c;Redi…

Java 中 Redis 过期策略深度解析(含拓展-redis内存淘汰策略列举)

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Java 中 Redis 过期策略深度解析一、Redis 过…

Flutter - 原生交互 - 相机Camera - 01

环境 Flutter 3.29 macOS Sequoia 15.4.1 Xcode 16.3 集成 Flutter提供了camera插件来拍照和录视频&#xff0c;它提供了一系列可用的相机&#xff0c;并使用特定的相机展示相机预览、拍照、录视频。 添加依赖 camera: 提供使用设备相机模块的工具path_provider: 寻找存储图…

基于 Amazon Q Developer CLI 和 Amazon Bedrock Knowledge Bases 实现智能问答系统

1. 引言 传统企业通常将常见问题&#xff08;FAQ&#xff09;发布在网站上&#xff0c;方便客户自助查找信息。然而&#xff0c;随着生成式 AI 技术的迅速发展与商业渗透&#xff0c;这些企业正积极探索构建智能问答系统的新途径。这类系统不仅能显著提升客户体验&#xff0c;…

Go 为何天生适合云原生?

当前我们正处在 AI 时代&#xff0c;但是在基础架构领域&#xff0c;仍然处在云原生时代。云原生仍然是当前时代的风口之一。作为一个 Go 开发者&#xff0c;职业进阶的下一站就是学习云原生技术。作为 Go 开发者学习云原生技术有得天独厚的优势&#xff0c;这是因为 Go 天生适…