代码随想录算法训练营第六天 - 哈希表2 || 454.四数相加II / 383.赎金信 / 15.三数之和 / 18.四数之和
- 454.四数相加II
- 解题思路
- 383.赎金信
- 自己解答:
- 代码随想录讲解
- 暴力做法
- 哈希表
- 15.三数之和
- 双指针
- 优化改进
- 18.四数之和
- 自己的解答
- 系统讲解
454.四数相加II
文档讲解:代码随想录算法训练营
视频讲解:算法视频公开课
状态:思路自己想出来了,但代码没有实现出来
解题思路
首先如果使用暴力方法,也就是对数组nums1
到nums2
依次遍历,直到找到符合要求的组合,那么时间复杂度为O(n^4)
。
如何能减少时间复杂度呢?
想到之间 242.有效字母异位词 的解法,我们可以遍历nums1
和nums2
,求出二者num1 + num2
之和的组合,并记录出现的次数。
接着,我们再遍历nums3
和nums4
,现在我们的目标值是找到target = 0 - num3 - num4
,因为题目要求num1 + num2 + num3 + num4 = 0
,也就是要找num1 + num2 = - (num3 + num4)
。然后在map
里找target
是否出现过,如果出现过,计数的变量count
要加上target
在map
里的value
值,即target
在map
里存储的次数。
代码实现:
class Solution {
public:int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<int>& nums3, vector<int>& nums4) {unordered_map<int,int> map;// 遍历 nums1 和 nums2for (int num1 : nums1) {for (int num2 : nums2) {map[num1 + num2] ++;}}int count = 0;// 遍历 nums3 和 nums4for (int num3 : nums3) {for (int num4 : nums4) {int target = 0 - num3 - num4;if (map.find(target) != map.end()) {count += map[target];}}}return count;}
};
383.赎金信
文档讲解:代码随想录算法训练营
状态:自己完全做出来了
自己解答:
class Solution {
public:bool canConstruct(string ransomNote, string magazine) {unordered_map<int,int> map;// 遍历 magazine 字符串for (int i = 0; i < magazine.size(); i++) {map[magazine[i] - 'a'] ++;}// 遍历 ransomNote 字符串for (int i = 0; i < ransomNote.size(); i++) {map[ransomNote[i] - 'a'] --;}// 是否有 value < 0,如果有就不能构成for (int i = 0; i < 26; i++) {if (map[i] < 0) return false; }return true;}
};
代码随想录讲解
暴力做法
class Solution {
public:bool canConstruct(string ransomNote, string magazine) {// 遍历 magazine 和 ransomNotefor (int i = 0; i < magazine.size(); i++) {for (int j = 0; j < ransomNote.size(); j++) {// 如果找到相同字符,就把这个字符从 ransomNote里删除if (magazine[i] == ransomNote[j]) {ransomNote.erase(ransomNote.begin() + j);}}}// 如果 ransomNote 里还有字符,那么就不构成if (ransomNote.length() != 0) return false;return true;}
};
哈希表
题目说只有小写字母,采用空间换取时间的哈希策略,用一个长度为26的数组来记录magazine出现字母的次数。
为什么不采用map
呢,因为map要维护红黑树或者哈希表,而且还要做哈希函数,是费时的!数据量大的话就能体现出来差别了。 所以数组更加简单直接有效!
class Solution {
public:bool canConstruct(string ransomNote, string magazine) {int hash[26] = {};for (int i = 0; i < magazine.size(); i++) {hash[magazine[i] - 'a'] ++;}for (int i = 0; i < ransomNote.size(); i++) {hash[ransomNote[i] - 'a'] --;}for (int i = 0; i < 26; i++) {if (hash[i] < 0) return false;}return true;}
};
15.三数之和
文档讲解:代码随想录算法训练营
视频讲解:算法视频公开课
状态:自己有思路,在代码随想录基础上做优化
双指针
这道题要使用哈希表的话,在去重操作中可能非常复杂,很难写全。
这道题应该使用双指针法。
步骤一:先对数组进行从小到大排序;
步骤二:遍历数组,注意我们只需要遍历到数组的倒数第三个位置即可,因为我们需要 left
和 right
,并且 i < left < right
;
步骤三:去重。如果第一个数大于0即 nums[i] > 0
,那么直接返回即可,不可能再有答案了。如果循环中,这个元素和上一个元素数值相等,那么直接跳过。
注意:我的语言描述是,这个元素和上一个元素数值相等,不是这个元素和下一个元素数值相等。这是有区别的,比如nums = [-1, -1, 0, 1, 2]
,当 i = 0 的时候,此时指向第一个 -1,如果判断这个元素与下一个元素,即 i = 1 的时候,此时指向的数也为 -1,那么就应该跳过 i = 0,明显是不正确的。正确应该是==该元素与上一个元素的值相等,跳过该元素。
步骤三:设 left = i + 1, right = n - 1
,开始循环,循环条件是left < right
,注意这里不能加上=,当想到等时候就应该终止循环,而不是接着循环。
步骤四:当三数之和 > 0,那么让 right --
;如果三数之和 < 0,那么就让 left ++
;如果三数之和 = 0,就把结果放入到答案数组res
中。
步骤五:放入res
后,需要对left
和 right
去重,如果 left < right
,这个是前提,也必须在循环条件里,不写的话,可能造成死循环,比如数组nums = [0, 0, 0, 0, 0]
,就会一直循环到头。对于right
,如果下一个元素和该元素相等,那么就跳过元素;对于left
,如果下一个元素和该元素相等,就跳过元素。
步骤六:找到符合要求的一组时,要让left
和 right
收缩
class Solution {
public:vector<vector<int>> threeSum(vector<int>& nums) {vector<vector<int>> res;int n = nums.size();// 对数组 nums 进行从小到大排序sort(nums.begin(), nums.end());for (int i = 0; i < n - 2; i ++) {if (nums[i] > 0) return res;if (i > 0 && nums[i] == nums[i - 1]) continue;int left = i + 1;int right = n - 1;while (left < right) {if (nums[i] + nums[left] + nums[right] > 0) right --;else if (nums[i] + nums[left] + nums[right] < 0) left ++;else {res.push_back({nums[i], nums[left], nums[right]});while (left < right && nums[left] == nums[left + 1]) left ++;while (left < right && nums[right] == nums[right - 1]) right --;// 找到解,收缩left 和 rightleft ++;right --;}}}return res;}
};
优化改进
可以加上几个判断:
如果nums
的前三个元素之和 > 0,那么不可能再有解,直接break
;
如果nums
的后两个元素 + nums[i]
< 0 ,那么可以跳过本次循环,left
和 right
无论怎么移动也不能得到答案。
注意写i + 1
,i + 2
,for循环中一定写的是i < n - 2
,否则会造成越界访问
if (nums[i] + nums[i + 1] + nums[i + 2] > 0) break;if (nums[i] + nums[n - 2] + nums[n - 1] < 0) continue;
除此之外,在找到答案的时候,对left
和 right
的处理还可以再优化,代码更简洁,更易理解。
每次找到答案,我们先对left
和 right
进行收缩操作,然后进行判重,也就是如果left < right
,对于left
,就是,该元素与上一个元素相等,就跳过,和步骤三一致。
for (left ++; left < right && nums[left] == nums[left - 1]; left ++);for (right --; left < right && nums[right] == nums[right + 1]; right --);
class Solution {
public:vector<vector<int>> threeSum(vector<int>& nums) {vector<vector<int>> res;int n = nums.size();sort(nums.begin(), nums.end());for (int i = 0; i < n - 2; i ++) {if (nums[i] > 0) return res;if (nums[i] + nums[i + 1] + nums[i + 2] > 0) break;if (nums[i] + nums[n - 2] + nums[n - 1] < 0) continue;if (i > 0 && nums[i] == nums[i - 1]) continue;int l = i + 1, r = n - 1;while (l < r) {if (nums[i] + nums[l] + nums[r] > 0) r --;else if (nums[i] + nums[l] + nums[r] < 0) l ++;else {res.push_back({nums[i], nums[l], nums[r]});for (l ++; l < r && nums[l] == nums[l - 1]; l ++);for (r --; l < r && nums[r] == nums[r + 1]; r --);}}}return res;}
};
18.四数之和
文档讲解:代码随想录算法训练营
视频讲解:算法视频公开课
状态:自己仿照三数之和做出来了,调试了好几次,int换成long long,剪枝的位置不正确等等,最后还是AC了
自己的解答
class Solution {
public:vector<vector<int>> fourSum(vector<int>& nums, int target) {vector<vector<int>> res;sort (nums.begin(), nums.end());int n = nums.size();for (int i = 0; i < n - 3; i ++) {if (i > 0 && nums[i] == nums[i - 1]) continue;if ((long long)nums[i] + nums[i + 1] + nums[i + 2] + nums[i + 3] > target) break;if ((long long)nums[i] + nums[n - 3] + nums[n - 2] + nums[n - 1] < target) continue;for (int j = i + 1; j < n - 2; j ++) {if (j > i + 1 && nums[j] == nums[j - 1]) continue;int l = j + 1, r = n - 1;while (l < r) {if ((long long)nums[i] + nums[j] + nums[l] + nums[r] > target) r --;else if ((long long)nums[i] + nums[j] + nums[l] + nums[r] < target) l ++;else {res.push_back({nums[i], nums[j], nums[l], nums[r]});for (l ++; l < r && nums[l] == nums[l - 1]; l ++);for (r --; l < r && nums[r] == nums[r + 1]; r --);}} }}return res;}
};
系统讲解
本题和三数之和非常像,整体思路就是在三数之和的循环外,再套上一层循环即可。
这里要注意剪枝和去重。
首先对于一级剪枝操作,这里不能直接写nums[i] > target,直接就break
这是错误的,如果target < 0,num[i] < 0
,负数加负数会变的越来越小,还是可能有解的,所以我们要加上条件。对于剪枝,同理还有如果前四个数之和 > target,直接break;nums[i]加上后三个数 < target,continue,注意,这里要转成long long
类型才能过。
对于去重,和之前同理。
// 一级剪枝操作if (nums[i] > target && nums[i] > 0 && target > 0) break;if ((long long)nums[i] + nums[i + 1] + nums[i + 2] + nums[i + 3] > target) break;if ((long long)nums[i] + nums[n - 3] + nums[n - 2] + nums[n - 1] < target) continue;// 一级去重if (i > 0 && nums[i] == nums[i - 1]) continue;
二级去重,就仿照一级去重来写,把nums[i] + nums[j]
当成一个整体。
class Solution {
public:vector<vector<int>> fourSum(vector<int>& nums, int target) {vector<vector<int>> res;int n = nums.size();sort(nums.begin(), nums.end());for (int i = 0; i < n - 3; i ++) {// 一级剪枝,注意 long longif (nums[i] > target && nums[i] > 0 && target > 0) break;if ((long long)nums[i] + nums[i + 1] + nums[i + 2] + nums[i + 3] > target) break;if ((long long)nums[i] + nums[n - 3] + nums[n - 2] + nums[n - 1] < target) continue;// 一级去重if (i > 0 && nums[i] == nums[i - 1]) continue;for (int j = i + 1; j < n - 2; j++) {// 二级剪枝if (nums[i] + nums[j] > target && nums[i] + nums[j] > 0 && target > 0) break;if ((long long)nums[i] + nums[j] + nums[j + 1] + nums[j + 2] > target) break;if ((long long)nums[i] + nums[j] + nums[n - 2] + nums[n - 1] < target) continue;// 二级去重if (j > i + 1 && nums[j] == nums[j - 1]) continue;// 下面同三数之和逻辑int l = j + 1, r = n - 1;while (l < r) {if ((long long)nums[i] + nums[j] + nums[l] + nums[r] > target) r --;else if ((long long)nums[i] + nums[j] + nums[l] + nums[r] < target) l ++;else {res.push_back({nums[i], nums[j], nums[l], nums[r]});for (l ++; l < r && nums[l] == nums[l - 1]; l ++);for (r --; l < r && nums[r] == nums[r + 1]; r --);}}}}return res;}
};